Safety and Efficacy of Direct Antiviral Agents for Hepatitis C in Patients with Malignancies Other Than Liver Cancer: A Case Series
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Antiviral Treatment
3. Results
3.1. Baseline
3.2. Treatment Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef] [PubMed]
- Papatheodoridis, G.V.; Hatzakis, A.; Cholongitas, E.; Baptista-Leite, R.; Baskozos, I.; Chhatwal, J.; Colombo, M.; Cortez-Pinto, H.; Craxi, A.; Goldberg, D.; et al. Hepatitis C: The beginning of the end-key elements for successful European and national strategies to eliminate HCV in Europe. J. Viral Hepat. 2018, 25 (Suppl. 1), 6–17. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Sakhuja, P.; Majumdar, K.; Ali, S.; Srivastava, S.; Sachdeva, S.; Sharma, B.C.; Puri, A.S. Incidentally detected asymptomatic hepatitis C virus infection with significant fibrosis: Possible impacts on management. Indian J. Pathol. Microbiol. 2018, 61, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Lebovics, E.; Czobor, K. Screening, diagnosis, treatment, and management of hepatitis C: A novel, comprehensive, online resource center for primary care providers and specialists. Am. J. Med. 2014, 127, e11–e14. [Google Scholar] [CrossRef] [PubMed]
- Lybeck, C.; Bruce, D.; Montgomery, S.M.; Aleman, S.; Duberg, A.S. Risk of extrahepatic cancer in a nationwide cohort of hepatitis C virus infected persons treated with direct-acting antivirals. GastroHep 2021, 3, 185–195. [Google Scholar] [CrossRef]
- Pritchard, H.; Jandhyala, D.; Hosry, J.; Angelidakis, G.; Torres, H.A. Salvage therapy in cancer patients with hepatitis C without sustained virologic response after direct-acting antivirals-A prospective study. JGH Open. 2019, 4, 541–544. [Google Scholar] [CrossRef]
- Spengler, U. Direct antiviral agents (DAAs)—A new age in the treatment of hepatitis C virus infection. Pharmacol. Ther. 2018, 183, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Ziogas, D.C.; Kostantinou, F.; Cholongitas, E.; Anastasopoulou, A.; Diamantopoulos, P.; Haanen, J.; Gogas, H. Reconsidering the management of patients with cancer with viral hepatitis in the era of immunotherapy. J. Immunother. Cancer 2020, 8, e000943. [Google Scholar] [CrossRef]
- Torres, H.A.; Shigle, T.L.; Hammoudi, N.; Link, J.T.; Samaniego, F.; Kaseb, A.; Mallet, V. The oncologic burden of hepatitis C virus infection: A clinical perspective. CA Cancer J. Clin. 2017, 67, 411–431. [Google Scholar] [CrossRef]
- Economides, M.P.; Mahale, P.; Kyvernitakis, A.; Turturro, F.; Kantarjian, H.; Naing, A.; Hosry, J.; Shigle, T.L.; Kaseb, A.; Torres, H.A. Concomitant use of direct-acting antivirals and chemotherapy in hepatitis C virus-infected patients with cancer. Aliment. Pharmacol. Ther. 2016, 44, 1235–1241. [Google Scholar] [CrossRef]
- Persico, M.; Aglitti, A.; Caruso, R.; De Renzo, A.; Selleri, C.; Califano, C.; Abenavoli, L.; Federico, A.; Masarone, M. Efficacy and safety of new direct antiviral agents in hepatitis C virus-infected patients with diffuse large B-cell non-Hodgkin’s lymphoma. Hepatology 2018, 67, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Ciancio, A. Impact of direct antiviral agents (DAAs) on B-cell non-Hodgkin’s lymphoma in patients with chronic hepatitis C. Minerva Gastroenterol. 2021, 67, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Carrier, P.; Jaccard, A.; Jacques, J.; Tabouret, T.; Debette-Gratien, M.; Abraham, J.; Mesturoux, L.; Marquet, P.; Alain, S.; Sautereau, D.; et al. HCV-associated B-cell non-Hodgkin lymphomas and new direct antiviral agents. Liver Int. 2015, 35, 2222–2227. [Google Scholar] [CrossRef] [PubMed]
- Masarone, M.; Persico, M. Hepatitis C virus infection and non-hepatocellular malignancies in the DAA era: A systematic review and meta-analysis. Liver Int. 2019, 39, 1292–1306. [Google Scholar] [CrossRef] [PubMed]
- Lavanchy, D. The global burden of hepatitis C. Liver Int. 2009, 29 (Suppl. 1), 74–81. [Google Scholar] [CrossRef] [PubMed]
- Global Burden Of Hepatitis C Working Group. Global burden of disease (GBD) for hepatitis C. J. Clin. Pharmacol. 2004, 44, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.; Ray, R.B. Mechanisms Underlying Hepatitis C Virus-Associated Hepatic Fibrosis. Cells 2019, 8, 1249. [Google Scholar] [CrossRef]
- Chen, S.L.; Morgan, T.R. The natural history of hepatitis C virus (HCV) infection. Int. J. Med. Sci. 2006, 3, 47–52. [Google Scholar] [CrossRef]
- European Association for Study of Liver. EASL Recommendations on Treatment of Hepatitis C 2015. J. Hepatol. 2015, 63, 199–236. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2016. J. Hepatol. 2017, 66, 153–194. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018, 69, 461–511. [Google Scholar] [CrossRef] [PubMed]
- Nevola, R.; Messina, V.; Marrone, A.; Coppola, N.; Rescigno, C.; Esposito, V.; Sangiovanni, V.; Claar, E.; Pisaturo, M.; Fusco, F.M.; et al. Epidemiology of HCV and HBV in a High Endemic Area of Southern Italy: Opportunities from the COVID-19 Pandemic-Standardized National Screening or One Tailored to Local Epidemiology? Biology 2022, 11, 609. [Google Scholar] [CrossRef]
- Ghosh, S.; Chen, M.L.; Weinberg, J.; Fikre, T.; Ko, N.Y. Hepatitis C Virus Infection and Chemotherapy in Breast Cancer: A Retrospective Chart Analysis. Oncologist 2020, 25, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Torres, H.A.; McDonald, G.B. How I treat hepatitis C virus infection in patients with hematologic malignancies. Blood 2016, 128, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Floyd, J.; Mirza, I.; Sachs, B.; Perry, M.C. Hepatotoxicity of chemotherapy. Semin. Oncol. 2006, 33, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Torres, H.A.; Economides, M.P.; Angelidakis, G.; Hosry, J.; Kyvernitakis, A.; Mahale, P.; Jiang, Y.; Miller, E.; Blechacz, B.; Naing, A.; et al. Sofosbuvir-Based Therapy in Hepatitis C Virus-Infected Cancer Patients: A Prospective Observational Study. Am. J. Gastroenterol. 2019, 114, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Laique, S.N.; Vargas, H.E.; Hepatitis, C. Virus: No Longer a Barrier to Oncology Care. Am. J. Gastroenterol. 2019, 114, 207–208. [Google Scholar] [CrossRef] [PubMed]
Patient N° | Age | Sex | CCI | Malignancy | Oncologic Treatment during DAA | Radiotherapy during DAA | HCV-RNA Baseline | HCV Genotype | ALT Baseline | Fibrosis * | Antiviral Treatment | Oncologic Outcome ^ | Virologic Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 71 | M | 6 | Prostate cancer | LEU | No | 16700000 | 2 | 10 | F1 | SOF/VEL | SD | SVR 12 |
2 | 81 | M | 8 | CLL | No | No | 1885206 | 2 | 24 | F3 | SOF/VEL | SD | SVR 12 |
3 | 46 | M | 7 | Lung cancer | No | Yes | 142000 | 2 | 98 | F3 | SOF/VEL | PD | SVR 12 |
4 | 69 | M | 5 | Lung cancer | CAR-PAC-PEM | No | 800000 | 1 | 103 | F3 | SOF/VEL | SD | SVR 12 |
5 | 74 | M | 8 | Prostate cancer | No | Yes | 1200000 | 3 | 118 | F4 | GLE/PIB | SD | SVR 12 |
6 | 76 | F | 10 | Colon cancer | OXA-CAP | No | 4100000 | 2 | 200 | F4 | SOF/VEL | PD | SVR 12 |
7 | 78 | F | 11 | Breast cancer | PAC, TRA, PER | Yes | 45000000 | 1b | 183 | F4 | SOF/VEL | PD | SVR 12 |
8 | 63 | F | 6 | Breast cancer | CYC-EPI | Yes | 800000 | 1a | 71 | F3 | SOF/VEL | SD | SVR 12 |
9 | 59 | M | 8 | Metastatic melanoma | NIV | No | 3000000 | 1a | 65 | F2 | GLE/PIB | SD | SVR 12 |
10 | 65 | F | 7 | Breast cancer | EPI, CYC, PAC, TRA | No | 67700000 | 2 | 104 | Cl. Cirr | SOF/VEL | SD | SVR 12 |
11 | 77 | F | 10 | Breast cancer | CYC | No | 72000000 | 2 | 12 | F0-F1 | GLE/PIB | SD | SVR 12 |
12 | 65 | F | 6 | Colon cancer | OXA- CAP | Yes | 16000000 | 1 | 105 | F3 | 3D | SD | SVR 12 |
13 | 63 | M | 5 | Non-Hodgkin Lymphoma | R-CHOP | No | 16400000 | 1 | 48 | F0-F1 | SOF/LDV | SD | SVR 12 |
14 | 64 | F | 8 | Breast cancer | TAM | Yes | 1200000 | 1 | 23 | F0-F1 | ELB/GR | SD | SVR 12 |
15 | 55 | F | 6 | Non-Hodgkin Lymphoma | HSCT | No | 9360000 | 1b | 35 | Cl. Cirr | SOF/VEL | SD | SVR 12 |
16 | 79 | M | 8 | Multiple myeloma | BOR | No | 461000 | 1b | 42 | F4 | SOF/LDV | PD | SVR 12 |
17 | 87 | M | 9 | Bladder cancer | No | Yes | 302000 | 2a | 144 | Cl. Cirr | SOF/VEL | SD | SVR 12 |
18 | 57 | F | 4 | Breast cancer | TAM | No | 96100000 | 2a | 40 | F3 | SOF+RBV | SD | SVR 12 |
19 | 63 | F | 5 | Breast cancer | CYC | No | 4500000 | 2a\2c | 22 | F2 | SOF/VEL | SD | SVR 12 |
20 | 78 | F | 8 | Breast cancer | TAM | No | 169000 | 1b | 47 | Cl. Cirr | SOF/LDV | SD | SVR 12 |
21 | 77 | F | 8 | Breast cancer | TAM | Yes | 3900 | 1b | 37 | Cl. Cirr | 3D + RBV | PD | SVR 12 |
22 | 69 | F | 7 | Colon cancer | OXA-CAP | No | 2450000 | 1b | 98 | Cl. Cirr | SOF/LDV | SD | SVR 12 |
23 | 68 | F | 4 | Non-Hodgkin Lymphoma | R-CHOP | No | 230000 | 4 | 21 | F0-F1 | SOF/LDV | SD | SVR 12 |
24 | 70 | M | 7 | Prostate cancer | LEU | Yes | 512000 | 1b | 67 | Cl. Cirr | 3D + RBV | SD | SVR 12 |
25 | 66 | F | 4 | Non-Hodgkin Lymphoma | R-CHOP | No | 5200000 | 2a | 32 | F0-F1 | SOF/VEL | SD | SVR 12 |
26 | 60 | M | 9 | Lung cancer | CIS-ETO | No | 4200000 | 1b | 104 | Cl. Cirr | SOF+SIM+RBV | PD | SVR 12 |
27 | 71 | F | 8 | Breast cancer | TAM | No | 2100000 | 1b | 56 | Cl. Cirr | SOF/LDV | SD | SVR 12 |
28 | 61 | F | 10 | Uterine cancer | No | Yes | 2300000 | 1b | 65 | Cl. Cirr | SOF/LDV | PD | SVR 12 |
29 | 60 | F | 7 | Gastric cancer | IMA | No | 1230000 | 1b | 58 | F4 | SOF/LDV | SD | SVR 12 |
30 | 44 | F | 2 | Breast cancer | TAM | No | 1200000 | 1b | 30 | F1 | SOF/VEL | SD | SVR 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patauner, F.; Stanzione, M.; Stornaiuolo, G.; Martone, V.; Palladino, R.; Coppola, N.; Durante-Mangoni, E.; Zampino, R. Safety and Efficacy of Direct Antiviral Agents for Hepatitis C in Patients with Malignancies Other Than Liver Cancer: A Case Series. Pathogens 2022, 11, 860. https://doi.org/10.3390/pathogens11080860
Patauner F, Stanzione M, Stornaiuolo G, Martone V, Palladino R, Coppola N, Durante-Mangoni E, Zampino R. Safety and Efficacy of Direct Antiviral Agents for Hepatitis C in Patients with Malignancies Other Than Liver Cancer: A Case Series. Pathogens. 2022; 11(8):860. https://doi.org/10.3390/pathogens11080860
Chicago/Turabian StylePatauner, Fabian, Maria Stanzione, Gianfranca Stornaiuolo, Veronica Martone, Roberta Palladino, Nicola Coppola, Emanuele Durante-Mangoni, and Rosa Zampino. 2022. "Safety and Efficacy of Direct Antiviral Agents for Hepatitis C in Patients with Malignancies Other Than Liver Cancer: A Case Series" Pathogens 11, no. 8: 860. https://doi.org/10.3390/pathogens11080860
APA StylePatauner, F., Stanzione, M., Stornaiuolo, G., Martone, V., Palladino, R., Coppola, N., Durante-Mangoni, E., & Zampino, R. (2022). Safety and Efficacy of Direct Antiviral Agents for Hepatitis C in Patients with Malignancies Other Than Liver Cancer: A Case Series. Pathogens, 11(8), 860. https://doi.org/10.3390/pathogens11080860