A Methodological Approach to Water Concentration to Investigate the Presence of SARS-CoV-2 RNA in Surface Freshwaters
Abstract
:1. Introduction
2. Results
2.1. Comparison between P-D and UF Concentration Methods on Distilled Water and Surface Water Samples
2.2. Comparison between Different Pre-Filtration Systems on Surface Water Samples
2.3. Experiments for Implementing Recovery of Nucleic Acids
2.4. Final Experiments Considering All the Previous Variables i.e., P-D vs. UF, Pre-Filtration with Sartolab® P20, Extraction with Undiluted Silica
3. Discussion
4. Materials and Methods
4.1. Study Domain and Sampling Campaign
4.2. Experimental Contamination and Viral Inactivation of Water Samples
4.3. Samples Concentration
4.4. RNA Extraction
4.5. Real Time RT-PCR
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masseroni, D.; Ercolani, G.; Chiaradia, E.; Gandolfi, C. A Procedure for Designing Natural Water Retention Measures in New Development Areas under Hydraulic-Hydrologic Invariance Constraints. Hydrol. Res. 2019, 50, 1293–1308. [Google Scholar] [CrossRef] [Green Version]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Deng, Q.; Zhang, G.; Wu, K.; Ni, L.; Yang, Y.; Liu, B.; Wang, W.; Wei, C.; et al. The Presence of SARS-CoV-2 RNA in the Feces of COVID-19 Patients. J. Med. Virol. 2020, 92, 833–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Questions and Answers on COVID-19. Available online: https://www.ecdc.europa.eu/en/covid-19/questions-answers (accessed on 24 February 2022).
- Walsh, K.A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P.G.; O’Brien, K.K.; O’Murchu, E.; et al. SARS-CoV-2 Detection, Viral Load and Infectivity over the Course of an Infection. J. Infect. 2020, 81, 357–371. [Google Scholar] [CrossRef]
- Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in Wastewater: State of the Knowledge and Research Needs. Sci. Total Environ. 2020, 739, 139076. [Google Scholar] [CrossRef] [PubMed]
- Zamhuri, S.A.; Soon, C.F.; Nordin, A.N.; Ab Rahim, R.; Sultana, N.; Khan, M.A.; Lim, G.P.; Tee, K.S. A Review on the Contamination of SARS-CoV-2 in Water Bodies: Transmission Route, Virus Recovery and Recent Biosensor Detection Techniques. Sens. Bio-Sens. Res. 2022, 36, 100482. [Google Scholar] [CrossRef]
- Girón-Navarro, R.; Linares-Hernández, I.; Castillo-Suárez, L.A. The Impact of Coronavirus SARS-CoV-2 (COVID-19) in Water: Potential Risks. Environ. Sci. Pollut. Res. 2021, 28, 52651–52674. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First Confirmed Detection of SARS-CoV-2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Barril, P.A.; Pianciola, L.A.; Mazzeo, M.; Ousset, M.J.; Jaureguiberry, M.V.; Alessandrello, M.; Sánchez, G.; Oteiza, J.M. Evaluation of Viral Concentration Methods for SARS-CoV-2 Recovery from Wastewaters. Sci. Total Environ. 2021, 756, 144105. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First Detection of SARS-CoV-2 in Untreated Wastewaters in Italy. Sci. Total Environ. 2020, 736, 139652. [Google Scholar] [CrossRef]
- Wurtzer, S.; Marechal, V.; Mouchel, J.; Maday, Y.; Teyssou, R.; Richard, E.; Almayrac, J.; Moulin, L. Evaluation of Lockdown Effect on SARS-CoV-2 Dynamics through Viral Genome Quantification in Waste Water, Greater Paris, France, 5 March to 23 April 2020. Euro Surveill. 2020, 25, 2000776. [Google Scholar] [CrossRef]
- Wurtz, N.; Lacoste, A.; Jardot, P.; Delache, A.; Fontaine, X.; Verlande, M.; Annessi, A.; Giraud-Gatineau, A.; Chaudet, H.; Fournier, P.-E.; et al. Viral RNA in City Wastewater as a Key Indicator of COVID-19 Recrudescence and Containment Measures Effectiveness. Front. Microbiol. 2021, 12, 664477. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Dhar, D.; Nath, D.; Ghangrekar, M.M.; Banerjee, R.; Das, S.; Chatterjee, J. Coronavirus Disease 2019 (COVID-19) Outbreak: Some Serious Consequences with Urban and Rural Water Cycle. NPJ Clean Water 2020, 3, 32. [Google Scholar] [CrossRef]
- De Lourdes Aguiar-Oliveira, M.; Campos, A.; Matos, A.R.; Rigotto, C.; Sotero-Martins, A.; Teixeira, P.F.P.; Siqueira, M.M. Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review. Int. J. Environ. 2020, 17, 9251. [Google Scholar] [CrossRef]
- Papoutsis, A.; Borody, T.; Dolai, S.; Daniels, J.; Steinberg, S.; Barrows, B.; Hazan, S. Detection of SARS-CoV-2 from Patient Fecal Samples by Whole Genome Sequencing. Gut Pathog. 2021, 13, 7. [Google Scholar] [CrossRef]
- Dergham, J.; Delerce, J.; Bedotto, M.; La Scola, B.; Moal, V. Isolation of Viable SARS-CoV-2 Virus from Feces of an Immunocompromised Patient Suggesting a Possible Fecal Mode of Transmission. J. Clin. Med. 2021, 10, 2696. [Google Scholar] [CrossRef]
- Zhang, T.; Breitbart, M.; Lee, W.H.; Run, J.-Q.; Wei, C.L.; Soh, S.W.L.; Hibberd, M.L.; Liu, E.T.; Rohwer, F.; Ruan, Y. RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses. PLoS Biol. 2005, 4, e3. [Google Scholar] [CrossRef] [Green Version]
- Kitajima, M.; Sassi, H.P.; Torrey, J.R. Pepper Mild Mottle Virus as a Water Quality Indicator. NPJ Clean Water 2018, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Bonanno Ferraro, G.; Suffredini, E.; Mancini, P.; Veneri, C.; Iaconelli, M.; Bonadonna, L.; Montagna, M.T.; De Giglio, O.; La Rosa, G. Pepper Mild Mottle Virus as Indicator of Pollution: Assessment of Prevalence and Concentration in Different Water Environments in Italy. Food Environ. Virol. 2021, 13, 117–125. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W.L.; Armas, F.; Kauffman, K.; Hanage, W.; Matus, M.; Ghaeli, N.; et al. SARS-CoV-2 Titers in Wastewater Are Higher than Expected from Clinically Confirmed Cases. mSystems 2020, 5, e00614-20. [Google Scholar] [CrossRef]
- Haramoto, E.; Kitajima, M.; Kishida, N.; Konno, Y.; Katayama, H.; Asami, M.; Akiba, M. Occurrence of Pepper Mild Mottle Virus in Drinking Water Sources in Japan. Appl. Environ. Microbiol. 2013, 79, 7413–7418. [Google Scholar] [CrossRef] [Green Version]
- La Rosa, G.; Bonadonna, L.; Lucentini, L.; Kenmoe, S.; Suffredini, E. Coronavirus in Water Environments: Occurrence, Persistence and Concentration Methods—A Scoping Review. Water Res. 2020, 179, 115899. [Google Scholar] [CrossRef]
- Carducci, A.; Federigi, I.; Liu, D.; Thompson, J.R.; Verani, M. Making Waves: Coronavirus Detection, Presence and Persistence in the Water Environment: State of the Art and Knowledge Needs for Public Health. Water Res. 2020, 179, 115907. [Google Scholar] [CrossRef]
- Blanco, A.; Abid, I.; Al-Otaibi, N.; Pérez-Rodríguez, F.J.; Fuentes, C.; Guix, S.; Pintó, R.M.; Bosch, A. Glass Wool Concentration Optimization for the Detection of Enveloped and Non-Enveloped Waterborne Viruses. Food Environ. Virol. 2019, 11, 184–192. [Google Scholar] [CrossRef]
- Alexyuk, M.S.; Turmagambetova, A.S.; Alexyuk, P.G.; Bogoyavlenskiy, A.P.; Berezin, V.E. Comparative Study of Viromes from Freshwater Samples of the Ile-Balkhash Region of Kazakhstan Captured through Metagenomic Analysis. Virusdisease 2017, 28, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and Infectivity of SARS-CoV-2 Virus in Wastewaters and Rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Langone, M.; Petta, L.; Cellamare, C.M.; Ferraris, M.; Guzzinati, R.; Mattioli, D.; Sabia, G. SARS-CoV-2 in Water Services: Presence and Impacts. Environ. Pollut. 2021, 268, 115806. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.C.; Torres-Franco, A.F.; Lopes, B.C.; da Silva Santos, B.S.Á.; Costa, E.A.; Costa, M.S.; Reis, M.T.P.; Melo, M.C.; Polizzi, R.B.; Teixeira, M.M.; et al. Viability of SARS-CoV-2 in River Water and Wastewater at Different Temperatures and Solids Content. Water Res. 2021, 195, 117002. [Google Scholar] [CrossRef]
- Ferrario, C.; Tesauro, M.; Consonni, M.; Tanzi, E.; Galli, A.; Peruzzi, C.; Beltrame, L.; Maglionico, M.; Lavrnić, S.; Gandolfi, C.; et al. Impact of Combined Sewer Overflows on Water Quality of Rural Canals in Agro-Urban Environments. In Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society, Singapore, 6 August 2021; World Scientific Publishing Company: Singapore, 2021. [Google Scholar]
- Kevill, J.L.; Pellett, C.; Farkas, K.; Brown, M.R.; Bassano, I.; Denise, H.; McDonald, J.E.; Malham, S.K.; Porter, J.; Warren, J.; et al. A Comparison of Precipitation and Filtration-Based SARS-CoV-2 Recovery Methods and the Influence of Temperature, Turbidity, and Surfactant Load in Urban Wastewater. Sci. Total Environ. 2022, 808, 151916. [Google Scholar] [CrossRef]
- Cuevas-Ferrando, E.; Pérez-Cataluña, A.; Allende, A.; Guix, S.; Randazzo, W.; Sánchez, G. Recovering Coronavirus from Large Volumes of Water. Sci. Total Environ. 2021, 762, 143101. [Google Scholar] [CrossRef]
- Farkas, K.; Cooper, D.M.; McDonald, J.E.; Malham, S.K.; de Rougemont, A.; Jones, D.L. Seasonal and Spatial Dynamics of Enteric Viruses in Wastewater and in Riverine and Estuarine Receiving Waters. Sci. Total Environ. 2018, 634, 1174–1183. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Padilla Reyes, D.A.; Ramos, E.; Reyes, L.M.; Álvarez, M.M. The Presence of SARS-CoV-2 RNA in Different Freshwater Environments in Urban Settings Determined by RT-QPCR: Implications for Water Safety. Sci. Total Environ. 2021, 784, 147183. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Iaconelli, M.; Bonadonna, L.; Lucentini, L.; Suffredini, E. SARS-CoV-2 Has Been Circulating in Northern Italy since December 2019: Evidence from Environmental Monitoring. Sci. Total Environ. 2021, 750, 141711. [Google Scholar] [CrossRef]
- Sharma, D.K.; Nalavade, U.P.; Kalgutkar, K.; Gupta, N.; Deshpande, J.M. SARS-CoV-2 Detection in Sewage Samples: Standardization of Method & Preliminary Observations. Indian J. Med. Res. 2021, 153, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Inactivated SARS-CoV-2 Whole Virus (Pellet). Microbiologics SCA. Available online: https://www.microbiologics.com/Inactivated-SARS-CoV-2-Whole-Virus-Pellet (accessed on 1 March 2022).
- World Health Organization. Guidelines for Environmental Surveillance of Poliovirus Circulation, 2003. Available online: https://polioeradication.org/wp-content/uploads/2016/07/WHO_V-B_03.03_eng.pdf (accessed on 28 May 2022).
- Sartolab® P20 Pressure Filter 18075—UPN, 0.2 µm Polyethersulfone, Non-Sterile|Sartorius. Available online: https://www.sartorius.com/shop/ww/de/eur/products-laboratory-microbiology-products/sartolab-p20-pressure-filter-18075--------upn%2C-0-2-%C2%B5m-polyethersulfone%2C-non-sterile/p/18075--------UPN (accessed on 18 February 2022).
- Vivaflow 50, 100,000 MWCO PES, 2pc|Sartorius. Available online: https://www.sartorius.com/shop/ww/de/eur/applications-laboratory-filtration-ultrafiltration/vivaflow-50%2c-100%2c000-mwco-pes%2c-2pc/p/VF05P4 (accessed on 18 February 2022).
- Vivaspin 20, 50,000 MWCO PES, 12pc|Sartorius. Available online: https://www.sartorius.com/shop/ww/de/eur/applications-laboratory-filtration-ultrafiltration/vivaspin-20%2C-50%2C000-mwco-pes%2C-12pc/p/VS2031 (accessed on 18 February 2022).
- Polyethersulfone Membrane Filters. Available online: https://www.sartorius.com/shop/ww/de/eur/applications-laboratory-filtration-polyethersulfone-%28pes%29-membrane-filters/c/M_Polyethersulfone_Membrane_Filters (accessed on 21 February 2022).
- Centers for Disease Control and Prevention. Labs. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html (accessed on 21 February 2022).
- Real-Time RT-PCR Diagnostic Panel—U.S. Food and Drug Administration Search Results. Available online: https://search.usa.gov/search?affiliate=fda1&sort_by=&query=Real-Time+RT-PCR+Diagnostic+Panel&commit=Search (accessed on 24 February 2022).
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health. Available online: https://www.openepi.com (accessed on 26 May 2022).
Method | Sample | Distilled Water + Pellet | Surface Water + Pellet | ||||||
---|---|---|---|---|---|---|---|---|---|
SARS-CoV-2 | SARS-CoV-2 | ||||||||
N1 | N2 | N1 | N2 | ||||||
Mean gc/mL (Range) | Recovery% | Mean gc/mL (Range) | Recovery% | Mean gc/mL (Range) | Recovery% | Mean gc/mL (Range) | Recovery% | ||
PEG-dextran | A: aliquot of contaminated sample | 74.53 (63.77–85.29) | 85.55 (41.00–119.22) | 72.13 (47.982–96.272) | 65.93 (65.30–66.56) | ||||
C: concentrate after centrifugation | 17.33 (0–34.66) | 0.07% | <0.002 | NA | 27.09 (1.07–53.11) | 0.25% | 23.43 (10.23–36.79) | 0.25% | |
Tangential flow ultrafiltration | D: aliquot of contaminated sample | 95.90 (71.75–120.05) | 82.43 (37.62–155.03) | 32.11 (17.86–46.35) | <0.002 | ||||
E: Vivaflow50 filtrate | <0.002 | <0.002 | <0.002 | <0.002 | |||||
F: Vivaspin20 concentrate | 7470.01 (7273.08–7666.94) | 31% | 6492.84 (6054.23–8245.36) | 28% | 155.62 (145.02–166.21) | 1.46% | 144.19 (97.38–183.27) | 1.56% | |
G: Vivaspin20 filtrate | <0.002 | <0.002 | <0.002 | <0.002 | |||||
Inactivated SARS-CoV-2 Whole Virus (pellet) | 24,309.96 (23,335.65–25,284.27) | 23,188.71 (20,156.23–26,245.18) | 10,658.93 (10,195.07–11,122.78) | 9219.12 (8022.30–10,415.94) |
Method | Sample | 1° TEST | 2° TEST | ||||||
---|---|---|---|---|---|---|---|---|---|
SARS-CoV-2 | SARS-CoV-2 | ||||||||
N1 | N2 | N1 | N2 | ||||||
Mean gc/mL (Range) | Recovery% | Mean gc/mL (Range) | Recovery% | Mean gc/mL (Range) | Recovery% | Mean gc/mL (Range) | Recovery% | ||
K: sample as is | <0.002 | <0.002 | <0.002 | <0.002 | |||||
X: contaminated sample | 225.90 (178.44–273.34) | 208.73 (34.40–383.05) | 165.65 (67.69–276.14) | 102.33 (96.53–108.14) | |||||
No-prefiltration | D1: aliquot of contaminated sample | 229.15 (224.72–233.57) | 199.09 (115.48–282.70) | 145.69 (37.42–208.56) | 136.75 (95.59–177.90) | ||||
E1: Vivaflow50 filtrate | <0.002 | <0.002 | <0.002 | <0.002 | |||||
F1: Vivaspin20 concentrate | 423.04 (398.39–447.70) | 1.92% | 311.25 (240.11–382.40) | 1.44% | 1035.57 (816.11–1276.58) | 7.89% | 667.03 (474.79–859.26) | 5.05% | |
G1: Vivaspin20 filtrate | <0.002 | <0.002 | <0.002 | <0.002 | |||||
Pre-filtration with SARTOLAB | D2: aliquot of contaminated sample | 234.72 (210.47–258.96) | 102.09 (0–204.18) | 115.48 (72.83–182.90) | 96.37 (36.55–156.20) | ||||
Y: sample pre-filtered with SARTOLAB | 61.72 (41.51–81.92) | 47.14 (44.78–49.49) | 38.06 (17.24–75.50) | 41.07 (0–83.57) | |||||
E2: Vivaflow50 filtrate | <0.002 | <0.002 | 10.37 (0–20.75) | <0.002 | |||||
F2: Vivaspin20 concentrate | 4970.19 (4455.19–5485.18) | 22.50% | 3714.19 (3242.88–4185.52) | 17.18% | 2289.82 (1982.17–2694.21) | 17.44% | 2240.47 (2220.92–2260.03) | 16.97% | |
G2: Vivaspin20 filtrate | 45.44 (45.07–45.80) | 51.36 (47.71–55.01) | <0.002 | <0.002 | |||||
Pre-filtration with filter paper | D3: aliquot of contaminated sample | 236.23 (191.79–280.68) | 173.33 (167.55–179.10) | NA | NA | ||||
P: filter paper + PBS | 164.48 (43.58–285.38) | 181.93 (0–363.85) | NA | NA | |||||
Q: sample pre-filtered with filter paper | 411.79 (332.13–491.44) | 336.57 (234.06–439.08) | NA | NA | |||||
E3: Vivaflow50 filtrate | 21.12 (0–42.24) | <0.002 | NA | NA | |||||
F3: Vivaspin20 concentrate | 1890.61 (1783.88–1997.35) | 8.56% | 1992.98 (1743.97–2241.99) | 9.22% | NA | NA | |||
G3: Vivaspin20 filtrate | 88.01 (86.64–89.38) | <0.002 | NA | NA | |||||
Inactivated SARS-CoV-2 Whole Virus (pellet) | 22,086.04 (22,062.17–22,109.91) | 21,619.99 (20,735.81–22,504.17) | 13,131.30 (11,071.24–14,300.52) | 13,201.91 (10,968.34–15,753.89) |
Method | Sample | SARS-CoV-2 | |||
---|---|---|---|---|---|
N1 | N2 | ||||
Mean gc/mL (Range) | Recovery% | Mean gc/mL (Range) | Recovery% | ||
Undiluted Silica | K1: sample as is | <0.002 | <0.002 | ||
X1: contaminated sample | 345.26 (209.76–480.77) | 197.42 (0–393.24) | |||
D1: aliquot of contaminated sample | 501.61 (397.99–605.23) | 314.00 (273.36–354.66) | |||
Y1: sample pre-filtered with SARTOLAB | 174.90 (59.92–289.87) | 69.90 (35.58–104.20) | |||
E1: Vivaflow50 filtrate | <0.002 | <0.002 | |||
F1: Vivaspin20 concentrate | 5788.03 (4693.13–6882.93) | 50.67% | 3492.95 (2736.45–4249.35) | 40.49% | |
G1: Vivaspin20 filtrate | <0.002 | <0.002 | |||
Diluted Silica | K2: sample as is | <0.002 | <0.002 | ||
X2: contaminated sample | 164.10 (158.07–170.13) | 115.17 (62.70–167.65) | |||
D2: aliquot of contaminated sample | 529.11 (366.08–692.14) | 299.32 (214.32–384.30) | |||
Y2: sample pre-filtered with SARTOLAB | 187.38 (182.19–192.57) | 88.40 (86.48–90.32) | |||
E2: Vivaflow50 filtrate | <0.002 | <0.002 | |||
F2: Vivaspin20 concentrate | 3239.85 (3185.37–3294.32) | 28.36% | 2578.44 (1959.72–3197.20) | 29.89% | |
G2: Vivaspin20 filtrate | <0.002 | <0.002 | |||
Inactivated SARS-CoV-2 Whole Virus (pellet) | 11,422.91 (11,202.88–11,642.93) | 8627.16 (8051.22–9203.07) |
Method | Sample | SARS-CoV-2 | |||
---|---|---|---|---|---|
N1 | N2 | ||||
Mean gc/mL (Range) | Recovery% | Mean gc/mL (Range) | Recovery% | ||
K: sample as is (1 mL of 3 L) | <0.002 | <0.002 | |||
PEG-dextran | A: aliquot of contaminated sample | 7.20 (0–25.28) | 18.57 (12.38–30.14) | ||
C: concentrate after centrifugation | 25.22 (0–83.47) | 0.85% | 20.11 (12.47–34.16) | 0.96% | |
Tangential flow ultrafiltration + SARTOLAB | D: aliquot of contaminated sample | 13.39 (0–40.32) | 11.13 (0–21.12) | ||
Y: sample pre-filtered with SARTOLAB | 5.82 (0–20.28) | 9.99 (0–21.82) | |||
E: Vivaflow50 filtrate | <0.002 | <0.002 | |||
F: Vivaspin20 concentrate | 66.66 (13.65–161.72) | 2.26% | 50.50 (29.07–67.21) | 2.41% | |
G: Vivaspin20 filtrate | <0.002 | <0.002 | |||
Inactivated SARS-CoV-2 Whole Virus (pellet) | 2951.78 (2100.37–4078.38) | 2098.10 (1896.48–2479.32) |
Virus | Target Gene | Primer | Description | Sequence 5′-3′ | Reference |
---|---|---|---|---|---|
SARS-CoV-2 | N1 (Nucleocapsid portion) | 2019-nCoV_N1-F | 2019-nCoV_N1 Forward Primer | GACCCCAAAATCAGCGAAAT | [43] |
2019-nCoV_N1-R | 2019-nCoV_N1 Reverse Primer | TCTGGTTACTGCCAGTTGAATCTG | |||
2019-nCoV_N1-P | 2019-nCoV_N1 Probe | FAM-ACCCCGCATTACGTTTGGTGGACC-BHQ1 | |||
N2 (Nucleocapsid portion) | 2019-nCoV_N2-F | 2019-nCoV_N2 Forward Primer | TTACAAACATTGGCCGCAAA | ||
2019-nCoV_N2-R | 2019-nCoV_N2 Reverse Primer | GCGCGACATTCCGAAGAA | |||
2019-nCoV_N2-P | 2019-nCoV_N2 Probe | FAM-ACAATTTGCCCCCAGCGCTTCAG-BHQ1 | |||
PMMoV | RdRp (RNA-dependent RNA polymerase) | PMMoV-F | PMMoV Forward Primer | GAGTGGTTTGACCTTAACGTTGA | [21] |
PMMoV-R | PMMoV Reverse Primer | TTGTCGGTTGCAATGCAAGT | |||
PMMoV-P | PMMoV Probe | FAM-CCTACCGAAGCAAATG-BHQ_1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesauro, M.; Terraneo, M.; Consonni, M.; Fappani, C.; Colzani, D.; Stevanin, C.; Amendola, A.; Masseroni, D.; Tanzi, E. A Methodological Approach to Water Concentration to Investigate the Presence of SARS-CoV-2 RNA in Surface Freshwaters. Pathogens 2022, 11, 845. https://doi.org/10.3390/pathogens11080845
Tesauro M, Terraneo M, Consonni M, Fappani C, Colzani D, Stevanin C, Amendola A, Masseroni D, Tanzi E. A Methodological Approach to Water Concentration to Investigate the Presence of SARS-CoV-2 RNA in Surface Freshwaters. Pathogens. 2022; 11(8):845. https://doi.org/10.3390/pathogens11080845
Chicago/Turabian StyleTesauro, Marina, Mara Terraneo, Michela Consonni, Clara Fappani, Daniela Colzani, Caterina Stevanin, Antonella Amendola, Daniele Masseroni, and Elisabetta Tanzi. 2022. "A Methodological Approach to Water Concentration to Investigate the Presence of SARS-CoV-2 RNA in Surface Freshwaters" Pathogens 11, no. 8: 845. https://doi.org/10.3390/pathogens11080845
APA StyleTesauro, M., Terraneo, M., Consonni, M., Fappani, C., Colzani, D., Stevanin, C., Amendola, A., Masseroni, D., & Tanzi, E. (2022). A Methodological Approach to Water Concentration to Investigate the Presence of SARS-CoV-2 RNA in Surface Freshwaters. Pathogens, 11(8), 845. https://doi.org/10.3390/pathogens11080845