Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Studies Selection
2.2. Global Spread of mcr in Escherichia coli
2.3. The mcr in Healthy Humans, Chickens, and Pigs
2.4. mcr in Clinical Samples
3. Discussion
3.1. Global Prevalence of mcr in the Hosts Studied
3.2. mcr Variants Worldwide
3.3. Present and Future Implications
3.4. Limitations
4. Materials and Methods
4.1. Search Strategies
4.2. Criteria for the Selection of the Studies
4.3. Database
4.4. Statistical and Meta-Analysis Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elbediwi, M.; Li, Y.; Paudyal, N.; Pan, H.; Li, X.; Xie, S.; Rajkovic, A.; Feng, Y.; Fang, W.; Rankin, S.C.; et al. Global Burden of Colistin—Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980–2018). Microorganisms 2019, 7, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutgring, J.; Machado, M.J.; Benahmed, F.; Conville, P.; Shawar, R.; Patel, J.; Brown, A.; Kraft, C.S. FDA-CDC Antimicrobial Resistance Isolate Bank: A Publicly Available Resource to Support Research, Development, and Regulatory Requirements. J. Clin. Microbiol. 2022, 56, e01415–e01417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spellberg, B.; Blaser, M.; Guidos, R.J.; Boucher, H.W.; Bradley, J.S.; Eisenstein, B.I.; Gerding, D.; Lynfield, R.; Reller, L.B.; Rex, J.; et al. Combating Antimicrobial Resistance: Policy Recommendations to Save Lives. Clin. Infect. Dis. 2011, 52 (Suppl. 5), 397–428. [Google Scholar] [CrossRef]
- Sarkar, S.; Hermes DeSantis, E.R.; Kuper, J. Resurgence of Colistin Use. Am. J. Health Pharm. 2007, 64, 2462–2466. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kasiakou, S.K. Toxicity of Polymyxins: A Systematic Review of the Evidence from Old and Recent Studies. Crit. Care 2006, 10, R27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kift, E.V.; Chb, M.B.; Hons, B.; Maartens, G.; Chb, M.B.; Med, M.I.; Bamford, C.; Chb, M.B.; Micro, M.M. Systematic Review of the Evidence for Rational Dosing of Colistin. S. Afr. Med. J. 2014, 104, 183–186. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kasiakou, S.K. Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections. Clin. Infect. Dis. 2005, 40, 1333–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsin, M.; Van Boeckel, T.P.; Saleemi, M.K.; Umair, M.; Naseem, M.N.; He, C.; Khan, A.; Laxminarayan, R. Excessive Use of Medically Important Antimicrobials in Food Animals in Pakistan: A Five-Year Surveillance Survey. Glob. Health Action 2019, 12 (Suppl. 1), 1697541. [Google Scholar] [CrossRef] [Green Version]
- Boonyasiri, A.; Tangkoskul, T.; Seenama, C.; Tiengrim, S.; Thamlikitkul, V.; Boonyasiri, A.; Tangkoskul, T.; Seenama, C.; Saiyarin, J.; Tiengrim, S.; et al. Prevalence of Antibiotic Resistant Bacteria in Healthy Adults, Foods, Food Animals, and the Environment in Selected Areas in Thailand. Pathog. Glob. Health 2014, 108, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Bonten, M.; Johnson, J.R.; Van Den Biggelaar, A.H.J.; Georgalis, L.; Geurtsen, J.; De Palacios, P.I.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J.T. Epidemiology of Escherichia Coli Bacteremia: A Systematic Literature Review. Clin. Infect. Dis. 2021, 72, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Begier, E.; Rosenthal, N.A.; Gurtman, A.; Kartashov, A.; Donald, R.G.K.; Lockhart, S.P. Epidemiology of Invasive Escherichia coli Infection and Antibiotic Resistance Status among Patients Treated in US Hospitals: 2009–2016. Clin. Infect. Dis. 2021, 73, 565–574. [Google Scholar] [CrossRef]
- Paitan, Y. Current Trends in Antimicrobial Resistance of Escherichia coli. Curr. Top. Microbiol. Immunol. 2018, 416, 81–211. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.; Lupo, A.; Schink, A.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Berglund, B. Acquired Resistance to Colistin via Chromosomal and Plasmid-Mediated Mechanisms in Klebsiella Pneumoniae. Infect. Microbes Dis. 2019, 1, 10–19. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, B.; Liang, B.; Xu, X.; Qiu, S.; Jia, L.; Li, P.; Yang, L.; Li, Y.; Xiang, Y.; et al. A Novel Mcr-1 Variant Carried by an IncI2-Type Plasmid Identified from a Multidrug Resistant Enterotoxigenic Escherichia Coli. Front. Microbiol. 2018, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.; Hadjadj, L.; Rolain, J.M.; Olaitan, A.O. Molecular Mechanisms of Polymyxin Resistance: Knowns and Unknowns. Int. J. Antimicrob. Agents 2016, 48, 583–591. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Walsh, T.R.; Yi, L.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- García, V.; García-Meniño, I.; Mora, A.; Flament-Simon, S.C.; Díaz-Jiménez, D.; Blanco, J.E.; Alonso, M.P.; Blanco, J. Co-Occurrence of Mcr-1, Mcr-4 and Mcr-5 Genes in Multidrug-Resistant ST10 Enterotoxigenic and Shiga Toxin-Producing Escherichia coli in Spain (2006–2017). Int. J. Antimicrob. Agents 2018, 52, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Irrgang, A.; Roschanski, N.; Tenhagen, B.; Grobbel, M. Prevalence of Mcr-1 in E. coli from Livestock and Food in Germany, 2010–2015. PLoS ONE 2016, 11, e0159863. [Google Scholar] [CrossRef]
- Von Wintersdorff, C.J.H.; Wolffs, P.F.G.; Van Niekerk, J.M.; Beuken, E.; Van Alphen, L.B.; Stobberingh, E.E.; Lashof, A.M.L.O.; Hoebe, C.J.P.A.; Savelkoul, P.H.M.; Penders, J. Detection of the Plasmid-Mediated Colistin-Resistance Gene Mcr-1 in Faecal Metagenomes of Dutch Travellers. J. Antimicrob. Chemother. 2016, 71, 3416–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Feng, Y.; Liu, L.; Wei, L.; Kang, M.; Zong, Z. Identification of Novel Mobile Colistin Resistance Gene Mcr-10. Emerg. Microbes Infect. 2020, 9, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for Detection of Plasmid-Mediated Mcr-4 and Mcr-5 for Surveillance Purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Malhotra-Kumar, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a Novel Plasmid-Mediated Colistinresistance Gene, Mcr-2, in Escherichia Coli, Belgium, June 2016. Eurosurveillance 2016, 21, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Borowiak, M.; Baumann, B.; Fischer, J.; Thomas, K.; Deneke, C.; Hammerl, J.A.; Szabo, I.; Malorny, B. Development of a Novel Mcr-6 to Mcr-9 Multiplex PCR and Assessment of Mcr-1 to Mcr-9 Occurrence in Colistin-Resistant Salmonella Enterica Isolates from Environment, Feed, Animals and Food (2011–2018) in Germany. Front. Microbiol. 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Roer, L.; Hansen, F.; Stegger, M.; Sönksen, U.W.; Hasman, H.; Hammerum, A.M. Novel Mcr-3 Variant, Encoding Mobile Colistin Resistance, in an ST131 Escherichia Coli Isolate from Bloodstream Infection, Denmark, 2014. Eurosurveillance 2017, 22, 30584. [Google Scholar] [CrossRef]
- Jeannot, K.; Bolard, A.; Plésiat, P. Resistance to Polymyxins in Gram-Negative Organisms. Int. J. Antimicrob. Agents 2017, 49, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Quesada, A.; Ugarte-Ruiz, M.; Iglesias, M.R.; Porrero, M.C.; Martínez, R.; Florez-Cuadrado, D.; Campos, M.J.; García, M.; Píriz, S.; Sáez, J.L.; et al. Detection of Plasmid Mediated Colistin Resistance (MCR-1) in Escherichia coli and Salmonella enterica Isolated from Poultry and Swine in Spain. Res. Vet. Sci. 2016, 105, 134–135. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Shen, Y.; Shen, J.; Wu, C. Early Emergence of Mcr-1 in Escherichia Coli from Food-Producing. Lancet Infect. Dis. 2016, 16, 293. [Google Scholar] [CrossRef] [Green Version]
- Organización Mundial de la Salud; Organización Panamericana de la Salud. Enterobacterias Con Resistencia Transferible a Colistina, Implicaciones Para La Salud Publica en Las Américas. Boletín Organ. Mund. Salud 2016, 1, 1–5. [Google Scholar]
- Elias, C.; Moja, L.; Mertz, D.; Loeb, M.; Forte, G.; Magrini, N. Guideline Recommendations and Antimicrobial Resistance: The Need for a Change. BMJ Open 2017, 7, e016264. [Google Scholar] [CrossRef] [Green Version]
- Felmingham, D. The Need for Antimicrobial Resistance Surveillance. J. Antimicrob. Chemother. 2002, 50 (Suppl. 1), 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nations, U.; Assembly, G.; York, N.; Humphreys, G.; Fleck, F. United Nations Meeting on Antimicrobial Resistance. Bull. World Health Organ. 2016, 94, 638–639. [Google Scholar]
- Wang, R.; Liu, Y.; Zhang, Q.; Jin, L.; Wang, Q.; Zhang, Y.; Wang, X.; Hu, M.; Li, L.; Qi, J.; et al. The Prevalence of Colistin Resistance in Escherichia coli and Klebsiella pneumoniae Isolated from Food Animals in China: Coexistence of Mcr-1 and BlaNDM with Low Fitness Cost. Int. J. Antimicrob. Agents 2018, 51, 739–744. [Google Scholar] [CrossRef]
- Matamoros, S.; Van Hattem, J.M.; Arcilla, M.S.; Willemse, N.; Melles, D.C.; Penders, J.; Vinh, T.N.; Thi Hoa, N.; Bootsma, M.C.J.; Van Genderen, P.J.; et al. Global Phylogenetic Analysis of Escherichia Coli and Plasmids Carrying the Mcr-1 Gene Indicates Bacterial Diversity but Plasmid Restriction. Sci. Rep. 2017, 7, 15364. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Kawahara, R.; Hamamoto, K.; Hirai, I.; Khong, T.; Nguyen, N. High Prevalence of Colistin-Resistant Escherichia coli with Chromosomally Carried mcr-1 in Healthy Residents in Vietnam Takahiro. mSphere 2020, 5, e00117-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilrane, V.L.; Lobo, S.; Huang, W.; Zhuge, J.; Yin, C.; Chen, D.; Alvarez, K.J.; Budhai, A.; Nadelman, I.; Dimitrova, N.; et al. Complete Genome Sequence of a Colistin-Resistant Escherichia coli Strain Harboring mcr-1 on an IncHI2 Plasmid in the United States. Genome Announc. 2017, 5, 10–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Wang, Y.; Xiao, Y. Prevalence and Transmission of Mobilized Colistin Resistance (Mcr) Gene in Bacteria Common to Animals and Humans. Biosaf. Health 2020, 2, 71–78. [Google Scholar] [CrossRef]
- Walia, K.; Sharma, M.; Vijay, S.; Shome, B.R. Understanding Policy Dilemmas around Antibiotic Use in Food Animals & Offering Potential Solutions. Indian J. Med.Res. 2019, 2, 107–118. [Google Scholar] [CrossRef]
- Hu, Y.J.; Cowling, B.J. Reducción Del Uso de Antibióticos En El Ganado, China. Bull. World Health Organ. 2020, 98, 360–361. [Google Scholar] [CrossRef]
- Agency European Medicines. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2017 Trends from 2010 to 2017, Ninth ESVAC Report. OJL 2017, 135, 1–109. [Google Scholar]
- Wang, R.; Van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The Global Distribution and Spread of the Mobilized Colistin Resistance Gene mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef] [Green Version]
- Kusumoto, M.; Ogura, Y.; Gotoh, Y.; Iwata, T.; Hayashi, T.; Akiba, M. Colistin-Resistant mcr-1-Positive Pathogenic Escherichia coli in swine, Japan, 2007–2014. Emerg. Infect. Dis. 2016, 22, 1315–1317. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.R.; Thummeepak, R.; Paudel, S.; Acharya, M.; Pradhan, S.; Banjara, M.R.; Leungtongkam, U.; Sitthisak, S. Molecular Characterization of Colistin-Resistant Escherichia coli Isolated from Chickens: First Report from Nepal. Microb. Drug Resist. 2019, 25, 846–854. [Google Scholar] [CrossRef]
- Belaynehe, K.M.; Shin, S.W.; Park, K.Y.; Jang, J.Y.; Won, H.G.; Yoon, I.J.; Yoo, H.S. Emergence of Mcr-1 and Mcr-3 Variants Coding for Plasmid-Mediated Colistin Resistance in Escherichia coli Isolates from Food-Producing Animals in South Korea. Int. J. Infect. Dis. 2018, 72, 22–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sataloff, R.T.; Johns, M.M.; Kost, K.M. OIE Annual Report on Antimicrobial Agents Intended for Use in Animals. World Organ. Anim. Health 2018, 12, 75017. [Google Scholar]
- Liu, Y.; Liu, J.H. Monitoring Colistin Resistance in Food Animals, An Urgent Threat. Expert Rev. Anti. Infect. Ther. 2018, 16, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Agency European Medicines ESVAC. Vigilancia Europea Del Consumo de Antimicrobianos Veterinarios, Orphanet. J. Rare Dis. 2020, 21, 1–9. [Google Scholar] [CrossRef]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel Plasmid-Mediated Colistin Resistance mcr-4 Gene in Salmonella and Escherichia coli, Italy 2013, Spain, and Belgium, 2015 to 2016. Eurosurveillance 2017, 22, 30589. [Google Scholar] [CrossRef] [Green Version]
- Hernández, M.; Iglesias, M.R.; Rodríguez-Lázaro, D.; Gallardo, A.; Quijada, N.M.; Miguela-Villoldo, P.; Campos, M.J.; Píriz, S.; López-Orozco, G.; de Frutos, C.; et al. Co-Occurrence of Colistin-Resistance Genes mcr-1 and mcr-3 among Multidrug-Resistant Escherichia coli Isolated from Cattle, Spain, September 2015. Eurosurveillance 2017, 22, 30586. [Google Scholar] [CrossRef]
- Litrup, E.; Kiil, K.; Hammerum, A.; Roer, L.; Nielsen, E.; Torpdahl, M. Plasmid-Borne Colistin Resistance Gene Mcr-3 in Salmonella Isolates from Human Infections, Denmark, 2009–2017. MBio 2017, 8, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhao, X.; Che, J.; Xiong, Y.; Xu, Y.; Zhang, L.; Lan, R.; Xia, L.; Walsh, T.R.; Xu, J.; et al. Detection and Dissemination of the Colistin Resistance Gene, Mcr-1, from Isolates and Faecal Samples in China. J. Med. Microbiol. 2017, 66, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, M.; Abo, H.; Ozawa, M.; Uchiyama, M.; Shirakawa, T.; Suzuki, S.; Shima, A.; Yamashita, A.; Sekizuka, T.; Kato, K.; et al. Prevalence of Colistin Resistance Gene Mcr-1 and Absence of Mcr-2 in Escherichia Coli Isolated from Healthy Food-Producing Animals in Japan. Antimicrob. Agents Chemother. 2017, 61, e02057-16. [Google Scholar] [CrossRef] [Green Version]
- Rumi, M.V.; Mas, J.; Elena, A.; Cerdeira, L.; Muñoz, M.E.; Lincopan, N.; Gentilini, É.R.; Di Conza, J.; Gutkind, G. Co-Occurrence of Clinically Relevant β-Lactamases and MCR-1 Encoding Genes in Escherichia Coli from Companion Animals in Argentina. Vet. Microbiol. 2019, 230, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, N.D.; Cufaoglu, G.; Yonsul, Y.; Goncuoglu, M.; Erol, I. Plasmid-Mediated Colistin Resistance in Escherichia Coli O157:H7 Cattle and Sheep Isolates and Whole-Genome Sequence of a Colistin-Resistant Sorbitol Fermentative Escherichia Coli O157:H7. Microb. Drug Resist. 2019, 25, 1497–1506. [Google Scholar] [CrossRef]
- Clemente, L.; Manageiro, V.; Correia, I.; Amaro, A.; Albuquerque, T.; Themudo, P.; Ferreira, E.; Caniça, M. Revealing Mcr-1-Positive ESBL-Producing Escherichia Coli Strains among Enterobacteriaceae from Food-Producing Animals (Bovine, Swine and Poultry) and Meat (Bovine and Swine), Portugal, 2010–2015. Int. J. Food Microbiol. 2019, 296, 37–42. [Google Scholar] [CrossRef]
- Ye, H.; Li, Y.; Li, Z.; Gao, R.; Zhang, H.; Wen, R.; Gao, G.F.; Hu, Q. Diversified Mcr-1-Harbouring Plasmid Reservoirs Confer Resistance to Colistin in Human Gut Microbiota. MBio 2016, 7, e00177-16. [Google Scholar] [CrossRef] [Green Version]
- Alba, P.; Leekitcharoenphon, P.; Franco, A.; Feltrin, F.; Ianzano, A.; Caprioli, A.; Stravino, F.; Hendriksen, R.S.; Bortolaia, V.; Battisti, A. Molecular Epidemiology of Mcr-Encoded Colistin Resistance in Enterobacteriaceae from Food-Producing Animals in Italy Revealed through the EU Harmonized Antimicrobial Resistance Monitoring. Front. Microbiol. 2018, 9, 1217. [Google Scholar] [CrossRef]
- Zając, M.; Sztromwasser, P.; Bortolaia, V.; Leekitcharoenphon, P.; Cavaco, L.M.; Ziȩtek-Barszcz, A.; Hendriksen, R.S.; Wasyl, D. Occurrence and Characterization of Mcr-1-Positive Escherichia Coli Isolated from Food-Producing Animals in Poland, 2011–2016. Front. Microbiol. 2019, 10, 2816. [Google Scholar] [CrossRef] [PubMed]
- Ström, G.; Boqvist, S.; Albihn, A.; Fernström, L.L.; Andersson Djurfeldt, A.; Sokerya, S.; Sothyra, T.; Magnusson, U. Antimicrobials in Small-Scale Urban Pig Farming in a Lower Middle-Income Country—Arbitrary Use and High Resistance Levels. Antimicrob. Resist. Infect. Control 2018, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.A.; Shehata, M.A.; Rafeek, E. Virulence Genes Content and Antimicrobial Resistance in Escherichia Coli from Broiler Chickens. Vet. Med. Int. 2014, 2014, 195189. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.P.; Horton, R.A.; Lemma, F.; Martelli, F.; Duggett, N.A.D.; Smith, R.P.; Kirchner, M.J.; Ellis, R.J.; Rogers, J.P.; Williamson, S.M.; et al. Longitudinal Study on the Occurrence in Pigs of Colistin Resistant E. Coli Carrying Mcr-1 following the Cessation of Use of Colistin. J. Appl. Microbiol. 2018, 125, 596–608. [Google Scholar] [CrossRef]
- Harada, K.; Asai, T.; Kojima, A.; Oda, C.; Ishihara, K.; Takahashi, T. Antimicrobial Susceptibility of Pathogenic Escherichia Coli Isolated from Sick Cattle and Pigs in Japan. J. Vet. Med. Sci. 2005, 67, 999–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anyanwu, M.U.; Jaja, I.F. Occurrence and Characteristics of Mobile Colistin Resistance (mcr) Gene-Containing Isolates from the Environment: A Review. Int. J. Environ. Res. Public Health 2020, 17, 1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, W.; Müller, A.; Grabowski, N.T.; Kehrenberg, C.; Muylkens, B.; Al Dahouk, S. Foodborne Diseases Do Not Respect Borders: Zoonotic Pathogens and Antimicrobial Resistant Bacteria in Food Products of Animal Origin Illegally Imported into the European Union. Vet. J. 2019, 244, 75–82. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Colloquium. Microbiol. Spectr. 2018, 6, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.R. Importance of a One Health Approach in Advancing Global Health Security, and the Sustainable Development Goals. Rev. Sci. Tech. 2019, 38, 145–154. [Google Scholar] [CrossRef]
- Scott, H.M.; Acuff, G.; Bergeron, G.; Bourassa, M.W.; Simjee, S.; Singer, R.S. Antimicrobial Resistance in a One Health Context: Exploring Complexities, Seeking Solutions, and Communicating Risks. Ann. N. Y. Acad. Sci. 2019, 1441, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Vinh Trung, N.; Matamoros, S.; Carrique-Mas, J.J.; Nghia, N.H.; Thi Nhung, N.; Thi Bich Chieu, T.; Huynh Mai, H.; van Rooijen, W.; Campbell, J.; Wagenaar, J.A.; et al. Zoonotic Transmission of mcr-1 Colistin Resistance Gene from Small-Scale Poultry Farms, Vietnam. Emerg. Infect. Dis. 2017, 23, 529–532. [Google Scholar] [CrossRef] [Green Version]
- Al-Tawfiq, J.A.; Laxminarayan, R.; Mendelson, M. How Should We Respond to the Emergence of Plasmid-Mediated Colistin Resistance in Humans and Animals? Int. J. Infect. Dis. 2017, 54, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caniaux, I.; van Belkum, A.; Zambardi, G.; Poirel, L.; Gros, M.F. MCR: Modern Colistin Resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 415–420. [Google Scholar] [CrossRef] [Green Version]
- The European Commitee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute, A. Recommendations for MIC Determination of Colistin (Polymyxin E) as Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. EUCAST. 2016. Available online: http://www.bioconnections.co.uk/files/merlin/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf (accessed on 1 May 2022).
- Osei Sekyere, J. Mcr Colistin Resistance Gene: A Systematic Review of Current Diagnostics and Detection Methods. Microbiology Open 2019, 8, e00682. [Google Scholar] [CrossRef] [Green Version]
- Jayol, A.; Nordmann, P.; André, C.; Poirel, L.; Dubois, V. Evaluation of Three Broth Microdilution Systems to Determine Colistin Susceptibility of Gram-Negative Bacilli. J. Antimicrob. Chemother. 2018, 73, 1272–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haziq, M.; Momin, F.A.; Bean, D.C.; Hendriksen, R.S.; Haenni, M.; Phee, L.M.; Wareham, D.W. CHROMagar COL-APSE: A Selective Bacterial Culture Medium for the Isolation and Differentiation of Colistin-Resistant Gram-Negative Pathogens. J. Med. Microbiol. 2017, 66, 1554–1561. [Google Scholar] [CrossRef]
- Jayol, A.; Nordmann, P.; Lehours, P.; Poirel, L.; Dubois, V. Comparison of Methods for Detection of Plasmid-Mediated and Chromosomally Encoded Colistin Resistance in Enterobacteriaceae. Clin. Microbiol. Infect. 2018, 24, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.L.; La, M.-V.; Lin, R.T.; Teo, J.W. Colistin and Polymyxin B Susceptibility Testing for Carbapenem-Resistant and mcr-Positive Enterobacteriaceae: Comparison of Sensititre, MicroScan, Vitek 2, and Etest with Broth Microdilution. J. Clin. Microbiol. 2017, 55, 2609–2616. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Rhomberg, P.R.; Flamm, R.K.; Jones, R.N. Use of a Surfactant (Polysorbate 80) to Improve MIC Susceptibility Testing Results for Polymyxin B and Colistin. Diagn. Microbiol. Infect. Dis. 2012, 74, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Matuschek, E.; Åhman, J.; Webster, C.; Kahlmeter, G. Antimicrobial Susceptibility Testing of Colistin—Evaluation of Seven Commercial MIC Products against Standard Broth Microdilution for Escherichia Coli, Klebsiella Pneumoniae, Pseudomonas Aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018, 24, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Galani, I.; Kontopidou, F.; Souli, M.; Rekatsina, P.; Koratzanis, E.; Deliolanis, J.; Giamarellou, H. Colistin Susceptibility Testing by Etest and Disk Diffusion Methods. Int. J. Antimicrob. Agents 2008, 31, 434–439. [Google Scholar] [CrossRef]
- Lu, S.; Li, D.; Wang, L.; Bi, Y.; Wang, M.; Yang, F. Promoter Variations Associated with Expression of Mcr-1 Gene and Level of Colistin Resistance. Int. J. Antimicrob. Agents 2021, 58, 106371. [Google Scholar] [CrossRef]
- Nikaido, H. Multidrug Resistance in Bacteria. Annu. Rev. Biochem. 2009, 78, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Wang, Y.; Shi, X.; Wang, S.; Ren, H.; Shen, Z.; Wang, Y.; Lin, J.; Wang, S. Rapid Rise of the ESBL and Mcr-1 Genes in Escherichia Coli of Chicken Origin in China, 2008–2014. Emerg. Microbes Infect. 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Yang, R.S.; Zhang, Q.; Feng, Y.; Fang, L.X.; Xia, J.; Li, L.; Lv, X.Y.; Duan, J.H.; Liao, X.P.; et al. Co-Transfer of BlaNDM-5 and Mcr-1 by an IncX3-X4 Hybrid Plasmid in Escherichia coli. Nat. Microbiol. 2016, 1, 3–6. [Google Scholar] [CrossRef]
- Haenni, M.; Poirel, L.; Kieffer, N.; Châtre, P.; Saras, E.; Métayer, V.; Dumoulin, R.; Nordmann, P.; Madec, J.Y. Co-Occurrence of Extended Spectrum β Lactamase and MCR-1 Encoding Genes on Plasmids. Lancet Infect. Dis. 2016, 16, 281–282. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, K.; Thirunarayan, M.A.; Krishnan, P. Coexistence of BlaOXA-23 with BlaNDM-1 and ArmA in Clinical Isolates of Acinetobacter Baumannii from India. J. Antimicrob. Chemother. 2010, 65, 2253–2254. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 Positive Bacteria in the New Delhi Environment and Its Implications for Human Health: An Environmental Point Prevalence Study. Lancet Infect. Dis. 2011, 11, 355–362. [Google Scholar] [CrossRef]
- Azad, M.A.R.A.; Rahman, M.M.; Amin, R.; Begum, I.A.; Fries, R.; Husna, A.; Khairalla, A.S.; Badruzzaman, A.T.M.; Mohamed, E.; El Zowalaty, M.E.; et al. Susceptibility and Multidrug Resistance Patterns of Escherichia coli Isolated from Cloacal Swabs of Live Broiler Chickens in Bangladesh. Pathogens 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Trimble, M.J.; Mlynárčik, P.; Kolář, M.; Hancock, R.E.W. Polymyxin: Alternative Mechanisms of Action. Cold Spring Harb. Perspect. Med. 2016, 6, a025288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaitan, A.O.; Morand, S.; Rolain, J. Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [Green Version]
- Subedi, M.; Bhattarai, R.K.; Devkota, B.; Phuyal, S.; Luitel, H. Correction: Antibiotic Resistance Pattern and Virulence Genes Content in Avian Pathogenic Escherichia coli (APEC) from Broiler Chickens in Chitwan, Nepal. BMC Vet. Res. 2018, 14, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Maamar, E.; Alonso, C.A.; Hamzaoui, Z.; Dakhli, N.; Abbassi, M.S.; Ferjani, S.; Saidani, M.; Boutiba-Ben Boubaker, I.; Torres, C. Emergence of Plasmid-Mediated Colistin-Resistance in CMY-2-Producing Escherichia coli of Lineage ST2197 in a Tunisian Poultry Farm. Int. J. Food Microbiol. 2018, 269, 60–63. [Google Scholar] [CrossRef]
- Moawad, A.A.; Hotzel, H.; Neubauer, H.; Ehricht, R.; Monecke, S.; Tomaso, H.; Hafez, H.M.; Roesler, U.; El-Adawy, H. Antimicrobial Resistance in Enterobacteriaceae from Healthy Broilers in Egypt: Emergence of Colistin-Resistant and Extended-Spectrum β-Lactamase-Producing Escherichia coli. Gut Pathog. 2018, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Perreten, V.; Strauss, C.; Collaud, A.; Gerber, D. Colistin Resistance Gene Mcr-1 in Avian-Pathogenic Escherichia Coli in South Africa. Antimicrob. Agents Chemother. 2016, 60, 4414–4415. [Google Scholar] [CrossRef] [Green Version]
- Hassen, B.; Abbassi, M.S.; Ruiz-Ripa, L.; Mama, O.M.; Hassen, A.; Torres, C.; Hammami, S. High Prevalence of Mcr-1 Encoding Colistin Resistance and First Identification of BlaCTX-M-55 in ESBL/CMY-2-Producing Escherichia Coli Isolated from Chicken Faeces and Retail Meat in Tunisia. Int. J. Food Microbiol. 2020, 318, 108478. [Google Scholar] [CrossRef]
- Learning, M.; Cookbook, R. The Emergence of Colistin-Resistant Escherichia Coli in Chicken Meats in Nepal. FEMS Microbiol. Lett. 2019, 366, fnz237. [Google Scholar]
- Atterby, C.; Osbjer, K.; Tepper, V.; Rajala, E.; Hernandez, J.; Seng, S.; Holl, D.; Bonnedahl, J.; Börjesson, S.; Magnusson, U.; et al. Carriage of Carbapenemase- and Extended-Spectrum Cephalosporinase-Producing Escherichia coli and Klebsiella pneumoniae in Humans and Livestock in Rural Cambodia; Gender and Age Differences and Detection of BlaOXA-48in Humans. Zoonoses Public Health 2019, 66, 603–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muktan, B.; Shrestha, U.T.; Dhungel, B.; Mishra, B.C.; Shrestha, N.; Adhikari, N.; Banjara, M.R.; Adhikari, B.; Rijal, K.R.; Ghimire, P. Plasmid Mediated Colistin Resistant mcr-1 and Co-Existence of OXA-48 among Escherichia coli from Clinical and Poultry Isolates: First Report from Nepal. Gut Pathog. 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Dhaouadi, S.; Soufi, L.; Hamza, A.; Fedida, D.; Zied, C.; Awadhi, E.; Mtibaa, M.; Hassen, B.; Cherif, A.; Torres, C.; et al. Co-Occurrence of Mcr-1 Mediated Colistin Resistance and β-Lactamase-Encoding Genes in Multidrug-Resistant Escherichia Coli from Broiler Chickens with Colibacillosis in Tunisia. J. Glob. Antimicrob. Resist. 2020, 22, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Bista, S.; Shrestha, U.T.; Dhungel, B.; Koirala, P.; Gompo, T.; Shrestha, N.; Adhikari, N.; Joshi, D.; Banjara, M.; Adhikari, B.; et al. Detection of Plasmid-Mediated Colistin Resistant mcr-1 Gene in Escherichia coli Isolated from Infected Chicken Livers in Nepal. Animals 2020, 10, 2060. [Google Scholar] [CrossRef]
- Ngbede, E.O.; Poudel, A.; Kalalah, A.; Yang, Y.; Adekanmbi, F.; Adikwu, A.A.; Adamu, A.M.; Mamfe, L.M.; Daniel, S.T.; Useh, N.M.; et al. Identification of Mobile Colistin Resistance Genes (mcr-1.1, mcr-5 and mcr-8.1) in Enterobacteriaceae and Alcaligenes Faecalis of Human and Animal Origin, Nigeria. Int. J. Antimicrob. Agents 2020, 56, 106108. [Google Scholar] [CrossRef] [PubMed]
- Büdel, T.; Kuenzli, E.; Campos-Madueno, E.I.; Mohammed, A.H.; Hassan, N.K.; Zinsstag, J.; Hatz, C.; Endimiani, A. On the Island of Zanzibar People in the Community Are Frequently Colonized with the Same MDR Enterobacterales Found in Poultry and Retailed Chicken Meat. J. Antimicrob. Chemother. 2020, 75, 2432–2441. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, J.E.; Redondo, L.M.; Figueroa Espinosa, R.A.; Cejas, D.; Gutkind, G.O.; Chacana, P.A.; Di Conza, J.A.; Fernández Miyakawa, M.E. Simultaneous Carriage of mcr-1 and Other Antimicrobial Resistance Determinants in Escherichia coli from Poultry. Front. Microbiol. 2018, 9, 1679. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, J.E.; Figueroa Espinosa, R.A.; Redondo, L.M.; Cejas, D.; Gutkind, G.O.; Chacana, P.A.; Di Conza, J.A.; Fernández-Miyakawa, M.E. Plasmid-Mediated Colistin Resistance in Escherichia coli Recovered from Healthy Poultry. Rev. Argent. Microbiol. 2017, 49, 297–298. [Google Scholar] [CrossRef]
- Monte, D.F.; Mem, A.; Fernandes, M.R.; Cerdeira, L.; Esposito, F.; Galvão, J.A.; Franco, B.D.G.M.; Lincopan, N.; Landgraf, M. Chicken Meat as a Reservoir of Colistin-Resistant Escherichia coli Strains Carrying mcr-1 Genes in South America. Antimicrob. Agents Chemother. 2017, 61, e02718-16. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.R.; Moura, Q.; Esposito, F.; Lincopan, N. Authors’ Reply: Escherichia Coli Harbouring mcr-1 Gene Isolated from Poultry Not Exposed to Polymyxins in Brazil. Eurosurveillance 2016, 21, 30267. [Google Scholar] [CrossRef]
- Vounba, P.; Rhouma, M.; Arsenault, J.; Bada Alambédji, R.; Fravalo, P.; Fairbrother, J.M. Prevalence of Colistin Resistance and Mcr-1/Mcr-2 Genes in Extended-Spectrum β-Lactamase/AmpC-Producing Escherichia Coli Isolated from Chickens in Canada, Senegal and Vietnam. J. Glob. Antimicrob. Resist. 2019, 19, 222–227. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Calvopina, M.; Izurieta, R.; Villacres, I.; Kawahara, R. Colistin Resistant Escherichia Coli with Mcr Genes in the Livestock of Rural Small-Scale Farms in Ecuador. BMC Res. Notes 2019, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Saidenberg, A.B.S.; Stegger, M.; Price, L.B.; Johannesen, T.B.; Aziz, M.; Cunha, M.P.; Moreno, A.M.; Knöbl, T. Mcr-Positive Escherichia Coli ST131-H22 from Poultry in Brazil. Emerg. Infect. Dis. 2020, 26, 1951–1954. [Google Scholar] [CrossRef]
- Coppola, N.; Freire, B.; Umpiérrez, A.; Cordeiro, N.F.; Ávila, P.; Trenchi, G.; Castro, G.; Casaux, M.L.; Fraga, M.; Zunino, P.; et al. Transferable Resistance to Highest Priority Critically Important Antibiotics for Human Health in Escherichia Coli Strains Obtained from Livestock Feces in Uruguay. Front. Vet. Sci. 2020, 7, 588919. [Google Scholar] [CrossRef]
- Eltai, N.O.; Abdfarag, E.A.; Al-Romaihi, H.; Wehedy, E.; Mahmoud, M.H.; Alawad, O.K.; Al-Hajri, M.M.; Thani, A.A.A.L.; Yassine, H.M. Antibiotic Resistance Profile of Commensal Escherichia Coli Isolated from Broiler Chickens in Qatar. J. Food Prot. 2018, 81, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Wang, Y.; Zhang, S.; Shen, Z.; Wang, S. Emergence of the Colistin Resistance Gene Mcr-1 and Its Variant in Several Uncommon Species of Enterobacteriaceae from Commercial Poultry Farm Surrounding Environments. Vet. Microbiol. 2018, 219, 161–164. [Google Scholar] [CrossRef]
- Hmede, Z.; Kassem, I.I. The Colistin Resistance Gene Mcr-1 Is Prevalent in Commensal Escherichia Coli Isolated from Preharvest Poultry in Lebanon. Antimicrob. Agents Chemother. 2018, 62, e01304-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohsaki, Y.; Hayashi, W.; Saito, S.; Osaka, S.; Taniguchi, Y.; Koide, S.; Kawamura, K.; Nagano, Y.; Arakawa, Y.; Nagano, N. First Detection of an Escherichia Coli Strain Harboring the Mcr-1 Gene in Retail Domestic Chicken Meat in Japan. Jpn. J. Infect. Dis. 2017, 70, 590–592. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, N.L.; Nielsen, D.W.; Wannemuehler, Y.; Cavender, T.; Hussein, A.; Yan, S.G.; Nolan, L.K.; Logue, C.M. Mcr-1 Identified in Avian Pathogenic Escherichia Coli (APEC). PLoS ONE 2017, 12, e0172997. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Q.; Li, Y.X.; Song, T.; Yang, Y.X.; Jiang, W.; Zhang, A.Y.; Guo, X.Y.; Liu, B.H.; Wang, Y.X.; Lei, C.W.; et al. Colistin Resistance Gene Mcr-1 and Its Variant in Escherichia Coli Isolates from Chickens in China. Antimicrob. Agents Chemother. 2017, 61, e01204-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, R.; Li, J.; Wu, Z.; Yin, W.; Schwarz, S.; Tyrrell, J.M.; Zheng, Y.; Wang, S.; Shen, Z.; et al. Comprehensive Resistome Analysis Reveals the Prevalence of NDM and MCR-1 in Chinese Poultry Production. Nat. Microbiol. 2017, 2, 16260. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.T.; Song, F.J.; Zou, M.; Di Zhang, Q.; Shan, H. High Incidence of Escherichia Coli Strains Coharboring Mcr-1 and BlaNDM from Chickens. Antimicrob. Agents Chemother. 2017, 61, e02347-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, T.; Jinnai, M.; Kawahara, R.; Diep, K.T.; Thang, N.N.; Hoa, T.T.; Hanh, L.K.; Khai, P.N.; Sumimura, Y.; Yamamoto, Y. Frequent Use of Colistin-Based Drug Treatment to Eliminate Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli in Backyard Chicken Farms in Thai Binh Province, Vietnam. Trop. Anim. Health Prod. 2017, 49, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Mohsin, M.; Lei, S.; Srinivas, S.; Wiqar, R.T.; Lin, J.; Feng, Y. Discovery of a Mcr-1-Bearing Plasmid in Commensal Colistin-Resistant Escherichia Coli from Healthy Broilers in Faisalabad, Pakistan. Virulence 2018, 9, 994–999. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Yu, L.; Zhang, Y.; Dai, Y.; Wang, P.; Feng, C.; Liu, M.; Sun, S.; Xie, Z.; Wang, F. Prevalence and Characteristics of Multidrug-Resistant Mcr-1-Positive Escherichia Coli Isolates from Broiler Chickens in Tai’an, China. Poult. Sci. 2020, 99, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, X.; Jiang, M.; Tang, F.; Sun, Y.; Ji, Y.; Xue, F.; Ren, J.; Zhu, W.; Dai, J. Avian-Source Mcr-1-Positive Escherichia Coli Is Phylogenetically Diverse and Shares Virulence Characteristics with E. Coli Causing Human Extra-Intestinal Infections. Vet. Microbiol. 2019, 239, 108483. [Google Scholar] [CrossRef]
- Li, X.P.; Sun, R.Y.; Song, J.Q.; Fang, L.X.; Zhang, R.M.; Lian, X.L.; Liao, X.P.; Liu, Y.H.; Lin, J.; Sun, J. Within-Host Heterogeneity and Flexibility of Mcr-1 Transmission in Chicken Gut. Int. J. Antimicrob. Agents 2020, 55, 105806. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Liao, T.L.; Huang, W.C.; Liu, Y.M.; Wu, K.M.; Lauderdale, T.L.; Tsai, S.F.; Kuo, S.C.; Kuo, H.C. Increased mcr-1 in Pathogenic Escherichia coli from Diseased Swine, Taiwan. J. Microbiol. Immunol. Infect. 2020, 53, 751–756. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Guo, Y.; Wang, J.; Zhao, P.; Liu, J.; He, K. Colistin Resistance Prevalence in Escherichia Coli from Domestic Animals in Intensive Breeding Farms of Jiangsu Province. Int. J. Food Microbiol. 2019, 291, 87–90. [Google Scholar] [CrossRef]
- Liu, B.T.; Song, F.J.; Zou, M. Characterization of Highly Prevalent Plasmids Coharboring Mcr-1, OqxAB, and Bla CTX-M and Plasmids Harboring OqxAB and Bla CTX-M in Escherichia Coli Isolates from Food-Producing Animals in China. Microb. Drug Resist. 2019, 25, 108–119. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kawahara, R.; Harada, K.; Teruya, S.; Nakayama, T.; Motooka, D.; Nakamura, S.; Do Nguyen, P.; Kumeda, Y.; Van Dang, C.; et al. The Presence of Colistin Resistance Gene Mcr-1 and -3 in ESBL Producing Escherichia Coli Isolated from Food in Ho Chi Minh City, Vietnam. FEMS Microbiol. Lett. 2018, 365, fny100. [Google Scholar] [CrossRef]
- Yassin, A.K.; Zhang, J.; Wang, J.; Chen, L.; Kelly, P.; Butaye, P.; Lu, G.; Gong, J.; Li, M.; Wei, L.; et al. Identification and Characterization of Mcr Mediated Colistin Resistance in Extraintestinal Escherichia Coli from Poultry and Livestock in China. FEMS Microbiol. Lett. 2017, 364, fnx242. [Google Scholar] [CrossRef]
- Nishino, Y.; Shimojima, Y.; Suzuki, Y.; Ida, M.; Fukui, R.; Kuroda, S.; Hirai, A.; Sadamasu, K. Note Detection of The. Microbiol. Immunol. 2017, 61, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Nguyen, H.M.; Nguyen, C.V.; Nguyen, T.V.; Nguyen, M.T.; Thai, H.Q.; Ho, M.H.; Thwaites, G.; Ngo, H.T.; Baker, S.; et al. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia Coli Bacteria. Appl. Environ. Microbiol. 2016, 82, 3727–3735. [Google Scholar] [CrossRef] [Green Version]
- Malhotra-Kumar, S.; Xavier, B.B.; Das, A.J.; Lammens, C.; Hoang, H.T.T.; Pham, N.T.; Goossens, H. Colistin-Resistant Escherichia Coli Harbouring Mcr-1 Isolated from Food Animals in Hanoi, Vietnam. Lancet Infect. Dis. 2016, 16, 286–287. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.S.; Song, J.; Kim, J.; Shin, J. Increasing Prevalence of Multidrug-Resistant Mcr-1-Positive Escherichia Coli Isolates from Fresh Vegetables and Healthy Food Animals in South Korea. Int. J. Infect. Dis. 2020, 92, 53–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Wang, J.; Wang, X.; Bai, X.; Ma, J.; Dang, R.; Xiong, Y.; Fanning, S.; Bai, L.; Yang, Z. Characterization of Five Escherichia Coli Isolates Co-Expressing ESBL and Mcr-1 Resistance Mechanisms from Different Origins in China. Front. Microbiol. 2019, 10, 1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawahara, R.; Fujiya, Y.; Yamaguchi, T.; Khong, D.T.; Nguyen, T.N.; Tran, H.T.; Yamamoto, Y. Most Domestic Livestock Possess Colistin-Resistant Commensal Escherichia Coli Harboring Mcr in a Rural Community in Vietnam. Antimicrob. Agents Chemother. 2019, 63, e00594-19. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lu, C.; Shen, D.; Liu, J.; Ma, Z.; Yang, B.; Ling, W.; Waigi, M.G. Elimination of the Risks of Colistin Resistance Gene (Mcr-1) in Livestock Manure during Composting. Environ. Int. 2019, 126, 61–68. [Google Scholar] [CrossRef]
- Bui, T.K.N.; Bui, T.M.H.; Ueda, S.; Le, D.T.; Yamamoto, Y.; Hirai, I. Potential Transmission Opportunity of CTX-M-Producing Escherichia Coli on a Large-Scale Chicken Farm in Vietnam. J. Glob. Antimicrob. Resist. 2018, 13, 1–6. [Google Scholar] [CrossRef]
- Aklilu, E.; Raman, K. MCR-1 Gene Encoded Colistin-Resistant Escherichia Coli in Raw Chicken Meat and Bean Sprouts in Malaysia. Int. J. Microbiol. 2020, 2020, 8853582. [Google Scholar] [CrossRef]
- Amin, M.B.; Sraboni, A.S.; Hossain, M.I.; Roy, S.; Mozmader, T.A.U.; Unicomb, L.; Rousham, E.K.; Islam, M.A. Occurrence and Genetic Characteristics of Mcr-1-Positive Colistin-Resistant E. Coli from Poultry Environments in Bangladesh. J. Glob. Antimicrob. Resist. 2020, 22, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Islam, M.Z.; Barua, H.; Rana, E.A.; Jalal, M.S.; Dhar, P.K.; Das, A.; Das, T.; Sarma, S.M.; Biswas, S.K.; et al. Acquisition of Plasmid-Mediated Colistin Resistance Gene Mcr-1 in Escherichia Coli of Livestock Origin in Bangladesh. Microb. Drug Resist. 2020, 26, 1058–1062. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Z.; Zhang, Y.; Yuan, X.; Hu, M.; Liu, Y. Prevalence and Molecular Characteristics of Avian-Origin mcr-1-Harboring Escherichia coli in Shandong Province, China. Front. Microbiol. 2020, 11, 255. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; HS, K.; Kim, Y.; Kim, M.; Kwak, H.; Ryu, S. Prevalence and Genetic Characterization of Mcr-1-Positive Escherichia Coli Isolated from Retail Meats in South Korea. J. Microbiol. Biotechnol. 2020, 30, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Potter, R.F.; Ferreiro, A.; Wallace, M.A.; Rahim, A.; Ali Malik, A.; Siddique, N.; Abbas, M.A.; D’Souza, A.W.; Burnham, C.A.D.; et al. Genomic Characterization of Antibiotic Resistant Escherichia coli Isolated from Domestic Chickens in Pakistan. Front. Microbiol. 2019, 10, 3052. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Das, T.; Islam, M.Z.; Herrero-Fresno, A.; Biswas, P.K.; Olsen, J.E. High Prevalence of Mcr-1-Encoded Colistin Resistance in Commensal Escherichia Coli from Broiler Chicken in Bangladesh. Sci. Rep. 2020, 10, 18637. [Google Scholar] [CrossRef]
- Azam, M.; Mohsin, M.; Johnson, T.J.; Smith, E.A.; Johnson, A.; Umair, M.; Saleemi, M.K. Genomic Landscape of Multi-Drug Resistant Avian Pathogenic Escherichia coli Recovered from Broilers. Vet. Microbiol. 2020, 247, 108766. [Google Scholar] [CrossRef]
- Afridi, O.K.; Ali, J.; Chang, J.H. Next-Generation Sequencing Based Gut Resistome Profiling of Broiler Chickens Infected with Multidrug-Resistant Escherichia Coli. Animals 2020, 10, 2350. [Google Scholar] [CrossRef]
- Liu, C.; Wang, P.; Dai, Y.; Liu, Y.; Song, Y.; Yu, L.; Feng, C.; Liu, M.; Xie, Z.; Shang, Y.; et al. Longitudinal Monitoring of Multidrug Resistance in Escherichia coli on Broiler Chicken Fattening Farms in Shandong, China. Poult. Sci. 2021, 100, 100887. [Google Scholar] [CrossRef]
- Javed, H.; Saleem, S.; Zafar, A.; Ghafoor, A.; Bin Shahzad, A.; Ejaz, H.; Junaid, K.; Jahan, S. Emergence of Plasmid-Mediated Mcr Genes from Gram-Negative Bacteria at the Human-Animal Interface. Gut. Pathog. 2020, 12, 54. [Google Scholar] [CrossRef]
- Cao, Y.P.; Lin, Q.Q.; He, W.Y.; Wang, J.; Yi, M.Y.; Lv, L.C.; Yang, J.; Liu, J.H.; Guo, J.Y. Co-Selection May Explain the Unexpectedly High Prevalence of Plasmid-Mediated Colistin Resistance Gene Mcr-1 in a Chinese Broiler Farm. Zool. Res. 2020, 41, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Sadek, M.; Poirel, L.; Nordmann, P.; Nariya, H.; Shimamoto, T.; Shimamoto, T. Draft Genome Sequence of an Mcr-1/IncI2-Carrying Multidrug-Resistant Escherichia Coli B1:ST101 Isolated from Meat and Meat Products in Egypt. J. Glob. Antimicrob. Resist. 2020, 20, 41–42. [Google Scholar] [CrossRef]
- Zurfluh, K.; Stephan, R.; Widmer, A.; Poirel, L.; Nordmann, P.; Nüesch, H.J.; Hächler, H.; Nüesch-Inderbinen, M. Screening for Fecal Carriage of MCR-Producing Enterobacteriaceae in Healthy Humans and Primary Care Patients. Antimicrob. Resist. Infect. Control. 2017, 6, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Pietsch, M.; Irrgang, A.; Roschanski, N.; Brenner Michael, G.; Hamprecht, A.; Rieber, H.; Käsbohrer, A.; Schwarz, S.; Rösler, U.; Kreienbrock, L.; et al. Whole Genome Analyses of CMY-2-Producing Escherichia Coli Isolates from Humans, Animals and Food in Germany. BMC Genom. 2018, 19, 601. [Google Scholar] [CrossRef]
- El Garch, F.; De Jong, A.; Bertrand, X.; Hocquet, D.; Sauget, M. Mcr-1- like Detection in Commensal Escherichia Coli and Salmonella spp. from Food-Producing Animals at Slaughter in Europe. Vet. Microbiol. 2018, 213, 42–46. [Google Scholar] [CrossRef]
- Perrin-Guyomard, A.; Bruneau, M.; Houée, P.; Deleurme, K.; Legrandois, P.; Poirier, C.; Soumet, C.; Sanders, P. Prevalence of Mcr-1 in Commensal Escherichia Coli from French Livestock, 2007 to 2014. Eurosurveillance 2016, 21, 2014–2016. [Google Scholar] [CrossRef]
- Zurfluh, K.; Nüesch-Inderbinen, M.; Klumpp, J.; Poirel, L.; Nordmann, P.; Stephan, R. Key Features of Mcr-1-Bearing Plasmids from Escherichia Coli Isolated from Humans and Food. Antimicrob. Resist. Infect. Control. 2017, 6, 91. [Google Scholar] [CrossRef]
- Donà, V.; Bernasconi, O.J.; Kasraian, S.; Tinguely, R.; Endimiani, A. A SYBR ® Green-Based Real-Time PCR Method for Improved Detection of mcr-1-Mediated Colistin Resistance in Human Stool Samples. J. Glob. Antimicrob. Resist. 2017, 9, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Doumith, M.; Godbole, G.; Ashton, P.; Larkin, L.; Dallman, T.; Day, M.; Day, M.; Muller-Pebody, B.; Ellington, M.J.; de Pinna, E.; et al. Detection of the Plasmid-Mediated Mcr-1 Gene Conferring Colistin Resistance in Human and Food Isolates of Salmonella Enterica and Escherichia Coli in England and Wales. J. Antimicrob. Chemother. 2016, 71, 2300–2305. [Google Scholar] [CrossRef] [Green Version]
- Maciuca, I.E.; Cummins, M.L.; Cozma, A.P.; Rimbu, C.M.; Guguianu, E.; Panzaru, C.; Licker, M.; Szekely, E.; Flonta, M.; Djordjevic, S.P.; et al. Genetic Features of Mcr-1 Mediated Colistin Resistance in CMY-2-Producing Escherichia coli from Romanian Poultry. Front. Microbiol. 2019, 10, 2267. [Google Scholar] [CrossRef]
- Adiguzel, M.C.; Baran, A.; Wu, Z.; Cengiz, S.; Dai, L.; Oz, C.; Ozmenli, E.; Goulart, D.B.; Sahin, O. Prevalence of Colistin Resistance in Escherichia Coli in Eastern Turkey and Genomic Characterization of an Mcr-1 Positive Strain from Retail Chicken Meat. Microb. Drug Resist. 2021, 27, 424–432. [Google Scholar] [CrossRef]
- Majewski, M.; Łukomska, A.; Wilczyński, J.; Wystalska, D.; Racewicz, P.; Nowacka-Woszuk, J.; Pszczola, M.; Anusz, K. Colistin Resistance of Non-Pathogenic Strains of Escherichia coli Occurring as Natural Intestinal Flora in Broiler Chickens Treated and Not Treated with Colistin Sulphate. J. Vet. Res. 2020, 64, 399–405. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Blau, K.; Parcina, M.; Sib, E.; Smalla, K.; Schmithausen, R.; Heinemann, C.; Hammerl, J.A.; Kreyenschmidt, J. Colistin-Resistant Enterobacteriaceae Isolated from Process Waters and Wastewater from German Poultry and Pig Slaughterhouses. Front. Microbiol. 2020, 11, 575391. [Google Scholar] [CrossRef]
- Mesa-Varona, O.; Kaspar, H.; Grobbel, M.; BA, T. Phenotypical Antimicrobial Resistance Data of Clinical and Non-Clinical Escherichia coli from Poultry in Germany between 2014 and 2017. PLoS ONE 2020, 15, e0243772. [Google Scholar] [CrossRef] [PubMed]
- Pesciaroli, M.; CF, M.; Filippini, G.; EM, E.; Lovito, C.; Marchi, L.; Maresca, C.; Tenhagen, B.-A.; Orsini, S.; Scoccia, E.; et al. Antibiotic-Resistant Commensal Escherichia Coli Are Less Frequently Isolated from Poultry Raised Using Non-Conventional Management Systems than from Conventional Broiler. Int. J. Food Microbiol. 2020, 314, 108391. [Google Scholar] [CrossRef]
- Kieffer, N.; Nordmann, P.; Moreno, A.M.; Moreno, L.Z.; Chaby, R.; Breton, A.; Tissières, P.; Poirel, L. Genetic and Functional Characterization of an MCR-3-like Enzyme-Producing Escherichia coli Isolate Recovered from Swine in Brazil. Antimicrob. Agents Chemother. 2018, 62, e00278-18. [Google Scholar] [CrossRef] [Green Version]
- Meinersmann, R.J.; Ladely, S.R.; Plumblee, J.R.; Cook, K.L.; Thacker, E. Prevalence of Mcr-1 in the Cecal Contents of Food Animals in the United States. Antimicrob. Agents Chemother. 2017, 61, e02244-16. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Blas, J.F.; Ovejero, C.M.; Abadia-Patiño, L.; Gonzalez-Zorn, B. Coexistence of Mcr-1 and BlaNDM-1 in Escherichia coli from Venezuela. Antimicrob. Agents Chemother. 2016, 60, 6356–6358. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fu, Y.; Schwarz, S.; Yin, W.; Walsh, T.R.; Zhou, Y.; He, J.; Jiang, H.; Wang, Y.; Wang, S. Genetic Environment of Colistin Resistance Genes mcr-1 and mcr-3 in Escherichia coli from One Pig Farm in China. Vet. Microbiol. 2019, 230, 56–61. [Google Scholar] [CrossRef]
- Dandachi, I.; Fayad, E.; El-Bazzal, B.; Daoud, Z.; Rolain, J.M. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Gram-Negative Bacilli and Emergence of Mcr-1 Colistin Resistance Gene in Lebanese Swine Farms. Microb. Drug Resist. 2019, 25, 233–240. [Google Scholar] [CrossRef]
- Li, J.; Hulth, A.; Nilsson, L.E.; Börjesson, S.; Chen, B.; Bi, Z.; Wang, Y.; Schwarz, S.; Wu, C. Occurrence of the Mobile Colistin Resistance Gene Mcr-3 in Escherichia Coli from Household Pigs in Rural Areas. J. Antimicrob. Chemother. 2018, 73, 1721–1723. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Liu, J.; Yao, X.; Jia, H.; Wei, J.; Shao, D.; Liu, K.; Qiu, Y.; Ma, Z.; Li, B. High Carriage Rate of Mcr-1 and Antimicrobial Resistance Profiles of Mcr-1-Positive Escherichia Coli Isolates in Swine Faecal Samples Collected from Eighteen Provinces in China. Vet. Microbiol. 2018, 225, 53–57. [Google Scholar] [CrossRef]
- Li, X.S.; Liu, B.G.; Dong, P.; Li, F.L.; Yuan, L.; Hu, G.Z. The Prevalence of mcr-1 and Resistance Characteristics of Escherichia coli Isolates from Diseased and Healthy Pigs. Diagn. Microbiol. Infect. Dis. 2018, 91, 63–65. [Google Scholar] [CrossRef]
- Li, R.; Xie, M.; Zhang, J.; Yang, Z.; Liu, L.; Liu, X.; Zheng, Z.; Chan, E.W.C.; Chen, S. Genetic Characterization of mcr-1-Bearing Plasmids to Depict Molecular Mechanisms Underlying Dissemination of the Colistin Resistance Determinant. J. Antimicrob. Chemother. 2017, 72, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.H.; Lei, C.W.; Ma, S.Z.; Jiang, W.; Liu, B.H.; Wang, Y.X.; Guan, R.; Men, S.; Yuan, Q.W.; Cheng, G.Y.; et al. Various Sequence Types of Escherichia Coli Isolates Coharboring BlaNDM-5 and Mcr-1 Genes from a Commercial Swine Farm in China. Antimicrob. Agents Chemother. 2017, 61, e02167-16. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, Z.; Lin, J.; Wang, X.; Deng, X.; Feng, Y. Complex Dissemination of the Diversified Mcr-1-Harbouring Plasmids in Escherichia Coli of Different Sequence Types. Oncotarget 2016, 7, 82112–82122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Z.; Li, X.; Hu, Z.; Li, Z.; Lv, Y.; Lei, M.; Wu, B.; Chen, H.; Wang, X. Characteristics of Carbapenem-Resistant and Colistin-Resistant Escherichia Coli Co-Producing NDM-1 and MCR-1 from Pig Farms in China. Microorganisms 2019, 7, 482. [Google Scholar] [CrossRef] [Green Version]
- Do, K.H.; Park, H.E.; Byun, J.W.; Lee, W.K. Virulence and Antimicrobial Resistance Profiles of Escherichia Coli Encoding Mcr Gene from Diarrhoeic Weaned Piglets in Korea during 2007–2016. J. Glob. Antimicrob. Resist. 2020, 20, 324–327. [Google Scholar] [CrossRef]
- Shafiq, M.; Huang, J.; Ur Rahman, S.; Shah, J.M.; Chen, L.; Gao, Y.; Wang, M.; Wang, L. High Incidence of Multidrug-Resistant Escherichia Coli Coharboring Mcr-1 and BlaCTX-M-15 Recovered from Pigs. Infect. Drug Resist. 2019, 12, 2135–2149. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, A.; Sato, T.; Shinagawa, M.; Takahashi, S.; Asai, T.; Yokota, S.I.; Usui, M.; Tamura, Y. High Prevalence of Mcr-1, Mcr-3 and Mcr-5 in Escherichia Coli Derived from Diseased Pigs in Japan. Int. J. Antimicrob. Agents 2018, 51, 163–164. [Google Scholar] [CrossRef]
- Lai, C.C.; Lin, Y.T.; Lin, Y.T.; Lu, M.C.; Shi, Z.Y.; Chen, Y.S.; Wang, L.S.; Tseng, S.H.; Lin, C.N.; Chen, Y.H.; et al. Clinical Characteristics of Patients with Bacteraemia Due to the Emergence of Mcr-1-Harbouring Enterobacteriaceae in Humans and Pigs in Taiwan. Int. J. Antimicrob. Agents 2018, 52, 651–657. [Google Scholar] [CrossRef]
- Duggett, N.A.; Randall, L.P.; Horton, R.A.; Lemma, F.; Kirchner, M.; Nunez-Garcia, J.; Brena, C.; Williamson, S.M.; Teale, C.; Anjum, M.F. Molecular Epidemiology of Isolates with Multiple Mcr Plasmids from a Pig Farm in Great Britain: The Effects of Colistin Withdrawal in the Short and Long Term. J. Antimicrob. Chemother. 2018, 73, 3025–3033. [Google Scholar] [CrossRef] [Green Version]
- Delannoy, S.; Le Devendec, L.; Jouy, E.; Fach, P.; Drider, D.; Kempf, I. Characterization of Colistin-Resistant Escherichia Coli Isolated from Diseased Pigs in France. Front. Microbiol. 2017, 8, 2278. [Google Scholar] [CrossRef] [Green Version]
- Kieffer, N.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. High Rate of MCR-1–Producing Escherichia Coli and Klebsiella Pneumoniae among Pigs, Portugal. Emerg. Infect. Dis. 2017, 23, 2023–2029. [Google Scholar] [CrossRef] [Green Version]
- Hille, K.; Roschanski, N.; Ruddat, I.; Woydt, J.; Hartmann, M.; Rösler, U.; Kreienbrock, L. Investigation of Potential Risk Factors for the Occurrence of Escherichia Coli Isolates from German Fattening Pig Farms Harbouring the Mcr-1 Colistin–Resistance Gene. Int. J. Antimicrob. Agents 2018, 51, 177–180. [Google Scholar] [CrossRef]
- Curcio, L.; Luppi, A.; Bonilauri, P.; Gherpelli, Y.; Pezzotti, G.; Pesciaroli, M.; Magistrali, C.F. Detection of the Colistin Resistance Gene Mcr-1 in Pathogenic Escherichia Coli from Pigs Affected by Post-Weaning Diarrhoea in Italy. J. Glob. Antimicrob. Resist. 2017, 10, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Roschanski, N.; Falgenhauer, L.; Grobbel, M.; Guenther, S.; Kreienbrock, L.; Imirzalioglu, C.; Roesler, U. Retrospective Survey of Mcr-1 and Mcr-2 in German Pig-Fattening Farms, 2011–2012. Int. J. Antimicrob. Agents 2017, 50, 266–271. [Google Scholar] [CrossRef]
- Duggett, N.A.; Sayers, E.; AbuOun, M.; Ellis, R.J.; Nunez-Garcia, J.; Randall, L.; Horton, R.; Rogers, J.; Martelli, F.; Smith, R.P.; et al. Occurrence and Characterization of Mcr-1-Harbouring Escherichia Coli Isolated from Pigs in Great Britain from 2013 to 2015. J. Antimicrob. Chemother. 2017, 72, 691–695. [Google Scholar] [CrossRef] [Green Version]
- El Garch, F.; Sauget, M.; Hocquet, D.; Le Chaudee, D.; Woehrle, F.; Bertrand, X. Mcr-1 Is Borne by Highly Diverse Escherichia Coli Isolates since 2004 in Food-Producing Animals in Europe. Clin. Microbiol. Infect. 2017, 23, e1–e51. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Hurley, D.; Li, J.; Meng, Q.; Wang, J.; Fanning, S.; Xiong, Y. Characterisation of Multidrug-Resistant Shiga Toxin-Producing Escherichia Coli Cultured from Pigs in China: Co-Occurrence of Extended-Spectrum β-Lactamase- and Mcr-1-Encoding Genes on Plasmids. Int. J. Antimicrob. Agents 2016, 48, 445–448. [Google Scholar] [CrossRef]
- Chabou, S.; Leulmi, H.; Rolain, J.M. Emergence of Mcr-1-Mediated Colistin Resistance in Escherichia Coli Isolates from Poultry in Algeria. J. Glob. Antimicrob. Resist. 2019, 16, 115–116. [Google Scholar] [CrossRef] [PubMed]
- García-Meniño, I.; Díaz-Jiménez, D.; García, V.; de Toro, M.; Flament-Simon, S.C.; Blanco, J.; Mora, A. Genomic Characterization of Prevalent Mcr-1, Mcr-4, and Mcr-5 Escherichia Coli within Swine Enteric Colibacillosis in Spain. Front. Microbiol. 2019, 10, 2469. [Google Scholar] [CrossRef]
- Fournier, C.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. Occurrence of CTX-M-15- and MCR-1-Producing Enterobacterales in Pigs in Portugal: Evidence of Direct Links with Antibiotic Selective Pressure. Int. J. Antimicrob. Agents 2020, 55, 105802. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, N.; Nordmann, P.; Millemann, Y.; Poirel, L. Functional Characterization of a Miniature Inverted Transposable Element at the Origin of Mcr-5 Gene Acquisition in Escherichia Coli. Antimicrob. Agents Chemother. 2019, 63, e00559-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magistrali, C.F.; Curcio, L.; Luppi, A.; Pezzotti, G.; Orsini, S.; Tofani, S.; Feudi, C.; Carattoli, A.; Villa, L. Mobile Colistin Resistance Genes in Escherichia Coli from Pigs Affected by Colibacillosis. Int. J. Antimicrob. Agents 2018, 52, 744–746. [Google Scholar] [CrossRef]
- Ström Hallenberg, G.; Börjesson, S.; Sokerya, S.; Sothyra, T.; Magnusson, U. Detection of Mcr-Mediated Colistin Resistance in Escherichia Coli Isolates from Pigs in Small-Scale Farms in Cambodia. Antimicrob. Agents Chemother. 2019, 63, e02241-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büdel, T.; Kuenzli, E.; Clément, M.; Bernasconi, O.J.; Fehr, J.; Mohammed, A.H.; Hassan, N.K.; Zinsstag, J.; Hatz, C.; Endimiani, A. Polyclonal Gut Colonization with Extended-Spectrum Cephalosporin- and/or Colistin-Resistant Enterobacteriaceae: A Normal Status for Hotel Employees on the Island of Zanzibar, Tanzania. J. Antimicrob. Chemother. 2019, 74, 2880–2890. [Google Scholar] [CrossRef] [PubMed]
- Aworh, M.K.; Kwaga, J.K.P.; Hendriksen, R.S.; Okolocha, E.C.; Thakur, S. Genetic Relatedness of Multidrug Resistant Escherichia Coli Isolated from Humans, Chickens and Poultry Environments. Antimicrob. Resist. Infect. Control. 2021, 10, 58. [Google Scholar] [CrossRef]
- Giani, T.; Sennati, S.; Antonelli, A.; Di Pilato, V.; Di Maggio, T.; Mantella, A.; Niccolai, C.; Spinicci, M.; Monasterio, J.; Castellanos, P.; et al. High Prevalence of Carriage of Mcr-1-Positive Enteric Bacteria among Healthy Children from Rural Communities in the Chaco Region, Bolivia, September to October 2016. Eurosurveillance 2018, 23, 1800115. [Google Scholar] [CrossRef]
- Berglund, B.; Chen, B.; Tärnberg, M.; Sun, Q.; Xu, L.; Welander, J.; Li, Y.; Bi, Z.; Nilsson, M.; Nilsson, L.E. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia Coli Harboring Mcr-1 and Toxin Genes from Human Fecal Samples from China. Future Microbiol. 2018, 13, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Kawahara, R.; Fujiya, Y.; Sasaki, T.; Hirai, I.; Khong, D.T.; Nguyen, T.N.; Nguyen, B.X. Wide Dissemination of Colistin-Resistant Escherichia Coli with the Mobile Resistance Gene Mcr in Healthy Residents in Vietnam. J. Antimicrob. Chemother. 2019, 74, 523–524. [Google Scholar] [CrossRef]
- Bi, Z.; Berglund, B.; Sun, Q.; Nilsson, M.; Chen, B.; Tärnberg, M.; Ding, L.; Stålsby Lundborg, C.; Bi, Z.; Tomson, G.; et al. Prevalence of the Mcr-1 Colistin Resistance Gene in Extended-Spectrum β-Lactamase-Producing Escherichia Coli from Human Faecal Samples Collected in 2012 in Rural Villages in Shandong Province, China. Int. J. Antimicrob. Agents 2017, 49, 493–497. [Google Scholar] [CrossRef]
- Kawahara, R.; Khong, D.T.; Le, H.V.; Phan, Q.N.; Nguyen, T.N.; Yamaguchi, T.; Kumeda, Y.; Yamamoto, Y. Prevalence of Mcr-1 among Cefotaxime-Resistant Commensal Escherichia Coli in Residents of Vietnam. Infect. Drug Resist. 2019, 12, 3317–3325. [Google Scholar] [CrossRef] [Green Version]
- Johura, F.T.; Tasnim, J.; Barman, I.; Biswas, S.R.; Jubyda, F.T.; Sultana, M.; George, C.M.; Camilli, A.; Seed, K.D.; Ahmed, N.; et al. Colistin-Resistant Escherichia Coli Carrying Mcr-1 in Food, Water, Hand Rinse, and Healthy Human Gut in Bangladesh. Gut Pathog. 2020, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, A.; Nakamura, H.; Umeda, K.; Yamamoto, K.; Hirai, Y.; Usui, M.; Ogasawara, J. Seven-Year Surveillance of the Prevalence of Antimicrobial-Resistant Escherichia Coli Isolates, with a Focus on ST131 Clones, among Healthy People in Osaka, Japan. Int. J. Antimicrob. Agents 2021, 57, 106298. [Google Scholar] [CrossRef]
- Del Bianco, F.; Morotti, M.; Pedna, M.F.; Farabegoli, P.; Sambri, V. Microbiological Surveillance of Plasmid Mediated Colistin Resistance in Human Enterobacteriaceae Isolates in Romagna (Northern Italy): August 2016–July 2017. Int. J. Infect. Dis. 2018, 69, 96–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leangapichart, T.; Gautret, P.; Brouqui, P.; Mimish, Z.; Raoult, D.; Rolain, J.M. Acquisition of Mcr-1 Plasmid-Mediated Colistin Resistance in Escherichia Coli and Klebsiella Pneumoniae during Hajj 2013 and 2014. Antimicrob. Agents Chemother. 2016, 60, 6998–6999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vading, M.; Kabir, M.H.; Kalin, M.; Iversen, A.; Wiklund, S.; Nauclér, P.; Giske, C.G. Frequent Acquisition of Low-Virulence Strains of ESBL-Producing Escherichia Coli in Travellers. J. Antimicrob. Chemother. 2016, 71, 3548–3555. [Google Scholar] [CrossRef] [Green Version]
- Hasman, H.; Hammerum, A.M.; Hansen, F.; Hendriksen, R.S.; Olesen, B.; Agersø, Y.; Zankari, E.; Leekitcharoenphon, P.; Stegger, M.; Kaas, R.S.; et al. Detection of Mcr-1 Encoding Plasmid-Mediated Colistin-Resistant Escherichia Coli Isolates from Human Bloodstream Infection and Imported Chicken Meat, Denmark 2015. Eurosurveillance 2015, 20, 30085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zogg, A.L.; Zurfluh, K.; Nüesch-Inderbinen, M.; Stephan, R. Characteristics of ESLB-Producing Enterobacteriaceae and Methicillinresistant Staphylococcus Aureus (MRSA) Isolated from Swiss and Imported Raw Poultry Meat Collected at Retail Level. Schweiz. Arch. Tierheilkd. 2016, 158, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Stoesser, N.; Mathers, A.J.; Moore, C.E.; Day, N.P.J.; Crook, D.W. Colistin Resistance Gene Mcr-1 and PHNSHP45 Plasmid in Human Isolates of Escherichia Coli and Klebsiella Pneumoniae. Lancet Infect. Dis. 2016, 16, 285–286. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, J.; Corcoran, C.; Prentice, E.; Moodley, M.; Mendelson, M.; Poirel, L.; Nordmann, P.; Brink, A.J. A Global Call for Action to Combat Antimicrobial Resistance: Can We Get It Right This Time? South Afr. Med. J. 2014, 104, 478–479. [Google Scholar] [CrossRef] [Green Version]
- Walkty, A.; Karlowsky, J.A.; Adam, H.J.; Lagace-Wiens, P.; Baxter, M.; Mulvey, M.R.; McCracken, M.; Poutanen, S.M.; Roscoe, D.; Zhanel, G.G. Frequency of MCR-1-Mediated Colistin Resistance among Escherichia Coli Clinical Isolates Obtained from Patients in Canadian Hospitals (CANWARD 2008–2015). CMAJ Open 2016, 4, E641–E645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faccone, D.; Rapoport, M.; Albornoz, E.; Celaya, F.; De Mendieta, J.; De Belder, D.; Lucero, C.; Gomez, S.; Danze, D.; Pasteran, F.; et al. Plasmidic Resistance to Colistin Mediated by Mcr-1 Gene in Escherichia coli Clinical Isolates in Argentina: A Retrospective Study, 2012–2018. Pan Am. J. Public Health 2020, 44, e55. [Google Scholar] [CrossRef] [PubMed]
- Rocha, I.V.; Silva, D.S.; Das Neves Andrade, C.A.; de Lacerda Vidal, C.F.; Leal, N.C.; Xavier, D.E. Diverse and emerging molecular mechanisms award polymyxins resistance to Enterobacteriaceae clinical isolates from a tertiary hospital of Recife, Brazil. Infect. Genet. Evol. 2020, 85, 104584. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ke, B.; Zhao, X.; Guo, Y.; Wang, W.; Wang, X.; Zhu, H. Antimicrobial Resistance Profile of Mcr-1 Positive Clinical Isolates of Escherichia coli in China from 2013 to 2016. Front. Microbiol. 2018, 9, 2514. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Shen, C.; Chen, H.; Zheng, X.; Xia, Y.; Zhong, L.L.; Huang, X.; Wu, X.; Tian, G.B. Co-Production of MCR-1 and NDM-5 in Escherichia Coli Isolated from a Colonization Case of Inpatient. Infect. Drug Resist. 2018, 11, 1157–1161. [Google Scholar] [CrossRef] [Green Version]
- Yoon, E.J.; Hong, J.S.; Yang, J.W.; Lee, K.J.; Lee, H.; Jeong, S.H. Detection of mcr-1 Plasmids in Enterobacteriaceae Isolates from Human Specimens: Comparison with Those in Escherichia Coli Isolates from Livestock in Korea. Ann. Lab. Med. 2018, 38, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Wang, C.; Dong, G.; Xu, C.; Zhang, X.; Liu, H.; Zhang, M.; Cao, J.; Zhou, T. Prevalence and Molecular Characterization of Escherichia Coli Clinical Isolates Carrying Mcr-1 in a Chinese Teaching Hospital from 2002 to 2016. Antimicrob. Agents Chemother. 2018, 62, e0262317. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wu, Z.; Wang, Y.; Zhang, R.; Zhou, H.; Wang, S.; Lei, L.; Li, M.; Cai, J.; Tyrrell, J.; et al. Heterogeneous and Flexible Transmission of Mcr-1 in Hospital-Associated Escherichia Coli. mBio 2018, 9, e00943-18. [Google Scholar] [CrossRef] [Green Version]
- Eiamphungporn, W.; Yainoy, S.; Jumderm, C.; Tan-arsuwongkul, R.; Tiengrim, S.; Thamlikitkul, V. Prevalence of the Colistin Resistance Gene Mcr-1 in Colistin-Resistant Escherichia Coli and Klebsiella Pneumoniae Isolated from Humans in Thailand. J. Glob. Antimicrob. Resist. 2018, 15, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.L.; Phan, H.; Shen, C.; Vihta, K.D.; Sheppard, A.E.; Huang, X.; Zeng, K.J.; Li, H.Y.; Zhang, X.F.; Patil, S.; et al. High Rates of Human Fecal Carriage of Mcr-1-Positive Multi-Drug Resistant Enterobacteriaceae Isolates Emerge in China in Association with Successful Plasmid Families. Clin. Infect. Dis. 2018, 66, 676–685. [Google Scholar] [CrossRef]
- Manohar, P.; Shanthini, T.; Ayyanar, R.; Bozdogan, B.; Wilson, A.; Tamhankar, A.J.; Nachimuthu, R.; Lopes, B.S. The Distribution of Carbapenem- and Colistin-Resistance in Gram-Negative Bacteria from the Tamil Nadu Region in India. J. Med. Microbiol. 2017, 66, 874–883. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Ding, Y.; Li, X.P.; Liu, Y.H.; Feng, Y. Genomic Insights into Mcr-1-Positive Plasmids Carried by Colistin-Resistant Escherichia Coli Isolates from Inpatients. Antimicrob. Agents Chemother. 2017, 61, e00361-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Tian, G.B.; Zhang, R.; Shen, Y.; Tyrrell, J.M.; Huang, X.; Zhou, H.; Lei, L.; Li, H.Y.; Doi, Y.; et al. Prevalence, Risk Factors, Outcomes, and Molecular Epidemiology of Mcr-1-Positive Enterobacteriaceae in Patients and Healthy Adults from China: An Epidemiological and Clinical Study. Lancet Infect. Dis. 2017, 17, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Quan, J.; Li, X.; Chen, Y.; Jiang, Y.; Zhou, Z.; Zhang, H.; Sun, L.; Ruan, Z.; Feng, Y.; Akova, M.; et al. Prevalence of Mcr-1 in Escherichia Coli and Klebsiella Pneumoniae Recovered from Bloodstream Infections in China: A Multicentre Longitudinal Study. Lancet Infect. Dis. 2017, 17, 400–410. [Google Scholar] [CrossRef]
- Kim, Y.A.; Yong, D.; Jeong, S.H.; Lee, K. Colistin Resistance in Escherichia Coli Isolates from Patients with Bloodstream Infection in Korea. Ann. Lab. Med. 2017, 37, 172–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Qu, F.; Shan, B.; Huang, B.; Jia, W.; Chen, C.; Li, A.; Miao, M.; Zhang, X.; Bao, C.; et al. Detection of the Mcr-1 Colistin Resistance Gene in Carbapenem-Resistant Enterobacteriaceae from Different Hospitals in China. Antimicrob. Agents Chemother. 2016, 60, 5033–5035. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.M.; Liu, W.E.; Zheng, Z.F. Epidemiology and Molecular Characterization of Mcr-1 in Escherichia Coli Recovered from Patients with Bloodstream Infections in Changsha, Central China. Infect. Drug Resist. 2019, 12, 2069–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.L.; Lu, M.C.; Shao, P.L.; Lu, P.L.; Chen, Y.H.; Cheng, S.H.; Ko, W.C.; Lin, C.Y.; Wu, T.S.; Yen, M.Y.; et al. Nationwide Surveillance of Antimicrobial Resistance among Clinically Important Gram-Negative Bacteria, with an Emphasis on Carbapenems and Colistin: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2018. Int. J. Antimicrob. Agents 2019, 54, 318–328. [Google Scholar] [CrossRef]
- Van La, M.; Lee, B.; Hong, B.Z.M.; Yah, J.Y.; Koo, S.H.; Jiang, B.; Ng, L.S.Y.; Tan, T.Y. Prevalence and Antibiotic Susceptibility of Colistin-Resistance Gene (Mcr-1) Positive Enterobacteriaceae in Stool Specimens of Patients Attending a Tertiary Care Hospital in Singapore. Int. J. Infect. Dis. 2019, 85, 124–126. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, S.C.; Lai, C.; Huang, Y.; Liao, C.H.; Chiou, M.; Lin, C.N.; Hsueh, P.R. Molecular Evidence for Intra- and Inter-Farm Spread of Porcine mcr-1-Carrying Escherichia coli in Taiwan. Front. Microbiol. 2020, 11, 1967. [Google Scholar] [CrossRef]
- Velasco, J.M.S.; Valderama, M.T.G.; Margulieux, K.R.; Diones, P.C.S.; Reyes, A.M.B.; Leonardia, S.G.; Liao, C.P.; Chua, D.A., Jr.; Navarro, F.C.S.; Ruekit, S.; et al. First report of the mcr-1 colistin resistance gene identified in two Escherichia coli isolates from clinical samples, Philippines, 2018. J. Glob. Antimicrob. Resist. 2020, 21, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Dong, N.; Shu, L.; Lu, J.; Sun, Q.; Chan, E.W.-C.; Chen, S.; Zhang, R. Colistin-Resistance Gene Mcr in Clinical Carbapenem-Resistant Enterobacteriaceae Strains in China, 2014–2019. Emerg. Microbes Infect. 2020, 9, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Du, P.; Jia, P.; Liu, E.; Kudinha, T.; Zhang, H.; Li, D.; Xu, Y.; Xie, L.; Yang, Q. Antimicrobial Susceptibility and Virulence of Mcr-1-Positive Enterobacteriaceae in China, a Multicenter Longitudinal Epidemiological Study. Front. Microbiol. 2020, 11, 1611. [Google Scholar] [CrossRef] [PubMed]
- Palani, G.S.; Ghafur, A.; Krishnan, P.; Rayvathy, B.; Thirunarayan, M.A. Intestinal Carriage of Colistin Resistant Enterobacteriaceae in Hospitalized Patients from an Indian Center. Diagn. Microbiol. Infect. Dis. 2020, 97, 114998. [Google Scholar] [CrossRef] [PubMed]
- Lalaoui, R.; Djukovic, A.; Bakour, S.; Sanz, J.; Gonzalez-Barbera, E.M.; Salavert, M.; López-Hontangas, J.L.; Sanz, M.A.; Xavier, K.B.; Kuster, B.; et al. Detection of Plasmid-Mediated Colistin Resistance, Mcr-1 Gene, in Escherichia Coli Isolated from High-Risk Patients with Acute Leukemia in Spain. J. Infect. Chemother. 2019, 25, 605–609. [Google Scholar] [CrossRef]
- Bourrel, A.S.; Poirel, L.; Royer, G.; Darty, M.; Vuillemin, X.; Kieffer, N.; Clermont, O.; Denamur, E.; Nordmann, P.; Decousser, J.W. Colistin Resistance in Parisian Inpatient Faecal Escherichia Coli as the Result of Two Distinct Evolutionary Pathways. J. Antimicrob. Chemother. 2019, 74, 1521–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prim, N.; Turbau, M.; Rivera, A.; Rodríguez-Navarro, J.; Coll, P.; Mirelis, B. Prevalence of Colistin Resistance in Clinical Isolates of Enterobacteriaceae: A Four-Year Cross-Sectional Study. J. Infect. 2017, 75, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Juhász, E.; Iván, M.; Pintér, E.; Pongrácz, J.; Kristóf, K. Colistin Resistance among Blood Culture Isolates at a Tertiary Care Centre in Hungary. J. Glob. Antimicrob. Resist. 2017, 11, 167–170. [Google Scholar] [CrossRef]
- Huang, T.D.; Bogaerts, P.; Berhin, C.; Hoebeke, M.; Bauraing, C.; Glupczynski, Y. Increasing Proportion of Carbapenemase-Producing Enterobacteriaceae and Emergence of a MCR-1 Producer through a Multicentric Study among Hospital-Based and Private Laboratories in Belgium from September to November 2015. Eurosurveillance 2017, 19, 30530. [Google Scholar] [CrossRef] [Green Version]
- Prim, N.; Rivera, A.; Rodríguez-Navarro, J.; Español, M.; Turbau, M.; Coll, P.; Mirelis, B. Detection of Mcr-1 Colistin Resistance Gene in Polyclonal Escherichia Coli Isolates in Barcelona, Spain, 2012 to 2015. Eurosurveillance 2016, 21, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Mariani, B.; Corbella, M.; Merla, C.; Tallarita, M.; Piralla, A.; Girello, A.; Castelli, M.; Bracchi, C.; Marone, P.; Cambieri, P. Bloodstream Infections Caused by Escherichia Coli Carrying Mcr-1 Gene in Hospitalized Patients in Northern Italy from 2012 to 2018. Infection 2020, 48, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Nabti, L.Z.; Sahli, F.; Hadjadj, L.; Ngaiganam, E.P.; Lupande-Mwenebitu, D.; Rolain, J.M.; Diene, S.M. Autochthonous Case of Mobile Colistin Resistance Gene Mcr-1 from a Uropathogenic Escherichia Coli Isolate in Sétif Hospital, Algeria. J. Glob. Antimicrob. Resist. 2019, 19, 356–357. [Google Scholar] [CrossRef]
- Lellouche, J.; Schwartz, D.; Elmalech, N.; Ben Dalak, M.A.; Temkin, E.; Paul, M.; Geffen, Y.; Yahav, D.; Eliakim-Raz, N.; Durante-Mangoni, E.; et al. Combining VITEK® 2 with Colistin Agar Dilution Screening Assist Timely Reporting of Colistin Susceptibility. Clin. Microbiol. Infect. 2019, 25, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.B.; Van Hout, D.; Bonten, M.J.M.; Willems, R.J.L.; Van Schaik, W. Microevolution of Acquired Colistin Resistance in Enterobacteriaceae from ICU Patients Receiving Selective Decontamination of the Digestive Tract. J. Antimicrob. Chemother. 2020, 75, 3135–3143. [Google Scholar] [CrossRef]
- Wise, M.G.; Estabrook, M.A.; Sahm, D.F.; Stone, G.G.; Kazmierczak, K.M. Prevalence of Mcr-Type Genes among Colistin resistant Enterobacteriaceae Collected in 2014–2016 as Part of the INFORM Global Surveillance Program. PLoS ONE 2018, 13, e0195281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellem, J.A.; Ginn, A.N.; Chen, S.C.A.; Ferguson, J.; Partridge, S.R.; Iredell, J.R. Locally Acquired Mcr-1 in Escherichia Coli, Australia, 2011 and 2013. Emerg. Infect. Dis. 2017, 23, 1160–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafer, M.M.; El-Mahallawy, H.A.; Abdulhak, A.; Amin, M.A.; Al-Agamy, M.H.; Radwan, H.H. Emergence of Colistin Resistance in Multidrug-Resistant Klebsiella Pneumoniae and Escherichia Coli Strains Isolated from Cancer Patients. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 40. [Google Scholar] [CrossRef]
- Cao, L.; Li, X.; Xu, Y.; Shen, J. Prevalence and Molecular Characteristics of Mcr-1 Colistin Resistance in Escherichia Coli: Isolates of Clinical Infection from a Chinese University Hospital. Infect. Drug Resist. 2018, 11, 1597–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farzana, R.; Jones, L.S.; Rahman, M.A.; Toleman, M.A.; Sands, K.; Portal, E.; Boostrom, I.; Kalam, M.A.; Hassan, B.; Uddin, A.N.; et al. Emergence of Mcr-1 Mediated Colistin Resistant Escherichia Coli from a Hospitalized Patient in Bangladesh. J. Infect. Dev. Ctries 2019, 13, 773–776. [Google Scholar] [CrossRef]
- Mohsin, J.; Pál, T.; Petersen, J.E.; Darwish, D.; Ghazawi, A.; Ashraf, T.; Sonnevend, A. Plasmid-Mediated Colistin Resistance Gene Mcr-1 in an Escherichia Coli ST10 Bloodstream Isolate in the Sultanate of Oman. Microb. Drug Resist. 2018, 24, 278–282. [Google Scholar] [CrossRef]
- San, N.; Aung, M.S.; Thu, P.P.; Myint, Y.Y.; Aung, M.T.; San, T.; Mar, T.T.; Lwin, M.M.; Maw, W.W.; Hlaing, M.S.; et al. First Detection of the Mcr-1 Colistin Resistance Gene in Escherichia Coli from a Patient with Urinary Tract Infection in Myanmar. New Microbes New Infect. 2019, 30, 100550. [Google Scholar] [CrossRef] [PubMed]
- Henig, O.; Rojas, L.J.; Bachman, M.A.; Rudin, S.D.; Brennan, B.M.; Soehnlen, M.K.; Jones, K.L.; Mills, J.P.; Dombecki, C.R.; Valyko, A.M.; et al. Identification of Four Patients with Colistin-Resistant Escherichia Coli Containing the Mobile Colistin Resistance Mcr-1 Gene from a Single Health System in Michigan. Infect. Control. Hosp. Epidemiol. 2019, 40, 1059–1062. [Google Scholar] [CrossRef]
- Chan, W.S.; Au, C.H.; Ho, D.N.; Chan, T.L.; Ma, E.S.K.; Tang, B.S.F. Prospective Study on Human Fecal Carriage of Enterobacteriaceae Possessing Mcr-1 and Mcr-2 Genes in a Regional Hospital in Hong Kong. BMC Infect. Dis. 2018, 18, 81. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, Q.L.; Shen, Y.; Zhang, Y.; Yang, J.W.; Bin Shu, L.; Zhou, H.W.; Wang, Y.; Wang, B.; Zhang, R.; et al. Rapid Increase in Prevalence of Carbapenem-Resistant Enterobacteriaceae (CRE) and Emergence of Colistin Resistance Gene Mcr-1 in CRE in a Hospital in Henan, China. J. Clin. Microbiol. 2018, 56, e01932-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Yu, W.; Zhou, K.; Guo, L.; Shen, P.; Lu, H.; Huang, C.; Xu, H.; Xu, S.; Xiao, Y.; et al. Molecular Epidemiology and Colistin Resistant Mechanism of Mcr-Positive and Mcr-Negative Clinical Isolated Escherichia Coli. Front. Microbiol. 2017, 8, 2262. [Google Scholar] [CrossRef]
- He, Q.-W.; Xu, X.-H.; Lan, F.-J.; Zhao, Z.-C.; Wu, Z.-Y.; Cao, Y.-P.; Li, B. Molecular Characteristic of Mcr-1 Producing Escherichia Coli in a Chinese University Hospital. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 32. [Google Scholar] [CrossRef] [Green Version]
- Nijhuis, R.H.T.; Veldman, K.T.; Schelfaut, J.; Van Essen-Zandbergen, A.; Wessels, E.; Claas, E.C.J.; Gooskens, J. Detection of the Plasmid-Mediated Colistin-Resistance Gene Mcr-1 in Clinical Isolates and Stool Specimens Obtained from Hospitalized Patients Using a Newly Developed Real-Time PCR Assay. J. Antimicrob. Chemother. 2016, 71, 2344–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Principe, L.; Piazza, A.; Mauri, C.; Anesi, A.; Bracco, S.; Brigante, G.; Casari, E.; Agrappi, C.; Caltagirone, M.; Novazzi, F.; et al. Multicenter Prospective Study on the Prevalence of Colistin Resistance in Escherichia Coli: Relevance of Mcr-1-Positive Clinical Isolates in Lombardy, Northern Italy. Infect. Drug Resist. 2018, 11, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Newton-Foot, M.; Snyman, Y.; Maloba, M.R.B.; Whitelaw, A.C. Plasmid-Mediated Mcr-1 Colistin Resistance in Escherichia coli and Klebsiella Spp. Clinical Isolates from the Western Cape Region of South Africa. Antimicrob. Resist. Infect. Control. 2017, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Sagoo, G.S.; Little, J.; Higgins, J.P.T. Systematic Reviews of Genetic Association Studies. PLoS Med. 2009, 6, e1000028. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Grp, P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement (Reprinted from Annals of Internal Medicine). Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef] [PubMed]
Crude Prevalence | Estimated Prevalence | |||||
---|---|---|---|---|---|---|
Data Categories | (n) = mcr-E.coli/ E. coli | % | 95% IC | % | 95% IC | |
Host | ||||||
Healthy Humans * | (789/23585) | 3.35 | 3.05–3.65 | 7.4 | 3.9–13.6 | |
Pigs * | (7089/80600) | 8.8 | 8.54–9.06 | 14.9 | 10.8–20.1 | |
Chickens * | (7134/68362) | 10.44 | 10.14–10.74 | 15.8 | 11.7–20.9 | |
Clinical | (1020/58033) | 1.76 | 1.47–2.20 | 4.2 | 2.4–7.3 | |
Continent | ||||||
Asia | (8381/90707) | 9.2 | 8.95–9.45 | 11.5 | 8.9–14.7 | |
The Americas | (624/8161) | 7.6 | 6.84–8.36 | 21.7 | 7.7–46.9 | |
Africa | (273/2715) | 10.06 | 9.08–12.12 | 16.7 | 8.3–30.9 | |
Europe | (2305/76137) | 3.03 | 2.87–3.19 | 9.1 | 5.7–14.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastidas-Caldes, C.; de Waard, J.H.; Salgado, M.S.; Villacís, M.J.; Coral-Almeida, M.; Yamamoto, Y.; Calvopiña, M. Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock—A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 659. https://doi.org/10.3390/pathogens11060659
Bastidas-Caldes C, de Waard JH, Salgado MS, Villacís MJ, Coral-Almeida M, Yamamoto Y, Calvopiña M. Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock—A Systematic Review and Meta-Analysis. Pathogens. 2022; 11(6):659. https://doi.org/10.3390/pathogens11060659
Chicago/Turabian StyleBastidas-Caldes, Carlos, Jacobus H. de Waard, María Soledad Salgado, María José Villacís, Marco Coral-Almeida, Yoshimasa Yamamoto, and Manuel Calvopiña. 2022. "Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock—A Systematic Review and Meta-Analysis" Pathogens 11, no. 6: 659. https://doi.org/10.3390/pathogens11060659
APA StyleBastidas-Caldes, C., de Waard, J. H., Salgado, M. S., Villacís, M. J., Coral-Almeida, M., Yamamoto, Y., & Calvopiña, M. (2022). Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock—A Systematic Review and Meta-Analysis. Pathogens, 11(6), 659. https://doi.org/10.3390/pathogens11060659