Strain Variation Based on Spike Glycoprotein Gene of SARS-CoV-2 in Kuwait from 2020 to 2021
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Patients
2.2. Identification of Mutations and Deletions in the SARS-CoV-2 Spike Glycoprotein Gene
2.3. Genomic Variations of SARS-CoV-2 Based on the S Glycoprotein Gene
2.4. Detection of 21 nt Deletion in S Glycoprotein Gene of SARS-CoV-2
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. S Gene Sequencing and Sequence Analysis
4.3. SARS-CoV-2 Whole-Genome Sequencing Using MinION Nanopore Technology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ralph, R.; Lew, J.; Zeng, T.; Francis, M.; Xue, B.; Roux, M.; Ostadgavahi, A.T.; Rubino, S.; Dawe, N.J.; Al-Ahdal, M.N.; et al. 2019-NCoV (Wuhan Virus), a Novel Coronavirus: Human-to-Human Transmission, Travel-Related Cases, and Vaccine Readiness. J. Infect. Dev. Ctries. 2020, 14, 3–17. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Map—Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 26 April 2021).
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCoV and Naming It SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar]
- Mohammad Lokman, S.; Rasheduzzaman, M.; Salauddin, A.; Barua, R.; Yeasmin Tanzina, A.; Hasan Rumi, M.; Imran Hossain, M.; Zonaed Siddiki, A.; Mannan, A.; Mahbub Hasan, M. Exploring the Genomic and Proteomic Variations of SARS-CoV-2 Spike Glycoprotein: A Computational Biology Approach. Infect. Genet. Evol. 2020, 84, 104389. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- DeDiego, M.L.; Pewe, L.; Alvarez, E.; Rejas, M.T.; Perlman, S.; Enjuanes, L. Pathogenicity of Severe Acute Respiratory Coronavirus Deletion Mutants in HACE-2 Transgenic Mice. Virology 2008, 376, 379–389. [Google Scholar] [CrossRef]
- Rahman, M.S.; Islam, M.R.; Hoque, M.N.; Alam, A.S.M.R.U.; Akther, M.; Puspo, J.A.; Akter, S.; Anwar, A.; Sultana, M.; Hossain, M.A. Comprehensive Annotations of the Mutational Spectra of SARS-CoV-2 Spike Protein: A Fast and Accurate Pipeline. Transbound. Emerg. Dis. 2020, 68, 1625–1638. [Google Scholar] [CrossRef] [PubMed]
- Frampton, D.; Rampling, T.; Cross, A.; Bailey, H.; Heaney, J.; Byott, M.; Scott, R.; Sconza, R.; Price, J.; Margaritis, M.; et al. Genomic Characteristics and Clinical Effect of the Emergent SARS-CoV-2 B.1.1.7 Lineage in London, UK: A Whole-Genome Sequencing and Hospital-Based Cohort Study. Lancet Infect. Dis. 2021, 21, 1246–1256. [Google Scholar] [CrossRef]
- Tegally, H.; Wilkinson, E.; Lessells, R.J.; Giandhari, J.; Pillay, S.; Msomi, N.; Mlisana, K.; Bhiman, J.N.; von Gottberg, A.; Walaza, S.; et al. Sixteen Novel Lineages of SARS-CoV-2 in South Africa. Nat. Med. 2021, 27, 440–446. [Google Scholar] [CrossRef]
- Voloch, C.M.; da Silva Francisco, R.; de Almeida, L.G.P.; Cardoso, C.C.; Brustolini, O.J.; Gerber, A.L.; de Guimarães, C.A.P.; Mariani, D.; da Costa, R.M.; Ferreira, O.C.; et al. Genomic Characterization of a Novel SARS-CoV-2 Lineage from Rio de Janeiro, Brazil. J. Virol. 2021, 95, e00119–e00121. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hoque, M.N.; Islam, M.R.; Akter, S.; Rubayet-Ul-Alam, A.; Siddique, M.A.; Saha, O.; Rahaman, M.M.; Sultana, M.; Crandall, K.A.; et al. Epitope-Based Chimeric Peptide Vaccine Design against S, M and E Proteins of SARS-CoV-2 Etiologic Agent of Global Pandemic COVID-19: An in Silico Approach. PeerJ 2020, 8, e9572. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hoque, M.N.; Islam, M.R.; Islam, I.; Mishu, I.D.; Rahaman, M.M.; Sultana, M.; Hossain, M.A. Mutational Insights into the Envelope Protein of SARS-CoV-2. Gene Rep. 2021, 22, 100997. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, C.; Xu, X.-F.; Xu, W.; Liu, S.-W. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H.; Wlodkowic, D. The 2020 Race towards SARS-CoV-2 Specific Vaccines. Theranostics 2021, 11, 1690. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of the 2019-NCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; et al. Potent Binding of 2019 Novel Coronavirus Spike Protein by a SARS Coronavirus-Specific Human Monoclonal Antibody. Emerg. Microbes Infect. 2020, 9, 382–385. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Pan, Y.; Zhao, Z.J. Structure Analysis of the Receptor Binding of 2019-NCoV. Biochem. Biophys. Res. Commun. 2020, 525, 135–140. [Google Scholar] [CrossRef]
- Kim, S.-J.; Nguyen, V.-G.; Park, Y.-H.; Park, B.-K.; Chung, H.-C. A Novel Synonymous Mutation of SARS-CoV-2: Is This Possible to Affect Their Antigenicity and Immunogenicity? Vaccines 2020, 8, 220. [Google Scholar] [CrossRef]
- Infection Control: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)|CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html (accessed on 2 August 2021).
- Ortiz-Prado, E.; Simbaña-Rivera, K.; Gómez- Barreno, L.; Rubio-Neira, M.; Guaman, L.P.; Kyriakidis, N.C.; Muslin, C.; Jaramillo, A.M.G.; Barba-Ostria, C.; Cevallos-Robalino, D.; et al. Clinical, Molecular, and Epidemiological Characterization of the SARS-CoV-2 Virus and the Coronavirus Disease 2019 (COVID-19), a Comprehensive Literature Review. Diagn. Microbiol. Infect. Dis. 2020, 98, 115094. [Google Scholar] [CrossRef]
- He, Y.; Li, J.; Heck, S.; Lustigman, S.; Jiang, S. Antigenic and Immunogenic Characterization of Recombinant Baculovirus-Expressed Severe Acute Respiratory Syndrome Coronavirus Spike Protein: Implication for Vaccine Design. J. Virol. 2006, 80, 5757–5767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, S.; Pastan, I. Removal of B Cell Epitopes as a Practical Approach for Reducing the Immunogenicity of Foreign Protein-Based Therapeutics. Adv. Drug Deliv. Rev. 2009, 61, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182, 812–827.e19. [Google Scholar] [CrossRef] [PubMed]
- Hulswit, R.J.G.; de Haan, C.A.M.; Bosch, B.-J. Coronavirus Spike Protein and Tropism Changes. Adv. Virus Res. 2016, 96, 29–57. [Google Scholar]
- Xia, S.; Zhu, Y.; Liu, M.; Lan, Q.; Xu, W.; Wu, Y.; Ying, T.; Liu, S.; Shi, Z.; Jiang, S.; et al. Fusion Mechanism of 2019-NCoV and Fusion Inhibitors Targeting HR1 Domain in Spike Protein. Cell. Mol. Immunol. 2020, 17, 765–767. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, D.; Yan, H.; Chong, H.; He, Y. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Role of Changes in SARS-CoV-2 Spike Protein in the Interaction with the Human ACE2 Receptor: An in Silico Analysis. EXCLI J. 2020, 19, 410–417. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and Evolution of Pathogenic Coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef]
- Leung, K.; Shum, M.H.H.; Leung, G.M.; Lam, T.T.Y.; Wu, Y.T. Early Transmissibility Assessment of the N501Y Mutant Strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance 2021, 26, 2002106. [Google Scholar] [CrossRef]
- Public Health England. Investigation of Novel SARS-CoV-2 Variant: Variant of Concern 202012/01. Available online: https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201 (accessed on 21 August 2022).
- Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, Á.; et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England The COVID-19 Genomics UK (COG-UK) consortium. Nature 2021, 593, 266–269. [Google Scholar] [CrossRef]
- Brian, D.A.; Spaan, W.J.M. Recombination and Coronavirus Defective Interfering RNAs. Semin. Virol. 1997, 8, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Makino, S.; Fujioka, N.; Fujiwara, K. Structure of the Intracellular Defective Viral RNAs of Defective Interfering Particles of Mouse Hepatitis Virus. J. Virol. 1985, 54, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Jain, D.; Koziol-White, C.J.; Genoyer, E.; Gilbert, M.; Tapia, K.; Panettieri, R.A.; Hodinka, R.L.; López, C.B. Immunostimulatory Defective Viral Genomes from Respiratory Syncytial Virus Promote a Strong Innate Antiviral Response during Infection in Mice and Humans. PLoS Pathog. 2015, 11, e1005122. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.; Smerdou, C.; Izeta, A.; Gebauer, F.; Enjuanes, L. Molecular Characterization of Transmissible Gastroenteritis Coronavirus Defective Interfering Genomes: Packaging and Heterogeneity. Virology 1996, 217, 495–507. [Google Scholar] [CrossRef]
- Pénzes, Z.; Wroe, C.; Brown, T.D.; Britton, P.; Cavanagh, D. Replication and Packaging of Coronavirus Infectious Bronchitis Virus Defective RNAs Lacking a Long Open Reading Frame. J. Virol. 1996, 70, 8660–8668. [Google Scholar] [CrossRef]
- Mak, G.C.K.; Lau, A.W.L.; Chan, A.M.Y.; Chan, D.Y.W.; Tsang, D.N.C. The D614G Substitution in the S Gene and Clinical Information for Patients with COVID-19 Detected in Hong Kong. J. Clin. Virol. 2020, 130, 104550. [Google Scholar] [CrossRef]
- Cleemput, S.; Dumon, W.; Fonseca, V.; Abdool Karim, W.; Giovanetti, M.; Alcantara, L.C.; Deforche, K.; de Oliveira, T. Genome Detective Coronavirus Typing Tool for Rapid Identification and Characterization of Novel Coronavirus Genomes. Bioinformatics 2020, 36, 3552–3555. [Google Scholar] [CrossRef]
- Pater, A.A.; Bosmeny, M.S.; White, A.A.; Sylvain, R.J.; Eddington, S.B.; Parasrampuria, M.; Ovington, K.N.; Metz, P.E.; Yinusa, A.O.; Barkau, C.L.; et al. High Throughput Nanopore Sequencing of SARS-CoV-2 Viral Genomes from Patient Samples. J. Biol. Methods 2021, 8, e155. [Google Scholar] [CrossRef] [PubMed]
Patient Identifier | Strain Number | Collection Date | Nationality | Age | Sex | Clinical Data | Location | GISAID. Accession No. | Virus Clade |
---|---|---|---|---|---|---|---|---|---|
1 | KW-61A | 8 March 2020 | NK | 55 | M | Fever, cough, pneumonia, CXR: bilateral infiltration. | ICU-AH ▲ | EPI_ISL_3276797 | 19B |
2 | KW-76M | 23 March 2020 | NK | 57 | M | Fever, cough, loss of taste and smell sensations, SOB, SPO2 80% in right atrium, CXR: B/L infiltrates. | ICU-MKH ● | EPI_ISL_3276865 | 19B |
3 | KW-31A | 7 April 2020 | NK | 72 | M | Fever, cough, pneumonia, CXR: bilateral infiltration. | ICU-AH | EPI_ISL_3298298 | 19B |
4 | KW-2M | 9 May 2020 | K | 77 | M | Severe productive cough, SOB, wheeze, SPO2 90% in right atrium, generalized fatigue and tiredness, sore throat, CXR: B/L infiltrates. | ICU-MKH | EPI_ISL_3298299 | 19A |
5 | KW-4M | 10 May 2020 | K | 62 | F | DM type 2, progressive SOB, SPO2 88% in right atrium, high BP, CXR: B/L lung infiltrates and haziness >50% more on the right side. | ICU-MKH | EPI_ISL_3298301 | 19A |
6 | KW-94M | 18 May 2020 | K | 91 | F | Reduced level of consciousness, generalized fatigue, vomiting, intubated. Ketoacidosis. CXR: fair entry B/L. Patient deceased. | ICU-MKH | EPI_ISL_3298302 | 19B |
7 | KW-9M | 18 May 2020 | NK | 62 | F | COPD, smoker, dry cough, fever, SPO2 72% on arrival, CXR: B/L infiltrates and pulmonary congestion. | ICU-MKH | EPI_ISL_3298311 | 19B |
8 | KW-18M | 26 May 2020 | NK | 69 | M | Para-umbilical hernia, fever, cough, SOB, SPO2 85% in right atraium, blood acidosis. CXR: diffuse B/L infiltrates more on the left side. Put on mechanical ventilation—patient deceased. | ICU-MKH | EPI_ISL_3298374 | 19B |
9 | KW-26A | 23 June 2020 | NK. | 49 | M | Fever, pneumonia, CXR: bilateral infiltration/Retroperotonial hematoma. | ICU-AH | EPI_ISL_3298375 | 19B |
10 | KW-25A | 24 June 2020 | NK. | 59 | M | Fever, cough, pneumonia, CXR: bilateral infiltration. | ICU-AH | EPI_ISL_3298376 | 19B |
11 | KW-11M | 1 July 2020 | K | 43 | F | Fever, SOB, noisy chest pain, cough (progressive, green sputum), SPO2 >95% right atrium, chest: B/L wheeze. CXR: B/L haziness. | Ward 28-MKH ♣ | EPI_ISL_3298377 | 19B |
12 | KW-55A | 27 July 2020 | NK | 55 | F | Fever, cough, pneumonia, CXR: bilateral infiltration. | ICU-AH | EPI_ISL_3298379 | 19B |
13 | KW-12M | 28 July 2020 | K | 34 | F | Exacerbation of B.A., headache, fever, low BP. Patient on bronchodilators, Chest: Normal. CXR: Normal. | Ward 28-MKH | EPI_ISL_3298381 | 19B |
14 | KW-59A | 31 July 2020 | K | 70 | F | Fever, pneumonia, CXR: bilateral infiltration. | ICU-AH | EPI_ISL_3298686 | 19B |
15 | KW-33M | 8 August 2020 | K | 84 | M | COPD, HTN, ex-smoker. 9 days H/O SOB, dry cough, 2 days fever, SPO2 66% on arrival —> 98%, CXR: B/L infiltrates and pulmonary congestion. | Ward 28-MKH | EPI_ISL_3298688 | 19B |
16 | KW-32M | 11 August 2020 | NK | 42 | M | DM, HTN on treatment, headache, blurred vision, abdominal pain. Chest: Normal. CXR: Normal. | Ward 28-MKH | EPI_ISL_3298691 | 19B |
17 | KW-39M | 11 August 2020 | NK | 37 | F | Fever, 3 days cough, 1 day SOB, pleuritic chest pain, SPO2 87% in right atrium, CXR: B/L infiltrates. | Ward 28-MKH | EPI_ISL_3298763 | 19B |
18 | KW-35M | 19 August 2020 | K | 36 | F | Dry cough, SOB, chills, runny nose, no fever. CXR: B/L scattered infiltrates. Chest exam: B/L scattered expiratory wheeze. | Ward 28-MKH | EPI_ISL_3298765 | 19B |
19 | KW-51M | 5 October 2020 | K | 62 | F | Uncontrolled DM type 2, HTN, fever, cough productive of sputum, pleuritic chest pain, SOB, SPO 88% in right atrium, loss of taste. Chest: reduced AE B/L. CXR: B/L haziness all over. CT of chest: lung fibrotic-like findings. | ICU-MKH | EPI_ISL_3298767 | 19A |
20 | KW-35A | 7 October 2020 | NK | 31 | M | Cough, pneumonia, CXR: bill reticular/miliary opacities. | ICU-AH | EPI_ISL_3298769 | 19B |
21 | KW-14A | 7 December 2020 | NK | 65 | M | Fever, cough, pneumonia, SOB, desaturating. | ICU-AH | EPI_ISL_3301950 | 19B |
22 | KW-2V | 2 February 2021 | K | 24 | F | None | Sabhan-Drive through ■ | EPI_ISL_3302245 | 20I (Alpha, V1) |
23 | KW-4V | 3 February 2021 | K | 25 | F | None | Quarantine lodge | EPI_ISL_3302485 | 20I (Alpha, V1) |
24 | KW-6V | 3 February 2021 | K | 26 | F | None | Quarantine lodge | EPI_ISL_3302700 | 20I (Alpha, V1) |
25 | KW-7V | 4 February 2021 | NK. | 58 | M | None | Quarantine lodge | EPI_ISL_3302935 | 20I (Alpha, V1) |
26 | KW-8V | 4 February 2021 | K | 35 | F | None | Sabhan-Drive through | EPI_ISL_3303157 | 20I (Alpha, V1) |
27 | KW-9V | 4 February 2021 | K | 34 | M | None | Sabhan-Drive through | EPI_ISL_3303380 | 20I (Alpha, V1) |
28 | KW-11V | 4 February 2021 | NK | 38 | F | None | Sabhan-Drive through | EPI_ISL_3303631 | 20I (Alpha, V1) |
29 | KW-12V | 4 February 2021 | K | 8 | M | None | Sabhan-Drive through | EPI_ISL_3303726 | 20I (Alpha, V1) |
30 | KW-13V | 4 February 2021 | K | 33 | F | None | Sabhan-Drive through | EPI_ISL_3303727 | 20I (Alpha, V1) |
31 | KW-15V | 4 February 2021 | K | 16 | M | None | Sabhan-Drive through | EPI_ISL_3303729 | 20I (Alpha, V1) |
32 | KW-10V | 4 February 2021 | K | 2 | M | None | Sabhan-Drive through | EPI_ISL_3303932 | 20I (Alpha, V1) |
33 | KW-17V | 5 February 2021 | NK | 30 | M | None | Quarantine lodge | EPI_ISL_3303933 | 20I (Alpha, V1) |
34 | KW-19V | 5 February 2021 | K | 38 | M | None | Sabhan-Drive through | EPI_ISL_3303934 | 20I (Alpha, V1) |
35 | KW-20V | 5 February 2021 | NK | 30 | F | None | Sabhan-Drive through | EPI_ISL_3303935 | 20I (Alpha, V1) |
Genome Change | Amino Acid Change | Type of Mutation | Number of Isolates | Frequency in GISAID (%) |
---|---|---|---|---|
23403 A>G | D614G | Missense | 32 | 97.7 |
23271 C>A | A570D | Missense | 14 | 45 |
23604 C>A | P681H | Missense | 14 | 47.1 |
24914 G>C | D1118H | Missense | 14 | 44.1 |
21766-21771delACATGT | H69-V70del | In frame deletion | 14 | 45.5, 44.8 |
23709 C>T | T716I | Missense | 13 | 44.8 |
24506 T>G | S982A | Missense | 13 | 44 |
21992-21994delTAT | Y144-del | In frame deletion | 13 | 44.1 |
23063 A>T | N501Y | Missense | 12 | 47.5 |
22622 A>G | N354D | Missense | 2 | 0.01 |
22498 C>T | G311G | Synonymous | 1 | 0 |
22051 G>T | D1163D | Synonymous | 1 | 0 |
22331-22351delGGTTGGACAGCTGGTGCTGCA | G257-A263del | In frame deletion | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madi, N.; Sadeq, M.; Essa, S.; Safar, H.A.; Al-Adwani, A.; Al-Khabbaz, M. Strain Variation Based on Spike Glycoprotein Gene of SARS-CoV-2 in Kuwait from 2020 to 2021. Pathogens 2022, 11, 985. https://doi.org/10.3390/pathogens11090985
Madi N, Sadeq M, Essa S, Safar HA, Al-Adwani A, Al-Khabbaz M. Strain Variation Based on Spike Glycoprotein Gene of SARS-CoV-2 in Kuwait from 2020 to 2021. Pathogens. 2022; 11(9):985. https://doi.org/10.3390/pathogens11090985
Chicago/Turabian StyleMadi, Nada, Mohammad Sadeq, Sahar Essa, Hussain A. Safar, Anfal Al-Adwani, and Marwa Al-Khabbaz. 2022. "Strain Variation Based on Spike Glycoprotein Gene of SARS-CoV-2 in Kuwait from 2020 to 2021" Pathogens 11, no. 9: 985. https://doi.org/10.3390/pathogens11090985
APA StyleMadi, N., Sadeq, M., Essa, S., Safar, H. A., Al-Adwani, A., & Al-Khabbaz, M. (2022). Strain Variation Based on Spike Glycoprotein Gene of SARS-CoV-2 in Kuwait from 2020 to 2021. Pathogens, 11(9), 985. https://doi.org/10.3390/pathogens11090985