Red Foxes (Vulpes vulpes) Are Exposed to High Diversity of Borrelia burgdorferi Sensu Lato Species Infecting Fox-Derived Ixodes Ticks in West-Central Poland
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Sample Collection
2.2. DNA Extraction
2.3. Molecular Identification of Ixodes Tick Species
2.4. Detection of Borrelia DNA by Nested PCR
2.5. Identification of Borrelia Species by PCR-RFLP and Sequencing
2.6. Contamination Control in DNA Analysis
2.7. DNA Sequence Analysis
2.8. Statistical Analyses
3. Results
3.1. Tick Species Identification
3.2. Occurrence of Tick Species on Ears of Red Foxes
3.3. Detection of Borrelia DNA by Nested PCR in Foxes and Their Ticks
3.4. Identification of Borrelia Species
4. Discussion
4.1. Ixodes Tick Species on Red Foxes
4.2. Borrelia Infections in Red Foxes
4.3. Borrelia Infections in Ixodes Ticks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Broad Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacDonald, D.W.; Sillero-Zubiri, C. The Biology and Conservation of Wild Canids, 3rd ed.; Oxford University Press: Oxford, UK, 2004; pp. 207–216. [Google Scholar]
- Goszczyński, J.; Misiorowska, M.; Juszko, S. Changes in the density and spatial distribution of red fox dens and cub numbers in central Poland following rabies vaccination. Acta Theriol. 2008, 53, 121–127. [Google Scholar] [CrossRef]
- Sréter, T.; Széll, T.; Varga, I. Ectoparasite infestations of red foxes (Vulpes vulpes) in Hungary. Vet. Parasitol. 2003, 115, 349–354. [Google Scholar] [CrossRef]
- Kočišová, A.; Lazar, P.; Letková, V.; Čurlík, J.; Goldová, M. Ectoparasitic species from red foxes (Vulpes vulpes) in East Slovakia. Vet. Arch. 2006, 76, 59–63. [Google Scholar]
- Meyer-Kayser, E.; Hoffmann, L.; Silaghi, C.; Pfister, K.; Mahling, M.; Passos, L.M.F. Dynamics of tick infestations in foxes in Thuringia, Germany. Ticks Tick-Borne Dis. 2012, 3, 232–239. [Google Scholar] [CrossRef]
- Foley, P.; Foley, J.; Sándor, A.D.; Ionica, A.M.; Matei, I.A.; D’Amico, G.; Gherman, C.M.; Dom, A.C.; Mihalca, A.D. Diversity of flea (Siphonaptera) parasites on red foxes (Vulpes vulpes) in Romania. J. Med. Entomol. 2017, 54, 1243–1250. [Google Scholar] [CrossRef]
- Karbowiak, G.; Vichova, B.; Majlathova, V.; Hapunik, J.; Petko, B. Anaplasma phagocytophilum infection of red foxes (Vulpes vulpes). Ann. Agric. Environ. Med. 2009, 16, 299–300. [Google Scholar]
- Härtwig, V.; von Loewenich, F.D.; Schulze, C.; Straubinger, R.K.; Daugschies, A.; Dyachenko, V. Detection of Anaplasma phagocytophilum in red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) from Brandenburg, Germany. Ticks Tick-Borne Dis. 2014, 5, 277–280. [Google Scholar] [CrossRef]
- Cardoso, L.; Gilad, M.; Cortes, H.C.; Nachum-Biala, Y.; Lopes, A.P.; Vila-Viçosa, M.J.; Simões, M.; Rodrigues, P.A.; Baneth, G. First report of Anaplasma platys infection in red foxes (Vulpes vulpes) and molecular detection of Ehrlichia canis and Leishmania infantum in foxes from Portugal. Parasit. Vectors 2015, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Ebani, V.V.; Rocchigiani, G.; Nardoni, S.; Bertelloni, F.; Vasta, V.; Papini, R.A.; Verin, R.; Poli, A.; Mancianti, F. Molecular detection of tick-borne pathogens in wild red foxes (Vulpes vulpes) from Central Italy. Acta Trop. 2017, 172, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Hodžić, A.; Cezanne, R.; Duscher, G.G.; Harl, J.; Glawischnig, W.; Fuehrer, H.P. Candidatus Neoehrlichia sp. in an Austrian fox is distinct from Candidatus Neoehrlichia mikurensis, but closer related to Candidatus Neoehrlichia lotoris. Parasit. Vectors 2015, 8, 539. [Google Scholar] [CrossRef] [Green Version]
- Gerrikagoitia, X.; Gil, H.; García-Esteban, C.; Anda, P.; Juste, R.A.; Barral, M. Presence of Bartonella species in wild carnivores of northern Spain. Appl. Environ. Microbiol. 2012, 78, 885–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millán, J.; Proboste, T.; Fernández de Mera, I.G.; Chirife, A.D.; de la Fuente, J.; Altet, L. Molecular detection of vector-borne pathogens in wild and domestic carnivores and their ticks at the human-wildlife interface. Ticks Tick-Borne Dis. 2016, 7, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Liebisch, G.; Dimpfl, B.; Finkbeiner-Weber, B.; Liebisch, A.; Frosch, M. The red fox (Vulpes vulpes) a reservoir competent host for Borrelia burgdorferi sensu lato. In Proceedings of the 2nd International Conference on Tick-Borne Pathogens at the Host-Vector Interface: A Global Perspective, Kruger National Park, South Africa, 28 August–1 September 1995; p. 238. [Google Scholar]
- Heidrich, J.; Schönberg, A.; Steuber, S.; Nöckler, K.; Schulze, P.; Voigt, W.P.; Schein, E. Investigation of skin samples from red foxes (Vulpes vulpes) in eastern Brandenburg (Germany) for the detection of Borrelia burgdorferi s. l. Zentralbl. Bakteriol. 1999, 289, 666–672. [Google Scholar] [CrossRef]
- Dumitrache, M.O.; Matei, I.A.; Ionică, A.M.; Kalmár, Z.; D’Amico, G.; Sikó-Barabási, S.; Ionescu, D.T.; Gherman, C.M.; Mihalca, A.D. Molecular detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato genospecies in red foxes (Vulpes vulpes) from Romania. Parasit. Vectors 2015, 8, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mysterud, A.; Stigum, V.M.; Jaarsma, R.I.; Sprong, H. Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Sci. Rep. 2019, 9, 5088. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Sándor, A.D.; Beck, R.; Farkas, R.; Beati, L.; Kontschán, J.; Takács, N.; Földvári, G.; Silaghi, C.; Meyer-Kayser, E.; et al. Contributions to the phylogeny of Ixodes (Pholeoixodes) canisuga, I. (Ph.) kaiseri, I. (Ph.) hexagonus and a simple pictorial key for the identification of their females. Parasit. Vectors 2017, 10, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gern, L.; Rouvinez, E.; Toutoungi, L.N.; Godfroid, E. Transmission cycles of Borrelia burgdorferi sensu lato involving Ixodes ricinus and/or I. hexagonus ticks and the European hedgehog, Erinaceus europaeus, in suburban and urban areas in Switzerland. Folia Parasitol. 1997, 44, 309–314. [Google Scholar]
- Estrada-Peña, A.; Oteo, J.A.; Estrada-Peña, R.; Gortázar, C.; Osácar, J.J.; Moreno, J.A.; Castellá, J. Borrelia burgdorferi sensu lato in ticks (Acari: Ixodidae) from two different foci in Spain. Exp. Appl. Acarol. 1995, 19, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Wodecka, B.; Michalik, J.; Lane, R.S.; Nowak-Chmura, M.; Wierzbicka, A. Differential associations of Borrelia species with European badgers (Meles meles) and raccoon dogs (Nyctereutes procyonoides) in western Poland. Ticks Tick-Borne Dis. 2016, 7, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Siuda, K. Ticks (Acari: Ixodida) of Poland. Part II: Taxonomy and Distribution; Polskie Towarzystwo Parazytologiczne: Warsaw, Poland, 1993. (In Polish) [Google Scholar]
- Wodecka, B.; Rymaszewska, A.; Skotarczak, B. Host and pathogen DNA identification in blood meals of nymphal Ixodes ricinus ticks from forest parks and rural forests of Poland. Exp. Appl. Acarol. 2014, 62, 543–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wodecka, B.; Leońska, A.; Skotarczak, B. A comparative analysis of molecular markers for the detection and identification of Borrelia spirochetes in Ixodes ricinus. J. Med. Microbiol. 2010, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Wodecka, B. FlaB gene as a molecular marker for distinct identification of Borrelia species in environmental samples by the PCR-restriction fragment length polymorphism method. Appl. Environ. Microbiol. 2011, 77, 7088–7092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Karbowiak, G.; Stanko, M.; Miterpakova, M.; Hurnikova, Z.; Vichova, B. Ticks (Acari: Ixodidae) parasitizing red foxes (Vulpes vulpes) in Slovakia and new data about subgenus Pholeoixodes occurrence. Acta Parasitol. 2020, 65, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Dziemian, S.; Michalik, J.; Piłacińska, B.; Bialik, S.; Sikora, B.; Zwolak, R. Infestation of urban populations of the Northern white-breasted hedgehog, Erinaceus roumanicus, by Ixodes spp. ticks in Poland. Med. Vet. Entomol. 2014, 28, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Fauna of Ixodid Ticks of the World (Acari, Ixodidae). Available online: http://web.archive.org/web/20150213234618/http:/kolonin.org/13.html (accessed on 15 May 2022).
- Kurtenbach, K.; De Michelis, S.; Etti, S.; Schäfer, S.M.; Sewell, H.S.; Brade, V.; Kraiczy, P. Host association of Borrelia burgdorferi sensu lato—The key role of host complement. Trends Microbiol. 2002, 10, 74–79. [Google Scholar] [CrossRef]
- Skuballa, J.; Oehme, R.; Hartelt, K.; Petney, T.; Bücher, T.; Kimmig, P.; Taraschewski, H. European hedgehogs as hosts for Borrelia spp., Germany. Emerg. Infect. Dis. 2007, 13, 952–953. [Google Scholar] [CrossRef]
- Marsot, M.; Chapuis, J.L.; Gasqui, P.; Dozières, A.; Masséglia, S.; Pisanum, B.; Ferquel, E.; Vourc’h, G. Introduced Siberian chipmunks (Tamias sibiricus barberi) contribute more to Lyme borreliosis risk than native reservoir rodents. PLoS ONE 2013, 8, e55377. [Google Scholar] [CrossRef] [Green Version]
- Kybicová, K.; Schánilec, P.; Hulínská, D.; Uherková, L.; Kurzová, Z.; Spejchalová, S. Detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in dogs in the Czech Republic. Vector Borne Zoonotic Dis. 2009, 9, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Inokuma, H.; Maetani, S.; Fujitsuka, J.; Takano, A.; Sato, K.; Fukui, T.; Masuzawa, T.; Kawabata, H. Astasia and pyrexia related to Borrelia garinii infection in two dogs in Hokkaido, Japan. J. Vet. Med. Sci. 2013, 75, 975–978. [Google Scholar] [CrossRef] [Green Version]
- Lommano, E.; Bertaiola, L.; Dupasquier, C.; Gern, L. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Appl. Environ. Microbiol. 2012, 78, 4606–4612. [Google Scholar] [CrossRef] [Green Version]
- Gern, L.; Rais, O. Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J. Med. Entomol. 1996, 33, 189–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voodrouw, M.J. Co-feeding transmission in Lyme disease pathogens. Parasitology 2015, 142, 290–302. [Google Scholar]
- Cotté, V.; Bonnet, S.; Cote, M.; Vayssier-Taussat, M. Prevalence of five pathogenic agents in questing Ixodes ricinus ticks from western France. Vector Borne Zoonotic Dis. 2010, 10, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Michalik, J.; Wodecka, B.; Liberska, J.; Dabert, M.; Postawa, T.; Piksa, K.; Stańczak, J. Diversity of Borrelia burgdorferi sensu lato species in Ixodes ticks (Acari: Ixodidae) associated with cave-dwelling bats from Poland and Romania. Ticks Tick-Borne Dis. 2020, 11, 101300. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, N.; Golovchenko, M.; Grubhoffer, L.; Oliver, J.H., Jr. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick-Borne Dis. 2011, 2, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.; Ott-Conn, C.; Worth, J.; Poulsen, A.; Clifford, D. An Ixodes minor and Borrelia carolinensis enzootic cycle involving a critically endangered Mojave Desert rodent. Ecol. Evol. 2014, 4, 576–581. [Google Scholar] [CrossRef]
- Margos, G.; Lane, R.S.; Fedorova, N.; Koloczek, J.; Piesman, J.; Hojgaard, A.; Sing, A.; Fingerle, V. Borrelia bissettii sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. Int. J. Syst. Evol. Microbiol. 2016, 66, 1447–1452. [Google Scholar] [CrossRef]
- Rudenko, N.; Golovchenko, M.; Grubhoffer, L.; Oliver, J.H., Jr. Borrelia carolinensis sp. nov., a new (14th) member of the Borrelia burgdorferi sensu lato complex from the Southeastern region of the United States. J. Clin. Microbiol. 2009, 47, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.F.; Niu, Q.L.; Liu, Z.J.; Yang, J.F.; Chen, Z.; Guan, G.Q.; Liu, G.Y.; Luo, J.X.; Yin, H. Molecular epidemiological surveillance to assess emergence and re-emergence of tick-borne infections in tick samples from China evaluated by nested PCRs. Acta Trop. 2016, 158, 181–188. [Google Scholar] [CrossRef]
- Dunaj, J.; Drewnowska, J.; Moniuszko-Malinowska, A.; Święcicka, I.; Pancewicz, S. First metagenomic report of Borrelia americana and Borrelia carolinensis in Poland—A preliminary study. Ann. Agric. Environ. Med. 2021, 28, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Margos, G.; Fedorova, N.; Kleinjan, J.E.; Hartberger, C.; Schwan, T.G.; Sing, A.; Fingerle, V. Borrelia lanei sp. nov. extends the diversity of Borrelia species in California. Int. J. Syst. Evol. Microbiol. 2017, 67, 3872–3876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.D.; Clark, K.L.; Foley, J.E.; Anderson, J.F.; Durden, L.A.; Manord, J.M.; Smith, M.L. Detection of Borrelia genomospecies 2 in Ixodes spinipalpis ticks collected from a rabbit in Canada. J. Parasitol. 2017, 103, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, Y.A.; Fedorova, N.; Lane, R.S. Genetic diversity of Borrelia burgdorferi and detection of B. bissettii-like DNA in serum of north-coastal California residents. J. Clin. Microbiol. 2011, 49, 945–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golovchenko, M.; Vancová, M.; Clark, K.; Oliver, J.; Grubhoffer, L.; Rudenko, N. A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as Borrelia bissettii. Parasit. Vectors 2016, 9, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisen, L.; Eisen, R.J.; Mun, J.; Salkeld, D.J.; Lane, R.S. Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California. J. Vector Ecol. 2009, 34, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, N.; Kleinjan, J.E.; James, D.; Hui, L.T.; Peeters, H.; Lane, R.S. Remarkable diversity of tick or mammalian-associated Borreliae in the metropolitan San Francisco Bay Area, California. Ticks Tick-Borne Dis. 2014, 5, 951–961. [Google Scholar] [CrossRef]
- Newman, E.A.; Eisen, L.; Eisen, R.J.; Fedorova, N.; Hasty, J.M.; Vaughn, C.; Lane, R.S. Borrelia burgdorferi sensu lato spirochetes in wild birds in Northwestern California: Associations with ecological factors, bird behavior and tick infestation. PLoS ONE 2015, 10, e0118146. [Google Scholar] [CrossRef]
- Hulínská, D.; Votýpka, J.; Kríz, B.; Holínková, N.; Nováková, J.; Hulínský, V. Phenotypic and genotypic analysis of Borrelia spp. isolated from Ixodes ricinus ticks by using electrophoretic chips and real-time polymerase chain reaction. Folia Microbiol. 2007, 52, 315–324. [Google Scholar] [CrossRef]
- Raileanu, C.; Moutailler, S.; Pavel, I.; Porea, D.; Mihalca, A.D.; Savuta, G.; Vayssier-Taussat, M. Borrelia diversity and co-infection with other tick borne pathogens in ticks. Fron. Cell Infect. Microbiol. 2017, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Blazejak, K.; Raulf, M.K.; Janecek, E.; Jordan, D.; Fingerle, V.; Strube, C. Shifts in Borrelia burgdorferi (s.l.) genospecies infections in Ixodes ricinus over a 10-year surveillance period in the city of Hanover (Germany) and Borrelia miyamotoi-specific Reverse Line Blot detection. Parasit. Vectors 2018, 11, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majerová, K.; Hönig, V.; Houda, M.; Papežík, P.; Fonville, M.; Sprong, H.; Rudenko, N.; Golovchenko, M.; Černá Bolfíková, B.; Hulva, P.; et al. Hedgehogs, squirrels, and blackbirds as sentinel hosts for active surveillance of Borrelia miyamotoi and Borrelia burgdorferi complex in urban and rural environments. Microorganisms 2020, 8, 1908. [Google Scholar] [CrossRef] [PubMed]
- Maraspin, V.; Ruzic-Sabljic, E.; Strle, F. Lyme borreliosis and Borrelia spielmanii. Emerg. Infect. Dis. 2006, 12, 1177. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.; Schlee, D.B.; Matuschka, F.R. Reservoir competence of various rodents for the Lyme disease spirochete Borrelia spielmanii. Appl. Environ. Microbiol. 2011, 77, 3565–3570. [Google Scholar] [CrossRef] [Green Version]
- Jahfari, S.; Ruyts, S.C.; Frazer-Mendelewska, E.; Jaarsma, R.; Verheyen, K.; Sprong, H. Melting pot of tick-borne zoonoses: The European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasit. Vectors 2017, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Tomassone, L.; Grego, E.; Auricchio, D.; Iori, A.; Giannini, F.; Rambozzi, L. Lyme borreliosis spirochetes and spotted fever group rickettsiae in ixodid ticks from Pianosa island, Tuscany Archipelago, Italy. Vector Borne Zoonotic Dis. 2013, 13, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Gryczyńska, A.; Welc-Falęciak, R. Long-term study of the prevalence of Borrelia burgdorferi s.l. infection in ticks (Ixodes ricinus) feeding on blackbirds (Turdus merula) in NE Poland. Exp. Appl. Acarol. 2016, 70, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Guner, E.S.; Watanabe, M.; Hashimoto, N.; Kadosaka, T.; Kawamura, Y.; Ezaki, T.; Kawabata, H.; Imai, Y.; Kaneda, K.; Masuzawa, T. Borrelia turcica sp. nov., isolated from the hard tick Hyalomma aegyptium in Turkey. Int. J. Syst. Evol. Microbiol. 2004, 54, 1649–1652. [Google Scholar] [CrossRef]
- Margos, G.; Gofton, A.; Wibberg, D.; Dangel, A.; Marosevic, D.; Loh, S.M.; Oskam, C.; Fingerle, V. The genus Borrelia reloaded. PLoS ONE 2018, 13, e0208432. [Google Scholar] [CrossRef]
- Paștiu, A.I.; Matei, I.A.; Mihalca, A.D.; D’Amico, G.; Dumitrache, M.O.; Kalmár, Z.; Sándor, A.D.; Lefkaditis, M.; Gherman, C.M.; Cozma, V. Zoonotic pathogens associated with Hyalomma aegyptium in endangered tortoises: Evidence for host-switching behaviour in ticks? Parasit Vectors 2012, 5, 301. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, G.; Cinco, M.; Trevisini, S.; di Meo, N.; Chersi, K.; Ruscio, M.; Forgione, P.; Bonin, S. Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. Biology 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Kalmar, Z.; Cozma, V.; Sprong, H.; Jahfari, S.; D’Amico, G.; Marcutan, D.I.; Ionica, A.M.; Magdas, C.; Modry, D.; Mihalca, A.D. Transstadial transmission of Borrelia turcica in Hyalomma aegyptium ticks. PLoS ONE 2015, 10, e0115520. [Google Scholar] [CrossRef] [PubMed]
- Strnad, M.; Hönig, V.; Růžek, D.; Grubhoffer, L.; Rego, R.O.M. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 2017, 83, e00609-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margos, G.; Hojgaard, A.; Lane, R.S.; Cornet, M.; Fingerle, V.; Rudenko, N.; Ogden, N.; Aanensen, D.M.; Fish, D.; Piesman, J. Multilocus sequence analysis of Borrelia bissettii strains from North America reveals a new Borrelia species, Borrelia kurtenbachii. Ticks Tick-Borne Dis. 2010, 1, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.G.; Bruno, J.F.; McCaig, W.D.; Xu, Y.; Livey, I.; Schriefer, M.E.; Luft, B.J. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 2008, 14, 1097. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Pena, A.; Alvarez-Jarreta, J.; Cabezas-Cruz, A. Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia. Infect. Genet. Evol. 2018, 66, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Munro, H.J.; Ogden, N.H.; Mechai, S.; Lindsay, L.R.; Robertson, G.J.; Whitney, H.; Lang, A.S. Genetic diversity of Borrelia garinii from Ixodes uriae collected in seabird colonies of the northwestern Atlantic Ocean. Ticks Tick-Borne Dis. 2019, 10, 101255. [Google Scholar] [CrossRef]
- Olsen, B.; Jaenson, T.G.; Noppa, L.; Bunikis, J.; Bergström, S. A Lyme borreliosis cycle in seabirds and Ixodes uriae ticks. Nature 1993, 362, 340–342. [Google Scholar] [CrossRef]
- Kahl, O.; Gern, L.; Eisen, L.; Lane, R.S. Ecological research on Borrelia burgdorferi sensu lato: Terminology and some methodological pitfalls. In Lyme Borreliosis: Biology, Epidemiology and Control; Gray, J.S., Kahl, O., Lane, R.S., Stanek, G., Eds.; CABI Publishing: New York, NY, USA, 2002; pp. 29–46. [Google Scholar]
Specificity | Genetic Marker | Sequence of Primers (5′->3′) | Anneling Temp. (°C) | Length of Amplicons (bp) | Usage | Reference |
---|---|---|---|---|---|---|
Ixodes * | ITS2 | SP2-26F: CTTCCCGTGGCTTCGTCT | 48 | 453–694 | PCR-RFLP, sequencing | [21] |
SP2-1299R: CTATGCTTAAATTCAGGG | ||||||
Nested PCR | ||||||
SP2-100F: TCGTTTTGACTGTGTCGG | 48 | |||||
SP2-1274: CCTGATGTGAGGTCGACA | ||||||
coxI | CO1-45F: ACTAACCATAAAGACACATTGG | 44 | 706 | sequencing | This study | |
CO1-1100R: GAATTGGCTAAAATAATTCC | ||||||
Nested PCR | ||||||
CO1-375F: GGCAGGAACTGGATGAAC | 47 | |||||
CO1-1086R: AATTCCTGTTAATCCYCC | ||||||
Borrelia ** | flaB | 132f: TGGTATGGGAGTTTCTGG | 56 | 604 | PCR-RFLP, sequencing | [24] |
905r: TCTGTCATTGTAGCATCTTT | ||||||
Nested PCR | ||||||
220f: CAGACAACAGAGGGAAAT | 54 | |||||
823r: TCAAGTCTATTTTGGAAAGCACC | ||||||
FL84F: AGAAGCTTTCTAGTGGGTACAGA | 57 | 789 | sequencing | This study | ||
FL976R: GATTGGCCTGTGCAATCAT | ||||||
Nested PCR | ||||||
FL120F: TGATGATGCTGCTGGGATGG | 56 | |||||
FL908R: TCATCTGTCATTGTAGCATCTT | ||||||
Borrelia burgdorferi sensu lato | p66 | p66-226ldf—GGTACTACATATGCTTCTGT | 54 | 596–599 | sequencing | This study |
p66-1320htldr—AGGTACACTTCAATTTGGATACA | ||||||
Nested PCR | ||||||
p66-487ldf—CCTTTTTTGTTGTCTTCATAGC | 53 | |||||
p66-1087ldr—AATTCATCAATAACATACTCT | ||||||
Borrelia ** | mag—trnI | glz199f—GTAAGTTTGCCAGGACCATT | 56 | 309–1183 | sequencing | This study |
ile20r—TGAACATCCGACCTCAGG | ||||||
Nested PCR | ||||||
glz435f—TAAGCTTCCGTTTCAAC | 58 | |||||
ile65r—CAGACCTGCGCTCTAACC |
Tick Species | No. (%) Infested Hosts/No. Ticks/No. Ticks per Host/No. Ticks per Infested Host | |||
---|---|---|---|---|
Total | Females | Nymphs | Larvae | |
I. ricinus | 56 (23)/162/0.7/2.9 | 28 (11.5)/43/0.2/1.5 | 31 (12.8)/58/0.2/1.9 | 23 (9.5)/61/0.3/2.7 |
I. kaiseri | 82 (33.7)/1205/5/14.7 | 13 (5.3)/21/0.1/1.6 | 39 (16)/75/0.3/1.9 | 51 (21)/1109/4.6/21.7 |
I. canisuga | 45 (18.5)/188/0.8/4.2 | 8 (3.3)/11/0.05/1.4 | 19 (7.8)/25/0.1/1.3 | 32 (13.2)/152/0.6/4.8 |
I. hexagonus | 19 (7.8)/28/0.1/1.5 | 1 (0.4)/1/0.004/1.0 | 7 (2.9)/8/0.03/1.1 | 13 (5.3)/19/0.08/1.5 |
Total | 120 (49.4)/1583/6.5/13.2 | 41 (16.9)/76/0.3/1.9 | 73 (30)/166/0.7/2.3 | 83 (34.2)/1341/5.5/16.2 |
Tissue Samples | No. Tested/ | Bb s.l. Species a in Positive Tissue Samples (Animals) (% Prevalence) | |||
---|---|---|---|---|---|
Positive (%) | BG | BA | BSP | BG/BA | |
Blood | 216/51 (23.6) | 37 (72.5) | 4 (7.8) | 10 (19.6) | |
Skin (ear) | 243/10 (4.1) | 4 (40) | 4 (40) | 1 (10) | 1 (10) |
Liver | 99/6 (6.1) | 2 (33.3) | 4 (66.7) | ||
Total * | 558/67 (12) | 43 (64.2) | 12 (17.9) | 1 (1.5) | 11 (16.4) b |
Red foxes | (243/57 (23.5)) | [36 (63.2)] | [4 (7)] | [1 (1.7)] | [16 (28.1)] c |
Tick Species | No. (%) Hosts with at Least One Infected Tick | No. Tested/Infected (%) | |||
---|---|---|---|---|---|
Females | Nymphs | Larvae | Total | ||
I. ricinus | 26 (10.7) | 43/19 (44.2) | 58/21 (36.2) | 61/17 (27.9) | 162/57 (35.2) |
I. kaiseri | 50 (20.6) | 21/9 (42.9) | 75/33 (44) | 479/131 (27.3) | 575/173 (30.1) |
I. canisuga | 27 (11.1) | 11/7 (63.6) | 25/14 (56) | 143/45 (31.5) | 179/66 (36.9) |
I. hexagonus | 9 (3.7) | 1/1 (100) | 8/5 (62.5) | 18/4 (22.2) | 27/10 (37) |
Total | 81 (33.3) | 76/36 (47.4) | 166/73 (43.9) | 701/197 (28.1) | 943/306 (32.4) |
Borrelia spp. | No. (F/N/L) (%) of Ticks Infected | ||||
---|---|---|---|---|---|
I. ricinus | I. kaiseri | I. canisuga | I. hexagonus | Total | |
B. garinii | 13 (5/4/4) (22.8) | 66 (4/13/49) (38.2) | 17 (1/3/13) (25.8) | 4 (1/2/1) (40.0) | 100 (11/22/67) (32.7) |
B. afzelii | 20 (5/10/5) (35.1) | 49 (0/12/37) (28.3) | 20 (3/2/15) (30.3) | 3 (0/2/1) (30.0) | 92 (8/26/58) (30.1) |
B. burgdorferi s.s. | 2 (1/0/1) (3.5) | 8 (0/1/7) (4.6) | 2 (0/1/1) (20.0) | 12 (1/2/9) (3.9) | |
B. valaisiana | 1 (1/0/0) (1.8) | 1 (0/0/1) (0.6) | 1 (0/1/0) (1.5) | 3 (1/1/1) (1.0) | |
B. bissettiae | 4 (1/0/3) (2.3) | 3 (1/2/0) (4.5) | 1 (0/0/1) (10.0) | 8 (2/2/4) (2.6) | |
B. spielmanii | 1 (1/0/0) (1.8) | 6 (0/0/6) (3.5) | 2 (0/0/2) (3.0) | 9 (1/0/8) (2.9) | |
B. carolinensis | 8 (3/1/4) (14.0) | 22 (2/3/17) (12.7) | 6 (1/2/3) (9.1) | 36 (6/6/24) (11.8) | |
B. californiensis | 9 (1/6/2) (15.8) | 6 (2/1/3) (3.5) | 9 (0/2/7) (13.6) | 24 (3/9/12) (7.8) | |
B. lanei | 2 (0/0/2) (1.2) | 3 (0/1/2) (4.5) | 5 (0/1/4) (1.6) | ||
B. americana | 2 (2/0/0) (3.5) | 1 (0/1/0) (1.5) | 3 (2/1/0) (1.0) | ||
B. garinii/B. afzelii | 1 (0/0/1) (1.8) | 5 (0/2/3) (2.9) | 3 (0/0/3) (4.5) | 9 (0/2/7) (2.9) | |
B. garinii/B. burgdorferi s.s. | 1 (0/0/1) (0.6) | 1 (1/0/0) (1.5) | 2 (1/0/1) (0.7) | ||
B. garinii/B. americana | 1 (0/1/0) (0.6) | 1 (0/1/0) (0.3) | |||
B. afzelii/B. burgdorferi s.s. | 1 (0/0/1) (0.6) | 1 (0/0/1) (0.3) | |||
B. turcica ** (REP) | 1 (0/0/1) (0.6) | 1 (0/0/1) (0.3) | |||
Total | 57 (19/21/17) | 173 (9/33/131) | 66 (7/14/45) | 10 (1/5/4) | 306 (36/73/197) |
Fox No. | Fox Infection | Borrelia Species in Ticks (F/N/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BG | BA | BB | BV | BSP | BBI | BCL | BCR | BAM | BLN | ||
1 | - | +/+/− | +/+/− | +/−/− | −/−/+ * | −/+/− | |||||
2 | BG a/BA a | −/−/+ ** | −/−/+ * | ||||||||
3 | BG a/BA a,b | −/−/+ ** | −/+/− | ||||||||
4 | BG a/BA a,b | +/−/+ *** | +/−/− | ||||||||
5 | - | −/−/+ * | |||||||||
6 | - | −/−/+ * | |||||||||
7 | - | −/+/+ *** | −/+/− | ||||||||
8 | - | −/−/+ * | |||||||||
9 | - | −/−/+ * | −/−/+ * | ||||||||
10 | - | −/+/+ *** | |||||||||
11 | - | −/−/+ * | |||||||||
12 | - | −/−/+ * | −/+/+ *** | −/−/+ * | −/−/+ * | ||||||
13 | - | +/+/− | −/−/+ * | ||||||||
14 | BA a,b | −/−/+ * | −/−/+ * | −/+/+ *** | −/+/+ *** | ||||||
15 | - | +/−/+ *** | |||||||||
16 | BG a/BA a | −/−/+ ** | −/−/+ ** | −/+/+ *** | +/−/+ *** | +/−/− | |||||
17 | BG a | −/−/+ * | |||||||||
18 | BG a | −/+/− | −/−/+ * | ||||||||
19 | BG a | −/−/+ * | |||||||||
20 | BG a | −/−/+ * | −/−/+ * | −/−/+ * | |||||||
21 | BG a | −/−/+ ** | −/+/− | ||||||||
22 | BG a/BA a | −/−/+ * | −/+/− | ||||||||
23 | BG a | −/−/+ * | −/−/+ * | −/−/+ * | −/−/+ * | ||||||
24 | - | +/−/− | +/+/− | −/−/+ * | |||||||
25 | - | −/−/+ * | |||||||||
26 | - | −/−/+ * | |||||||||
27 | - | −/−/+ * | −/+/+ *** | ||||||||
28 | - | −/−/+ * | |||||||||
29 | - | −/−/+ * | −/+/− | ||||||||
30 | - | −/−/+ * | |||||||||
31 | - | −/+/+ *** | −/−/+ * | −/−/+ * | |||||||
32 | - | +/+/+ *** | +/+/+ *** | −/+/+ *** | |||||||
33 | - | −/−/+ * | −/−/+ * | ||||||||
34 | - | −/−/+ * | −/−/+ * | −/−/+ * | |||||||
35 | - | −/−/+ * | |||||||||
36 | - | −/+/+ *** | −/−/+ * | −/−/+ * | −/−/+ * | −/−/+ * | −/−/+ * | −/−/+ * | |||
37 | - | +/−/+ *** | −/−/+ * | +/+/+ *** | |||||||
38 | - | −/−/+ * | −/−/+ * | −/−/+ * | −/−/+ * | ||||||
39 | - | −/−/+ * | −/−/+ * | −/−/+ * | |||||||
40 | - | −/−/+ * | −/−/+ * | −/−/+ * | −/−/+ * | −/−/+ * | −/−/+ * | ||||
41 | - | −/−/+ * | −/−/+ * | ||||||||
42 | - | −/−/+ * | −/−/+ * | ||||||||
43 | - | −/−/+ * | −/−/+ * | −/−/+ * | |||||||
44 | - | −/−/+ * | |||||||||
45 | - | −/−/+ * | |||||||||
46 | - | −/−/+ * | −/−/+ * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wodecka, B.; Michalik, J.; Grochowalska, R. Red Foxes (Vulpes vulpes) Are Exposed to High Diversity of Borrelia burgdorferi Sensu Lato Species Infecting Fox-Derived Ixodes Ticks in West-Central Poland. Pathogens 2022, 11, 696. https://doi.org/10.3390/pathogens11060696
Wodecka B, Michalik J, Grochowalska R. Red Foxes (Vulpes vulpes) Are Exposed to High Diversity of Borrelia burgdorferi Sensu Lato Species Infecting Fox-Derived Ixodes Ticks in West-Central Poland. Pathogens. 2022; 11(6):696. https://doi.org/10.3390/pathogens11060696
Chicago/Turabian StyleWodecka, Beata, Jerzy Michalik, and Renata Grochowalska. 2022. "Red Foxes (Vulpes vulpes) Are Exposed to High Diversity of Borrelia burgdorferi Sensu Lato Species Infecting Fox-Derived Ixodes Ticks in West-Central Poland" Pathogens 11, no. 6: 696. https://doi.org/10.3390/pathogens11060696
APA StyleWodecka, B., Michalik, J., & Grochowalska, R. (2022). Red Foxes (Vulpes vulpes) Are Exposed to High Diversity of Borrelia burgdorferi Sensu Lato Species Infecting Fox-Derived Ixodes Ticks in West-Central Poland. Pathogens, 11(6), 696. https://doi.org/10.3390/pathogens11060696