Relationship between Biofilm-Formation, Phenotypic Virulence Factors and Antibiotic Resistance in Environmental Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Determination
2.2. Collection of Isolates
2.3. Identification of Isolates
2.4. Antimicrobial Susceptibility Testing
2.5. Phenotypic Detection of β-Lactamases
2.6. Detection of Efflux Pump Overexpression Using Phenotypic Methods
2.7. Biofilm Production
2.8. Swimming, Swarming, and Twitching Motility
2.9. Siderophore Production
2.10. Statistical Analysis
3. Results
3.1. Resistance Rates and Resistotypes of Environmental PA Isolates
3.2. AmpC-Overexpression, Carbapenemase-Production, and Overexpression of Efflux Pumps in Environmental PA Isolates
3.3. Biofilm-Forming Capacity and the Relationship with Phenotypic Expression of Virulence Factors
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LPSN—List of Prokaryotic names with Standing in Nomenclature. Genus Pseudomonas. Available online: https://lpsn.dsmz.de/genus/pseudomonas (accessed on 12 July 2022).
- Behzadi, P.; Baráth, Z.; Gajdács, M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics 2021, 10, 42. [Google Scholar] [CrossRef]
- Kumar, H.; Franzetti, L.; Kaushal, A.; Kumar, D. Pseudomonas fluorescens: A potential food spoiler and challenges and advances in its detection. Ann. Microbiol. 2019, 69, 873–883. [Google Scholar]
- Gutiérrez-Barranquero, J.A.; Cazorla, F.M.; de Vincente, A. Pseudomonas syringae pv. syringae Associated with Mango Trees, a Particular Pathogen Within the “Hodgepodge” of the Pseudomonas syringae Complex. Front. Plant Sci. 2019, 10, e570. [Google Scholar]
- Duman, M.; Mulet, M.; Altun, S.; Saticioglu, I.B.; Ozdemir, B.; Ajmi, N.; Lalucat, J.; García-Valdés, E. The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture 2021, 535, e736369. [Google Scholar] [CrossRef]
- Nolan, L.M.; Turnbull, L.; Katrib, M.; Osvath, S.R.; Losa, D.; Lazenby, J.J.; Withcurch, C.B. Pseudomonas aeruginosa is capable of natural transformation in biofilms. Microbiology 2020, 166, 995–1003. [Google Scholar] [CrossRef]
- Fernández, M.; Porcel, M.; de la Torre, J.; Molina-Henares, M.A.; Daddaoua, A.; Llamas, M.A.; Roca, A.; Carriel, V.; Garzón, I.; Ramos, J.L.; et al. Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Front. Microbiol. 2015, 6, e871. [Google Scholar] [CrossRef]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, e39. [Google Scholar]
- Vodovar, N.; Vallenet, D.; Cruveiller, S.; Rouy, Z.; Barbe, V.; Acosta, C.; Cattolico, L.; Jubin, C.; Lajus, A.; Segurens, B.; et al. Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 2006, 24, 673–679. [Google Scholar]
- Bao, Z.; Stodghill, P.V.; Myers, C.R.; Lam, H.; Wei, H.L.; Charavarthy, S.; Kvitko, B.H.; Collmer, A.; Cartinhour, S.W.; Schweitzer, P.; et al. Genomic Plasticity Enables Phenotypic Variation of Pseudomonas syringae pv. tomato DC3000. PLoS ONE 2014, 9, e8662. [Google Scholar]
- Kazmierczak, B.I.; Schnierderberend, M.; Jain, R. Cross-regulation of Pseudomonas motility systems: The intimate relationship between flagella, pili and virulence. Curr. Opin. Microbiol. 2015, 28, 78–82. [Google Scholar]
- Maurice, N.M.; Bedi, B.; Sadikot, R.T. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am. J. Respir. Cell Mol. Biol. 2018, 58, 428–439. [Google Scholar] [CrossRef]
- Chen, H.; Wubbolts, R.W.; Haagsman, H.P.; Weldhuizen, E.J.A. Inhibition and Eradication of Pseudomonas aeruginosa Biofilms by Host Defence Peptides. Sci. Rep. 2018, 8, e10446. [Google Scholar]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, K.H.M.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Pub. Health 2021, 14, 1750–1766. [Google Scholar]
- Mares, C.; Petca, R.C.; Petca, A.; Popescu, R.I.; Jinga, V. Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm? Antibiotics 2022, 11, 376. [Google Scholar] [CrossRef]
- Petca, R.C.; Negoita, S.; Mares, C.; Petca, A.; Popescu, R.I.; Chibelean, C.B. Heterogeneity of Antibiotics Multidrug-Resistance Profile of Uropathogens in Romanian Population. Antibiotics 2021, 10, 523. [Google Scholar]
- Global Antibiotic Research and Development Partnership (GARDP): GARDP and CARB-X welcome renewed commitment by G7 leaders to address antimicrobial resistance. Available online: http://www.gardp.org/news-resources/gardp-and-carb-x-welcome-renewed-commitment-by-g7-leaders-to-address-antimicrobial-resistance/ (accessed on 12 July 2022).
- Zhang, Y.; Li, Y.; Zeng, J.; Chang, Y.; Han, S.; Zhao, J.; Fan, Y.; Xiong, Z.; Zou, X.; Wang, C.; et al. Risk Factors for Mortality of Inpatients with Pseudomonas aeruginosa Bacteremia in China: Impact of Resistance Profile in the Mortality. Infect. Drug Res. 2020, 13, 4115–4123. [Google Scholar]
- Zilahi, G.; Artigas, A.; Loeches-Martin, I. What’s new in multidrug-resistant pathogens in the ICU? Ann. Intensive Care 2016, 6, e96. [Google Scholar]
- Bentzmann, S.; Plésiat, P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ. Microbiol. 2011, 13, 1655–1665. [Google Scholar]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar]
- Centers for Disease Control and Prevention (CDC): Pseudomonas aeruginosa in Healthcare Settings. Available online: https://www.cdc.gov/hai/organisms/pseudomonas.html (accessed on 12 July 2022).
- European Centre for Disease Prevention and Control (ECDC): Antimicrobial resistance surveillance in Europe 2022–2020 data. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/ECDC-WHO-AMR-report.pdf (accessed on 12 July 2022).
- World Health Organization (WHO): WHO publishes list of bacteria for which new antibiotics are urgently needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 12 July 2022).
- Mirza, H.K.; Hadadi-Fishani, M.; Morshedi, K.; Khaledi, A. Meta-analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microb. Drug Resist. 2020, 26, 815–824. [Google Scholar]
- Cepas, V.; López, Y.; Munoz, E.; Rolo, D.; Ardanuy, C.; Martí, M.; Xercavins, M.; Horcajada, J.P.; Bosch, J.; Soto, S.M. Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microb. Drug Res. 2019, 25, 72–83. [Google Scholar]
- Hacker, J.; Blum-Oehler, G.; Muhldorfer, I.; Tschape, H. Pathogenicity islands of virulent bacteria: Structure, function and impact on microbial evolution. Mol. Microbiol. 1997, 23, 1089–1097. [Google Scholar] [CrossRef]
- Pandey, R.; Mishra, S.K.; Shrestha, A. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital. Infect. Drug Res. 2021, 14, 2201–2212. [Google Scholar]
- Zhao, F.; Yang, H.; Bi, D.; Khaledi, A.; Qiao, M. A systematic review and meta-analysis of antibiotic resistance patterns, and the correlation between biofilm formation with virulence factors in uropathogenic E. coli isolated from urinary tract infections. Microb. Pathogen. 2020, 144, e104196. [Google Scholar]
- Azizi, O.; Shahcheraghi, F.; Salimizand, H.; Modarresi, F.; Shakibaie, M.R.; Mansouri, S.; Ramazanzadeh, R.; Badmasti, F.; Nikbin, V. Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii. Rep. Biochem. Mol. Biol. 2016, 5, 62–72. [Google Scholar]
- Gallant, C.V.; Daniels, C.; Leung, J.M.; Ghosh, A.S.; Young, K.D.; Kotra, L.P.; Burrows, L.L. Common β-lactamases inhibit bacterial biofilm formation. Mol. Microbiol. 2005, 58, 1012–1024. [Google Scholar]
- Gajdács, M.; Baráth, Z.; Kárpáti, K.; Szabó, D.; Usai, D.; Zanetti, S.; Donadu, M.G. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics 2021, 10, e1134. [Google Scholar]
- Thrusfield, M.; Ortega, C.; De Blas, I.; Noordhuizen, J.P.; Frankena, K. WIN EPISCOPE 2.0: Improved epidemiological software for veterinary medicine. Vet. Record. 2001, 148, 567–572. [Google Scholar]
- Odongo, I.; Ssemambo, R.; Kungu, J.M. Prevalence of Escherichia coli and its antimicrobial susceptibility profiles among patients with UTI at Mulago Hospital, Kampala, Uganda. Int. Persp. Infect. Dis. 2020, 2020, e8042540. [Google Scholar]
- Kaszab, E.; Radó, J.; Kriszt, B.; Pászti, J.; Lesinszki, V.; Szabó, Á.; Tóth, G.; Khaledi, A.; Szoboszlay, S. Groundwater, soil and compost, as possible sources of virulent and antibiotic-resistant Pseudomonas aeruginosa. Int. J. Environ. Health Res. 2021, 31, 848–860. [Google Scholar]
- Saeki, E.K.; Yamada, A.Y.; de Araujo, L.A.; Anversa, L.; Garcia, D.D.O.; de Souza, R.L.B.; Martins, H.M.; Kobayashi, R.K.T.; Nakazato, G. Subinhibitory concentrations of biogenic silver nanoparticles affect motility and biofilm formation in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 2021, 11, e656984. [Google Scholar]
- Schubert, S.; Kostrzewa, M. MALDI-TOF MS in the microbiology laboratory: Current trends. Curr. Issues Mol. Biol. 2017, 23, 17–20. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints and Dosing. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 10 June 2022).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). New Definitions of S, I and R from 2019. Available online: https://www.eucast.org/newsiandr/ (accessed on 10 June 2022).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Paterson, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [PubMed]
- Sadat, A.; El-Sherbiny, H.; Zakaria, A.; Ramadan, H.; Awad, A. Prevalence, antibiogram and virulence characterization of Vibrio isolates from fish and shellfish in Egypt: A possible zoonotic hazard to humans. J. Appl. Microbiol. 2020, 131, 485–498. [Google Scholar] [PubMed]
- Khalili, Y.; Yekani, M.; Goli, H.R.; Memar, M.Y. Characterization of carbapenem-resistant but cephalosporin-susceptible Pseudomonas aeruginosa. Acta Microbiol. Immunol. Hung. 2019, 66, 529–540. [Google Scholar]
- Peter-Getzlaff, S.; Polsfuss, S.; Poledica, M.; Hombach, M.; Giger, J.; Böttger, E.C.; Zbinden, R.; Bloemberg, G.V. Detection of AmpC Beta-Lactamase in Escherichia coli: Comparison of Three Phenotypic Confirmation Assays and Genetic Analysis. J. Clin. Microbiol. 2011, 49, 2924–2932. [Google Scholar]
- Gajdács, M.; Kárpáti, K.; Stájer, A.; Zanetti, S.; Donadu, M.G. Insights on carbapenem-resistant Pseudomonas aeruginosa: Phenotypic characterization of relevant isolates. Acta Biol. Szeged. 2021, 65, 105–112. [Google Scholar]
- Chou, C.-H.; Lai, Y.-R.; Chi, C.-Y.; Ho, M.-W.; Chen, C.-L.; Liao, W.-C.; Ho, C.-M.; Chen, Y.-A.; Chen, C.-Y.; Lin, Y.-T.; et al. Long-term surveillance of antibiotic prescriptions and the prevalence of antimicrobial resistance in non-fermenting gram-negative bacilli. Microorganisms 2020, 8, e397. [Google Scholar]
- Akhi, M.T.; Khalili, Y.; Chotaslou, R.; Yousefi, S.; Kafil, H.S.; Naghili, B.; Sheikhalizadeh, V. Evaluation of carbapenem resistance mechanisms and its association with Pseudomonas aeruginosa infection in the northwest of Iran. Microb. Drug Res. 2018, 24, 126–135. [Google Scholar]
- Vera-Leiva, A.; Carrasco-Anabalón, S.; Lima, C.A.; Villagra, N.; Domínguez, M.; Bello-Toledo, H.; González-Rocha, G. The efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) increases resistance to carbapenems in Chilean clinical isolates of KPC-producing Klebsiella pneumoniae. J. Glob. Antimicrob. Res. 2018, 12, 73–76. [Google Scholar]
- Ramos-Vivas, J.; Chapartegui-González, I.; Fernández-Martínez, M.; González-Rico, C.; Fortún, J.; Escudero, R.; Marco, F.; Linares, L.; Montejo, M.; Aranzamendi, M.; et al. Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci. Rep. 2019, 9, e8928. [Google Scholar] [CrossRef]
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Saquib, Q.; Musarrat, J. Gum Arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa. J. Basic Microbiol. 2014, 54, 688–699. [Google Scholar] [CrossRef]
- Donadu, M.; Usai, D.; Pinna, A.; Porcu, T.; Mazzarello, V.; Fiamma, M.; Marchetti, M.; Cannas, S.; Delogu, G.; Zanetti, S.; et al. In vitro activity of hybrid lavender essential oils against multidrug resistant strains of Pseudomonas aeruginosa. J. Infect. Dev. Ctries. 2018, 12, 009–014. [Google Scholar] [CrossRef]
- Ha, D.-G.; Kuchma, S.L.; O’Toole, G.A. Plate-based assay for swimming motility in Pseudomonas aeruginosa. In Pseudomonas Methods and Protocols; Filloux, A., Ramos, J.L., Eds.; Humana Press Inc.: New York, NY, USA, 2014. [Google Scholar]
- Turnbull, L.; Whitchurch, C.B. Motility assay: Twitching motility. In Pseudomonas Methods and Protocols; Filloux, A., Ramos, J.-L., Eds.; Humana Press Inc.: New York, NY, USA, 2014; pp. 73–86. [Google Scholar]
- Markwitz, P.; Olszak, T.; Gula, G.; Kowalska, M.; Arabski, M.; Drulis-Kawa, Z. Emerging Phage Resistance in Pseudomonas aeruginosa PAO1 Is Accompanied by an Enhanced Heterogeneity and Reduced Virulence. Viruses 2021, 13, 1332. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Aliaga, L.; Mediavilla, J.D.; Cobo, F. A clinical index predicting mortality with Pseudomonas aeruginosa bacteraemia. J. Med. Microbiol. 2002, 51, 615–619. [Google Scholar] [CrossRef]
- Rojas, A.; Palacios-Baena, Z.; López-Cortés, L.; Rodríguez-Baño, J. Rates, predictors and mortality of community-onset bloodstream infections due to Pseudomonas aeruginosa: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2019, 25, 964–970. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Sign. Transduct. Target. Ther. 2022, 7, e199. [Google Scholar] [CrossRef]
- Cendra, M.M.; Torrents, E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol. Adv. 2021, 49, e107734. [Google Scholar] [CrossRef]
- Ranieri, M.R.M.; Whitchuch, C.B.; Burrows, L.L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr. Opin. Microbiol. 2018, 45, 164–169. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S. Diffusion in Biofilms. J. Bacteriol. 2003, 185, 1485–1491. [Google Scholar] [CrossRef]
- Crone, S.; Vives-Flórez, M.; Kvich, L.; Saunders, A.M.; Malone, M.; Nicolaisen, M.H.; Martínez-García, E.; Rojas-Acosta, C.; Gomez-Puerto, M.C.; Calum, H.; et al. The environmental occurrence of Pseudomonas aeruginosa. APMIS 2019, 128, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Balcázar, J.L.; Subirats, J.; Borrego, C.M. The role of biofilms as environmental reservoirs of antibiotic resistance. Front. Microbiol. 2015, 6, e1216. [Google Scholar] [CrossRef] [PubMed]
- El-Ghany, W.A.A. Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Vet. World 2021, 14, 2155–2159. [Google Scholar] [CrossRef]
- Niazy, A.A.; Lambarte, R.N.A.; Alghamdi, H.S. de novo pyrimidine synthesis pathway inhibition reduces motility virulence of Pseudomonas aeruginosa despite complementation. J. King Saud Univ. Sci. 2022, 34, e102040. [Google Scholar] [CrossRef]
- Radó, J.; Kaszab, E.; Petrovics, T.; Pászti, J.; Kriszt, B.; Szoboszlay, S. Characterization of environmental Pseudomonas aeruginosa using multilocus sequence typing scheme. J. Med. Microbiol. 2017, 66, 1457–1466. [Google Scholar] [CrossRef]
- Adhimi, R.; Tayh, G.; Ghariani, S.; Chairat, S.; Chaouachi, A.; Boudabous, A.; Slama, K.B. Distribution, Diversity and Antibiotic Resistance of Pseudomonas spp. Isolated from the Water Dams in the North of Tunisia. Curr. Microbiol. 2022, 79, e188. [Google Scholar] [CrossRef]
- Thomassen, G.M.B.; Reiche, T.; Tennfjord, C.E.; Mehli, L. Antibiotic Resistance Properties among Pseudomonas spp. Associated with Salmon Processing Environments. Microorganisms 2022, 10, 1420. [Google Scholar] [CrossRef]
- Liew, S.M.; Rajasekaram, G.; Puthucheary, S.D.A.; Chua, K.H. Antimicrobial susceptibility and virulence genes of clinical and environmental isolates of Pseudomonas aeruginosa. PeerJ 2019, 7, e6217. [Google Scholar] [CrossRef] [Green Version]
- Eladawy, M.; El-Mowafy, M.; El-Sokkary, M.M.; Barwa, R. Antimicrobial resistance and virulence characteristics in ERIC-PCR typed biofilm forming isolates of P. aeruginosa. Microb. Pathogen. 2021, 158, e105042. [Google Scholar] [CrossRef] [PubMed]
- Milojković, M.; Nenadović, Z.; Stanković, S.; Božić, D.D.; Nedeljković, N.S.; Ćirković, I.; Petrović, M.; Dimkić, I. Phenotypic and genetic properties of susceptible and multidrug-resistant Pseudomonas aeruginosa isolates in Southern Serbia. Arch. Ind. Hyg. Toxicol. 2020, 71, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Choy, M.H.; Stapleton, F.; Willcox, M.; Zhu, H. Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens and non-contact lens-related keratitis. J. Med. Microbiol. 2008, 57, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Bahador, N.; Shoja, S.; Faridi, F.; Dozandeh-Mobarrez, B.; Qeshmi, F.I.; Javadpour, S.; Mokhtary, S. Molecular detection of virulence factors and biofilm formation in Pseudomonas aeruginosa obtained from different clinical specimens in Bandar Abbas. Iran. J. Microbiol. 2019, 11, 25–30. [Google Scholar]
- Perez, L.R.R.; Costa, M.C.N.; Freitas, A.L.P.; Barth, A.L. Evaluation of biofilm production by Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Braz. J. Microbiol. 2011, 42, 476–479. [Google Scholar] [CrossRef]
- Zahedani, S.S.; Tahmasebi, H.; Jahantigh, M. Coexistence of virulence factors and efflux pump genes in clinical isolates of Pseudomonas aeruginosa: Analysis of biofilm-forming strains from Iran. Int. J. Microbiol. 2021, 2021, e5557361. [Google Scholar] [CrossRef]
- Abidi, S.H.; Sherwani, S.K.; Siddiqui, T.R.; Bashir, A.; Kazmi, S.U. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol. 2013, 13, e57. [Google Scholar] [CrossRef]
- Kaiser, S.J.; Mutters, N.T.; DeRosa, A.; Ewers, A.; Frank, U.; Günther, F. Determinants for persistence of Pseudomonas aeruginosa in hospitals: Interplay between resistance, virulence and biofilm formation. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 243–253. [Google Scholar] [CrossRef]
- Karami, P.; Mohajeri, P.; Mashouf, R.Y.; Karami, M.; Yaghoobi, M.H.; Dastan, D.; Alikhani, M.Y. Molecular characterization of clinical and environmental Pseudomonas aeruginosa isolated in a burn center. Saudi J. Biol. Sci. 2018, 26, 1731–1736. [Google Scholar] [CrossRef]
- Rodulfo, H.; Arcia, A.; Hernández, A.; Michelli, E.; Martinez, D.D.V.; Guzman, M.; Sharma, A.; De Donato, M. Virulence factors and integrons are associated with MDR and XDR phenotypes in nosocomial strains of Pseudomonas aeruginosa in a Venezuelan university hospital. Rev. Inst. Med. Trop. São Paulo 2019, 61, e20. [Google Scholar] [CrossRef]
- Atzél, B.; Szoboszlay, S.; Mikuska, Z.; Kriszt, B. Comparison of phenotypic and genotypic methods for the detection of environmental isolates of Pseudomonas aeruginosa. Int. J. Hyg. Environ. Health 2008, 211, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Alshanta, O.A.; Albashaireh, K.; McKloud, E.; Delaney, C.; Kean, R.; McLean, W.; Ramage, G. Candida albicans and Enterococcus faecalis biofilm frenemies: When the relationship sours. Biofilm 2022, 4, e100072. [Google Scholar] [CrossRef] [PubMed]
- Donadu, M.G.; Ferrari, M.; Mazzarello, V.; Zanetti, S.; Kushkevych, I.; Rittmann, S.K.M.R.; Stájer, A.; Baráth, Z.; Szabó, D.; Urbán, E.; et al. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens 2022, 11, 471. [Google Scholar] [CrossRef] [PubMed]
- Vyas, H.K.N.; Xia, B.; Mai-Prochnow, A. Clinically relevant in vitro biofilm models: A need to mimic and recapitulate the host environment. Biofilm 2022, 4, e100069. [Google Scholar] [CrossRef]
- Sindeldecker, D.; Stoodley, P. The many antibiotic resistance and tolerance strategies of Pseudomonas aeruginosa. Biofilm 2021, 3, e100056. [Google Scholar] [CrossRef]
Resistotype | Resistance Patterns | MAR Index | Ratio of Isolates (n, %) | MDR |
---|---|---|---|---|
0 | None | 0 | 84 (50.60%) | non-MDR |
I | CIP | 0.111 | 3 (1.81%) | |
II | CEFT | 0.111 | 3 (1.81%) | |
III | CIP, LEV | 0.222 | 9 (5.42%) | |
IV | CEFT, CEFE | 0.222 | 1 (0.60%) | |
V | CIP, LEV, CEFT | 0.333 | 2 (1.20%) | |
VI | CIP, LEV, CEFE | 0.333 | 2 (1.20%) | |
VII | CIP, LEV, CEFT, CEFE | 0.444 | 15 (9.04%) | |
VIII | CIP, LEV, GEN, AMI | 0.444 | 15 (9.04%) | |
IX | CIP, LEV, CEFT, GEN | 0.444 | 1 (0.60%) | MDR |
X | CIP, LEV, CEFT, CEFE, GEN | 0.555 | 5 (3.01%) | |
XI | CIP, LEV, CEFT, GEN, AMI | 0.555 | 2 (1.20%) | |
XII | CIP, LEV, CEFT, CEFE, GEN, AMI | 0.666 | 3 (1.81%) | |
XIII | CIP, LEV, CEFT, CEFE, IMI, MER | 0.666 | 6 (3.62%) | |
XIV | CIP, LEV, CEFT, CEFE, GEN, AMI, MER | 0.777 | 5 (3.01%) | |
XV | CIP, LEV, CEFT, CEFE, GEN, AMI, IMI | 0.777 | 4 (2.42%) | |
XVI | CIP, LEV, CEFT, CEFE, GEN, AMI, IMI, MER | 0.888 | 5 (3.01%) | |
XVII | CIP, LEV, CEFT, CEFE, GEN, IMI, MER, COL | 0.888 | 1 (0.60%) |
Motility | Weak/Non-Biofilm Producers (n = 38) | Moderate Biofilm Producers (n = 46) | Strong Biofilm Producers (n = 82) | Statistics |
---|---|---|---|---|
Swimming motility (mm) (mean ± SD) | 24.66 ± 8.96 | 23.87 ± 7.01 | 25.15 ± 6.94 | n.s. |
Swarming motility (mm) (mean ± SD) | 27.98 ± 6.02 | 27.44 ± 6.43 | 28.76 ± 5.40 | n.s. |
Twitching motility (mm) (mean ± SD) | 11.07 ± 3.65 | 10.88 ± 2.96 | 10.23 ± 2.13 | n.s. |
Siderophore-Producers | Weak/Non-Biofilm Producers (n = 38) | Moderate Biofilm Producers (n = 46) | Strong Biofilm Producers (n = 82) | Statistics |
---|---|---|---|---|
Siderophore (+) n = 138 | 27 | 39 | 72 | n.s. |
Siderophore (−) n = 28 | 11 | 7 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behzadi, P.; Gajdács, M.; Pallós, P.; Ónodi, B.; Stájer, A.; Matusovits, D.; Kárpáti, K.; Burián, K.; Battah, B.; Ferrari, M.; et al. Relationship between Biofilm-Formation, Phenotypic Virulence Factors and Antibiotic Resistance in Environmental Pseudomonas aeruginosa. Pathogens 2022, 11, 1015. https://doi.org/10.3390/pathogens11091015
Behzadi P, Gajdács M, Pallós P, Ónodi B, Stájer A, Matusovits D, Kárpáti K, Burián K, Battah B, Ferrari M, et al. Relationship between Biofilm-Formation, Phenotypic Virulence Factors and Antibiotic Resistance in Environmental Pseudomonas aeruginosa. Pathogens. 2022; 11(9):1015. https://doi.org/10.3390/pathogens11091015
Chicago/Turabian StyleBehzadi, Payam, Márió Gajdács, Péter Pallós, Boglárka Ónodi, Anette Stájer, Danica Matusovits, Krisztina Kárpáti, Katalin Burián, Basem Battah, Marco Ferrari, and et al. 2022. "Relationship between Biofilm-Formation, Phenotypic Virulence Factors and Antibiotic Resistance in Environmental Pseudomonas aeruginosa" Pathogens 11, no. 9: 1015. https://doi.org/10.3390/pathogens11091015
APA StyleBehzadi, P., Gajdács, M., Pallós, P., Ónodi, B., Stájer, A., Matusovits, D., Kárpáti, K., Burián, K., Battah, B., Ferrari, M., Doria, C., Caggiari, G., Khusro, A., Zanetti, S., & Donadu, M. G. (2022). Relationship between Biofilm-Formation, Phenotypic Virulence Factors and Antibiotic Resistance in Environmental Pseudomonas aeruginosa. Pathogens, 11(9), 1015. https://doi.org/10.3390/pathogens11091015