Prevalence and Molecular Characterisation of Extended-Spectrum Beta-Lactamase-Producing Shiga Toxin-Producing Escherichia coli, from Cattle Farm to Aquatic Environments
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Shiga Toxin-Producing Escherichia coli
2.2. Serogroups of ESBL-Producing STEC
2.3. Multilocus Sequence Typing Profiles
2.4. Detected ARGs in Isolated ESBL-Producing STEC
2.5. Detected Virulence Genes in Isolated ESBL-Producing STEC
3. Discussion
4. Materials and Methods
4.1. Description of Study Area and Sample Collection
4.2. Processing of Samples
4.3. Isolation of ESBL-Producing STEC
4.4. Genomic DNA Extraction
4.5. Molecular Analysis of ESBL-Producing STEC
4.5.1. Identification of Serogroups of ESBL-Producing STEC
4.5.2. Molecular Typing of Selected ESBL-Producing E. coli Isolates
4.6. Multilocus Analysis
4.7. Genetic Detection of Selected ARGs
4.8. Detection of Virulence Factors in ESBL-Producing STEC
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Acronyms
STEC | Shiga toxin-producing Escherichia coli |
ESBL-STEC | Extended beta-lactamase- and Shiga toxin-producing Escherichia coli |
HS | Husbandry soil |
AM | Animal manure |
ADW | Animal drinking water |
NRW | Nearby river water |
ARG | Antibiotic resistance gene |
References
- Cosgrove, W.J.; Loucks, D.P. Water Management: Current and Future Challenges and Research Directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Butler, D. Global Challenges: Water. Glob. Challenges 2017, 1, 61–62. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.K.; Kass, P.H.; Soupir, M.L.; Biswas, S.; Singh, V.P. Contamination of Water Resources by Pathogenic Bacteria. AMB Express 2014, 4, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Grillini, V. Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection. Waters 2020, 12, 305. [Google Scholar] [CrossRef]
- Moropeng, R.C.; Budeli, P.; Momba, M.N.B. An Integrated Approach to Hygiene, Sanitation, and Storage Practices for Improving Microbial Quality of Drinking Water Treated at Point of Use: A Case Study in Makwane Village, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 6313. [Google Scholar] [CrossRef] [PubMed]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding Human Health Risks Caused by Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARG) in Water Environments: Current Knowledge and Questions to Be Answered. Crit. Rev. Environ. Sci. Technol. 2019, 50, 2016–2059. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- van den Honert, M.S.; Gouws, P.A.; Hoffman, L.C. Importance and Implications of Antibiotic Resistance Development in Livestock and Wildlife Farming in South Africa: A Review. S. Afr. J. Anim. Sci. 2018, 48, 401–412. [Google Scholar] [CrossRef]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic Use in Food Animals Worldwide, with a Focus on Africa: Pluses and Minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef]
- Ma, Z.; Lee, S.; Casey Jeong, K. Mitigating Antibiotic Resistance at the Livestock-Environment Interface: A Review. J. Microbiol. Biotechnol. 2019, 29, 1683–1692. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic Resistance: A Rundown of a Global Crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef]
- Agga, G.E.; Cook, K.L.; Netthisinghe, A.M.P.; Gilfillen, R.A.; Woosley, P.B.; Sistani, K.R. Persistence of Antibiotic Resistance Genes in Beef Cattle Backgrounding Environment over Two Years after Cessation of Operation. PLoS ONE 2019, 14, e0212510. [Google Scholar] [CrossRef]
- Yoshizawa, N.; Usui, M.; Fukuda, A.; Asai, T.; Higuchi, H.; Okamoto, E.; Seki, K.; Takada, H.; Tamura, Y. Manure Compost Is a Potential Source of Tetracycline-Resistant Escherichia Coli and Tetracycline Resistance Genes in Japanese Farms. Antibiotics 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Ekwanzala, M.D.; Dewar, J.B.; Kamika, I.; Momba, M.N.B. Systematic Review in South Africa Reveals Antibiotic Resistance Genes Shared between Clinical and Environmental Settings. Infect. Drug Resist. 2018, 11, 1907–1920. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H. Water Pollution from Agriculture: A Global Review. FAO IWMI 2017, Volume 35. Available online: http://www.fao.org/3/a-i7754e.pdf (accessed on 13 February 2021).
- WHO. Global Priority List of Antibiotic-Resistant Batceria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017; Volume 7. [Google Scholar]
- Franz, E.; Veenman, C.; van Hoek, A.H.A.M.; de Roda Husman, A.; Blaak, H. Pathogenic Escherichia Coli Producing Extended-Spectrum β-Lactamases Isolated from Surface Water and Wastewater. Sci. Rep. 2015, 5, 14372. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Hur, H.-G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia Coli: Ecology and Public Health Implications—a Review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Lupindu, A.M. Epidemiology of Shiga Toxin-Producing Escherichia Coli O157:H7 in Africa in Review. South. Afr. J. Infect. Dis. 2018, 33, 24–30. [Google Scholar] [CrossRef]
- Etcheverría, A.I.; Padola, N.L. Shiga Toxin-Producing Escherichia Coli: Factors Involved in Virulence and Cattle Colonization. Virulence 2013, 4, 366–372. [Google Scholar] [CrossRef]
- Kalule, J.B.; Keddy, K.H.; Nicol, M.P. Characterisation of STEC and Other Diarrheic E. Coli Isolated on CHROMagarTMSTEC at a Tertiary Referral Hospital, Cape Town. BMC Microbiol. 2018, 18, 55. [Google Scholar] [CrossRef]
- Karama, M.; Cenci Goga, B.; Malahlela, M.; Smith; Keddy, K.; El-Ashram, S.; Lawan, K. Kalake Virulence Characteristics and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia Coli Isolates from Humans in South Africa: 2006–2013. Toxins 2019, 11, 424. [Google Scholar] [CrossRef]
- Mainga, A.O.; Cenci-Goga, B.T.; Malahlela, M.N.; Tshuma, T.; Kalake, A.; Karama, M. Occurrence and Characterization of Seven Major Shiga Toxin-Producing Escherichia Coli Serotypes from Healthy Cattle on Cow-Calf Operations in South Africa. Zoonoses Public Health 2018, 65, 777–789. [Google Scholar] [CrossRef]
- Karama, M.; Mainga, A.O.; Cenci-Goga, B.T.; Malahlela, M.; El-Ashram, S.; Kalake, A. Molecular Profiling and Antimicrobial Resistance of Shiga Toxin-Producing Escherichia Coli O26, O45, O103, O121, O145 and O157 Isolates from Cattle on Cow-Calf Operations in South Africa. Sci. Rep. 2019, 9, 11930. [Google Scholar] [CrossRef] [PubMed]
- Mathusa, E.C.; Chen, Y.; Enache, E. Non-O157 Shiga Toxin—Producing Escherichia Coli in Foods. J. Food Prot. 2010, 73, 1721–1736. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, A.; Byrne, B.; Fanning, S.; Sweeney, T.; McDowell, D.; Bolton, D.J. Serotypes and Virulence Profiles of Non-O157 Shiga Toxin-Producing Escherichia Coli Isolates from Bovine Farms. Appl. Environ. Microbiol. 2011, 77, 8662–8668. [Google Scholar] [CrossRef] [PubMed]
- Ateba, C.N.; Mbewe, M. Detection of Escherichia Coli O157:H7 Virulence Genes in Isolates from Beef, Pork, Water, Human and Animal Species in the Northwest Province, South Africa: Public Health Implications. Res. Microbiol. 2011, 162, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global Incidence of Human Shiga Toxin-Producing Escherichia Coli Infections and Deaths: A Systematic Review and Knowledge Synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Tau, N.P.; Meidany, P.; Smith, A.M.; Sooka, A.; Keddy, K.H.; Group for Enteric and Meningeal Disease Surveillance in South Africa. Escherichia Coli O104 Associated with Human Diarrhea, South Africa, 2004–2011. Emerg. Infect. Dis. 2012, 18, 1314–1317. [Google Scholar] [CrossRef]
- Smith, A.M.; Tau, N.P.; Kalule, B.J.; Nicol, M.P.; McCulloch, M.; Jacobs, C.A.; McCarthy, K.M.; Ismail, A.; Allam, M.; Kleynhans, J. Shiga Toxin-Producing Escherichia Coli O26:H11 Associated with a Cluster of Haemolytic Uraemic Syndrome Cases in South Africa, 2017. Access Microbiol. 2019, 1, 9–18. [Google Scholar] [CrossRef]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent Advances in Understanding Enteric Pathogenic Escherichia Coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef]
- Bolukaoto, J.Y.; Kock, M.M.; Strydom, K.A.; Mbelle, N.M.; Ehlers, M.M. Molecular Characteristics and Genotypic Diversity of Enterohaemorrhagic Escherichia Coli O157:H7 Isolates in Gauteng Region, South Africa. Sci. Total Environ. 2019, 692, 297–304. [Google Scholar] [CrossRef]
- Peirano, G.; Greune, C.; Pitout, J. Characteristics of Infections Caused by Extended-Spectrum β-Lactamase-Producing Escherichia Coli FromC Community Hospitals in South Africa. Diagn. Microbiol. Infect. Dis. 2011, 69, 449–453. [Google Scholar] [CrossRef]
- Gqunta, K.; Govender, S. Characterization of ESBL-Producing Escherichia Coli ST131 Isolates from Port Elizabeth. Diagn. Microbiol. Infect. Dis. 2015, 81, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Dantas Palmeira, J.; Ferreira, H.M.N. Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae in Cattle Production – a Threat around the World. Heliyon 2020, 6, e03206. [Google Scholar] [CrossRef] [PubMed]
- Abayneh, M.; Tesfaw, G.; Abdissa, A. Isolation of Extended-Spectrum β-Lactamase- (ESBL-) Producing Escherichia Coli and Klebsiella Pneumoniae from Patients with Community-Onset Urinary Tract Infections in Jimma University Specialized Hospital, Southwest Ethiopia. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 4846159. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Park, Y.S.; Rivera, J.I.; Adams-Haduch, J.M.; Hingwe, A.; Sordillo, E.M.; Lewis, J.S., 2nd; Howard, W.J.; Johnson, L.E.; Polsky, B.; et al. Community-Associated Extended-Spectrum β-Lactamase-Producing Escherichia Coli Infection in the United States. Clin. Infect. Dis. 2013, 56, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Montso, K.P.; Dlamini, S.B.; Kumar, A.; Ateba, C.N. Antimicrobial Resistance Factors of Extended-Spectrum Beta-Lactamases Producing Escherichia Coli and Klebsiella Pneumoniae Isolated from Cattle Farms and Raw Beef in North-West Province, South Africa. Biomed Res. Int. 2019, 2019, 4318306. [Google Scholar] [CrossRef]
- Iwu, C.J.; Iweriebor, B.C.; Obi, L.C.; Okoh, A.I. Occurrence of Non-O157 Shiga Toxin-Producing Escherichia Coli in Two Commercial Swine Farms in the Eastern Cape Province, South Africa. Comp. Immunol. Microbiol. Infect. Dis. 2016, 44, 48–53. [Google Scholar] [CrossRef]
- Montso, P.K.; Mlambo, V.; Ateba, C.N. The First Isolation and Molecular Characterization of Shiga Toxin-Producing Virulent Multi-Drug Resistant Atypical Enteropathogenic Escherichia Coli O177 Serogroup From South African Cattle. Front. Cell. Infect. Microbiol. 2019, 9, 333. [Google Scholar] [CrossRef]
- Oporto, B.; Ocejo, M.; Alkorta, M.; Marimón, J.M.; Montes, M.; Hurtado, A. Zoonotic Approach to Shiga Toxin-Producing Escherichia Coli: Integrated Analysis of Virulence and Antimicrobial Resistance in Ruminants and Humans. Epidemiol. Infect. 2019, 147, e164. [Google Scholar] [CrossRef]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S.; et al. Complexities in Understanding Antimicrobial Resistance across Domesticated Animal, Human, and Environmental Systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef]
- Tanaro, J.D.; Piaggio, M.C.; Galli, L.; Gasparovic, A.M.C.; Procura, F.; Molina, D.A.; Vitón, M.; Zolezzi, G.; Rivas, M. Prevalence of Escherichia Coli O157:H7 in Surface Water near Cattle Feedlots. Foodborne Pathog. Dis. 2014, 11, 960–965. [Google Scholar] [CrossRef]
- Ma, J.; Mark Ibekwe, A.; Crowley, D.E.; Yang, C.H. Persistence of Escherichia Coli O157 and Non-O157 Strains in Agricultural Soils. Sci. Total Environ. 2014, 490, 822–829. [Google Scholar] [CrossRef] [PubMed]
- D/’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic Resistance Is Ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Huang, C.; Xu, H.; Guo, L.; Zhang, J.; Wang, X.; Jiang, X.; Yu, X.; Jin, L.; Li, X.; et al. Occurrence and Genomic Characterization of ESBL-Producing, MCR-1-Harboring Escherichia Coli in Farming Soil. Front. Microbiol. 2017, 8, 2510. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Makaka, G.; Simon, M.; Okoh, A.I. An Overview of the Control of Bacterial Pathogens in Cattle Manure. Int. J. Environ. Res. Public Health 2016, 13, 843. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.R.; Edrington, T.S.; Loneragan, G.H.; Carr, M.A.; Nisbet, D.J. Shiga Toxin-Producing Escherichia Coli (STEC) Ecology in Cattle and Management Based Options for Reducing Fecal Shedding. Agric. food Anal. Bacteriol. 2013, 3, 1–39. [Google Scholar]
- Udikovic-Kolic, N.; Wichmann, F.; Broderick, N.A.; Handelsman, J. Bloom of Resident Antibiotic-Resistant Bacteria in Soil Following Manure Fertilization. Proc. Natl. Acad. Sci. USA 2014, 111, 15202–15207. [Google Scholar] [CrossRef]
- Thanner, S.; Drissner, D.; Walsh, F. Antimicrobial Resistance in Agriculture. MBio 2016, 7, e02227-15. [Google Scholar] [CrossRef]
- Chee-Sanford, J.C.; Mackie, R.I.; Koike, S.; Krapac, I.; Maxwell, S.; Lin, Y.F.; Aminov, R.I. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes. J. Environ. Qual. 2009, 1108, 1086–1108. [Google Scholar] [CrossRef]
- Farrokh, C.; Jordan, K.; Auvray, F.; Glass, K.; Oppegaard, H.; Raynaud, S.; Thevenot, D.; Condron, R.; De Reu, K.; Govaris, A.; et al. International Journal of Food Microbiology Review of Shiga-Toxin-Producing Escherichia Coli (STEC ) and Their Signi Fi Cance in Dairy Production. Int. J. Food Microbiol. 2012. [Google Scholar] [CrossRef]
- Conrad, C.; Stanford, K.; Mcallister, T.; Thomas, J.; Reuter, T. Shiga Toxin-Producing Escherichia Coli and Current Trends in Diagnostics. Anim. Front. 2016, 6, 37–43. [Google Scholar] [CrossRef]
- Paton, J.C.; Paton, A.W. Pathogenesis and Diagnosis of Shiga Toxin-Producing Escherichia Coli Infections. Clin. Microbiol. Rev. 1998, 11, 450–479. [Google Scholar] [CrossRef] [PubMed]
- Stanford, K.; Johnson, R.P.; Alexander, T.W.; McAllister, T.A.; Reuter, T. Influence of Season and Feedlot Location on Prevalence and Virulence Factors of Seven Serogroups of Escherichia Coli in Feces of Western-Canadian Slaughter Cattle. PLoS ONE 2016, 11, e0159866. [Google Scholar] [CrossRef] [PubMed]
- Dahmen, S.; Métayer, V.; Gay, E.; Madec, J.-Y.; Haenni, M. Characterization of Extended-Spectrum Beta-Lactamase (ESBL)-Carrying Plasmids and Clones of Enterobacteriaceae Causing Cattle Mastitis in France. Vet. Microbiol. 2013, 162, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Hordijk, J.; Mevius, D.J.; Kant, A.; Bos, M.E.H.; Graveland, H.; Bosman, A.B.; Hartskeerl, C.M.; Heederik, D.J.J.; Wagenaar, J.A. Within-Farm Dynamics of ESBL/AmpC-Producing Escherichia Coli in Veal Calves: A Longitudinal Approach. J. Antimicrob. Chemother. 2013, 68, 2468–2476. [Google Scholar] [CrossRef]
- Mbelle, N.M.; Feldman, C.; Osei Sekyere, J.; Maningi, N.E.; Modipane, L.; Essack, S.Y. The Resistome, Mobilome, Virulome and Phylogenomics of Multidrug-Resistant Escherichia Coli Clinical Isolates from Pretoria, South Africa. Sci. Rep. 2019, 9, 16457. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-Spectrum Beta-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef]
- Berglund, B. Environmental Dissemination of Antibiotic Resistance Genes and Correlation to Anthropogenic Contamination with Antibiotics. Infect. Ecol. Epidemiol. 2015, 5, 28564. [Google Scholar] [CrossRef]
- Rahman, S.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res. Int. 2018, 2018, 9519718. [Google Scholar] [CrossRef]
- Lee, S.; Mir, R.A.; Park, S.H.; Kim, D.; Kim, H.Y.; Boughton, R.K.; Morris, J.G.; Jeong, K.C. Prevalence of Extended-Spectrum β-Lactamases in the Local Farm Environment and Livestock: Challenges to Mitigate Antimicrobial Resistance. Crit. Rev. Microbiol. 2020, 46, 1–14. [Google Scholar] [CrossRef]
- Salah, F.D.; Soubeiga, S.T.; Ouattara, A.K.; Sadji, A.Y.; Metuor-Dabire, A.; Obiri-Yeboah, D.; Banla-Kere, A.; Karou, S.; Simpore, J. Distribution of Quinolone Resistance Gene (Qnr) in ESBL-Producing Escherichia Coli and Klebsiella Spp. in Lomé, Togo. Antimicrob. Resist. Infect. Control 2019, 8, 104. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Li, C.; Yang, J.; Xu, Q.; Qiu, Z.; Xue, B.; Wang, S.; Zhao, C.; Xiao, Z.; Wang, J.; et al. Distribution of Antibiotic Resistance Genes in Three Different Natural Water Bodies-a Lake, River and Sea. Int. J. Environ. Res. Public Health 2020, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Iweriebor, B.C.; Iwu, C.J.; Obi, L.C.; Nwodo, U.U.; Okoh, A.I. Multiple Antibiotic Resistances among Shiga Toxin Producing Escherichia Coli O157 in Feces of Dairy Cattle Farms in Eastern Cape of South Africa. BMC Microbiol. 2015, 15, 213. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, M.M.; Veldsman, C.; Makgotlho, E.P.; Dove, M.G.; Hoosen, A.A.; Kock, M.M. Detection of BlaSHV, BlaTEM and BlaCTX-M Antibiotic Resistance Genes in Randomly Selected Bacterial Pathogens from the Steve Biko Academic Hospital. FEMS Immunol. Med. Microbiol. 2009, 56, 191–196. [Google Scholar] [CrossRef]
- Osei Sekyere, J.; Maningi, N.E.; Modipane, L.; Mbelle, N.M. Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. mSystems 2020, 5, e00148-20. [Google Scholar] [CrossRef]
- Ndlovu, T.; Le Roux, M.; Khan, W.; Khan, S. Co-Detection of Virulent Escherichia Coli Genes in Surface Water Sources. PLoS ONE 2015, 10, e0116808. [Google Scholar] [CrossRef]
- Kobayashi, N.; Lee, K.; Yamazaki, A.; Saito, S.; Furukawa, I.; Kono, T.; Maeda, E.; Isobe, J.; Sugita-Konishi, Y.; Hara-Kudo, Y. Virulence Gene Profiles and Population Genetic Analysis for Exploration of Pathogenic Serogroups of Shiga Toxin-Producing Genus-Species Escherichia Coli. J. Clin. Microbiol. 2013, 51, 4022–4028. [Google Scholar] [CrossRef]
- Dong, H.J.; Lee, S.; Kim, W.; An, J.U.; Kim, J.; Kim, D. Prevalence, Virulence Potential, and Pulsed - Field Gel Electrophoresis Profiling of Shiga Toxin - Producing Escherichia Coli Strains from Cattle. Gut Pathog. 2017, 9, 1–16. [Google Scholar] [CrossRef]
- Griffin, P.M.; Karmali, M.A. Emerging Public Health Challenges of Shiga Toxin-Producing Escherichia Coli Related to Changes in the Pathogen, the Population, and the Environment. Clin. Infect. Dis. 2017, 64, 371–376. [Google Scholar] [CrossRef]
- Schmidt, H.; Scheef, J.; Huppertz, H.I.; Frosch, M.; Karch, H. Escherichia Coli O157:H7 and O157:H(-) Strains That Do Not Produce Shiga Toxin: Phenotypic and Genetic Characterization of Isolates Associated with Diarrhea and Hemolytic-Uremic Syndrome. J. Clin. Microbiol. 1999, 37, 3491–3496. [Google Scholar] [CrossRef]
- Ramaite, K.; Ekwanzala, M.D.; Dewar, J.B.; Momba, M.N.B. Human-Associated Methicillin-Resistant Staphylococcus Aureus Clonal Complex 80 Isolated from Cattle and Aquatic Environments. Antibiotics 2021, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Abia, L.K.A.; Ubomba-Jaswa, E.; Ssemakalu, C.C.; Momba, M.N.B. Development of a Rapid Approach for the Enumeration of Escherichia Coli in Riverbed Sediment: Case Study, the Apies River, South Africa. J. Soils Sediments 2015, 15, 2425–2432. [Google Scholar] [CrossRef]
- DebRoy, C.; Roberts, E.; Valadez, A.M.; Dudley, E.G.; Cutter, C.N. Detection of Shiga Toxin–Producing Escherichia Coli O26, O45, O103, O111, O113, O121, O145, and O157 Serogroups by Multiplex Polymerase Chain Reaction of the Wzx Gene of the O-Antigen Gene Cluster. Foodborne Pathog. Dis. 2011, 8, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.J.; Ochman, H.; et al. Sex and Virulence in Escherichia Coli: An Evolutionary Perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Li, J.; Sun, Y.; Mao, D.; Wang, Q.; Luo, Y. Occurrence of Sulfonamide-, Tetracycline-, Plasmid-Mediated Quinolone- and Macrolide-Resistance Genes in Livestock Feedlots in Northern China. Environ. Sci. Pollut. Res. 2015, 22, 6932–6940. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.A.; Fanning, S.; Karczmarczyk, M.; Byrne, B.; Monaghan, Á.; Bolton, D.; Sweeney, T. Characterizing the Multidrug Resistance of Non-O157 Shiga Toxin-Producing Escherichia Coli Isolates from Cattle Farms and Abattoirs. Microb. Drug Resist. 2017, 23, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Bannon, J.; Melebari, M.; Jordao, C., Jr.; Leon-Velarde, C.G.; Warriner, K. Incidence of Top 6 Shiga Toxigenic Escherichia Coli within Two Ontario Beef Processing Facilities: Challenges in Screening and Confirmation Testing. AIMS Microbiol. 2016, 2, 278–291. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinformatics 2004, 5, 113. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v3: An Online Tool for the Display and Annotation of Phylogenetic and Other Trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef] [PubMed]
Gene Abbreviations | Prime Sequence (F—Forward, R—Reverse) from 5’ to 3’ | Product Size (bp) | Annealing Temperature (°C) | References |
---|---|---|---|---|
O-serogroups | ||||
O26 | F: CAATGGGCG GAAATTTTAGA R: ATAATTTTCTCTGCCGTCGC | 155 | 57 | [76] |
O45 | F: TGCAGTAACCTGCACGGGCG R: AGCAGGCACAACAGCCACTACT | 238 | 57 | |
O103 | F: TTGGAGCGTTAACTGGACCT R: GCTCCCGAGCACGTATAAAG | 321 | 57 | |
O113 | F: TGCCATAATTCAGAGGGTGAC R: AACAAAGCTAA TTGTGGCCG | 514 | 57 | |
O121 | F: TCCAACAATTGGTCGTGAAA R: AGAAAG TGTGAAATGCCCGT | 628 | 57 | |
O145 | F: TTCATTGTTTTGCTTGCTCG R: GGCAAGCTTTGGAAATGAAA | 750 | 57 | |
O157 | F: TCGAGGTACCTGAATCTTTCCTTCTGT R: ACCAGTCTTGGTGCTGCTCTGACA | 894 | 57 | |
Housekeeping genes | ||||
adk | F: ATTCTGCTTGGCGCTCCGGG R: CCGTCAACTTTCGCGTATTT | 582 | 54 | [77] |
fumC | F: TCACAGGTCGCCAGCGCTTC R: GTACGCAGCGAAAAAGATTC | 806 | 54 | |
gyrB | F: TCGGCGACACGGATGACGGC R: ATCAGGCCTTCACGCGCATC | 911 | 60 | |
icd | F: ATGGAAAGTAAAGTAGTTGTTCCGGCACA R: GGACGCAGCAGGATCTGTT | 878 | 54 | |
mdh | F: ATGAAAGTCGCAGTCCTCGGCGCTGCTGGCGG R: TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT | 932 | 60 | |
purA | F: CGCGCTGATGAAAGAGATGA R: CATACGGTAAGCCACGCAGA | 816 | 54 | |
recA | F: CGCATTCGCTTTACCCTGACC R: TCTCGATCAGCTTCTCTTTT | 780 | 58 | |
Antibiotic resistance genes | ||||
sul1 | F: CGCACCGGAAACATCGCTGCAC R: TGAAGTTCCGCCGCAAGGCTCG | 163 | 56 | [78] |
sul2 | F:TCCGGTGGAGGCCGGTATCTGG R: CGGGAATGCCATCTGCCTTGAG | 191 | 60 | |
blaCTX-M | F: CGA TGTGCAGTACCAGTAA R: TTAGTGACCAGAATCAGCGG | 585 | 60 | [79] |
blaOXA | F: TATCTACAGCAGCGCCAGTG R: CGCATCAAATGCCATAAGTG | 199 | 53 | |
blaTEM | F: TACGATACGGGAGGGCTTAC R: TTCCTGTTTTTGCTCACCCA | 716 | 53 | |
qnrS | F: GCAAGTTCATTGAACAGGGT R: TCTAAACCGTCGAGTTCGGCG | 428 | 54 | [78] |
Virulence genes | ||||
stx1 | F: CAGTTAATGTGGTGGCGAAGG R: CACCAGACAATGTAACCGCTG | 348 | 56 | [71] |
stx2 | F: ATCCTATTCCCGGGAGTTTACG R: GCGTCATCGTATACACAGGAGC | 584 | 56 | |
Eae | F: ATTACTGAGATTAAGGCTGA R: ATTTATTTGCAGCCCCCCAT | 682 | 56 | |
hlyA | F: GCATCATCAAGCGTACGTTCC R: AATGAGCCAAGCTGGTTAAGCT | 534 | 65 | [80] |
ipaH | F: CTCGGCACGTTTTAATAGTCTGG R: GTGGAGAGCTGAAGTTTCTCTGC | 933 | 60 | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramaite, K.; Ekwanzala, M.D.; Momba, M.N.B. Prevalence and Molecular Characterisation of Extended-Spectrum Beta-Lactamase-Producing Shiga Toxin-Producing Escherichia coli, from Cattle Farm to Aquatic Environments. Pathogens 2022, 11, 674. https://doi.org/10.3390/pathogens11060674
Ramaite K, Ekwanzala MD, Momba MNB. Prevalence and Molecular Characterisation of Extended-Spectrum Beta-Lactamase-Producing Shiga Toxin-Producing Escherichia coli, from Cattle Farm to Aquatic Environments. Pathogens. 2022; 11(6):674. https://doi.org/10.3390/pathogens11060674
Chicago/Turabian StyleRamaite, Khuliso, Mutshiene Deogratias Ekwanzala, and Maggy Ndombo Benteke Momba. 2022. "Prevalence and Molecular Characterisation of Extended-Spectrum Beta-Lactamase-Producing Shiga Toxin-Producing Escherichia coli, from Cattle Farm to Aquatic Environments" Pathogens 11, no. 6: 674. https://doi.org/10.3390/pathogens11060674
APA StyleRamaite, K., Ekwanzala, M. D., & Momba, M. N. B. (2022). Prevalence and Molecular Characterisation of Extended-Spectrum Beta-Lactamase-Producing Shiga Toxin-Producing Escherichia coli, from Cattle Farm to Aquatic Environments. Pathogens, 11(6), 674. https://doi.org/10.3390/pathogens11060674