Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Samples
2.3. Analysis of C5a
2.4. Statistical Analysis
3. Results
3.1. Subject Demographics
3.2. C5a presence in GCF and Saliva
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Könönen, E.; Gursoy, M.; Gursoy, U.K. Periodontitis: A multifaceted disease of tooth-supporting tissues. J. Clin. Med. 2019, 8, 1135. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. New developments in neutrophil biology and periodontitis. Periodontol. 2000 2020, 82, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Iacopino, A.M.; Cutler, C.W. Pathophysiological relationships between periodontitis and systemic disease: Recent concepts involving serum lipids. J. Periodontol. 2000, 71, 1375–1384. [Google Scholar] [CrossRef]
- Hajishengallis, G. Complement and periodontitis. Biochem. Pharmacol. 2010, 80, 1992–2001. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Maekawa, T.; Abe, T.; Hajishengallis, E.; Lambris, J.D. Complement involvement in periodontitis: Molecular mechanisms and rational therapeutic approaches. Immune Responses Biosurfaces 2015, 865, 57–74. [Google Scholar]
- Genco, R.J. Host responses in periodontal diseases: Current concepts. J. Periodontol. 1992, 63, 338–355. [Google Scholar] [CrossRef]
- Mödinger, Y.; Rapp, A.; Pazmandi, J.; Vikman, A.; Holzmann, K.; Haffner-Luntzer, M.; Huber-Lang, M.; Ignatius, A. C5aR1 interacts with TLR 2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL 10. J. Cell. Mol. Med. 2018, 22, 6002–6014. [Google Scholar] [CrossRef]
- Munenaga, S.; Ouhara, K.; Hamamoto, Y.; Kajiya, M.; Takeda, K.; Yamasaki, S.; Kawai, T.; Mizuno, N.; Fujita, T.; Sugiyama, E. The involvement of C5a in the progression of experimental arthritis with Porphyromonas gingivalis infection in SKG mice. Arthritis Res. Ther. 2018, 20, 247. [Google Scholar] [CrossRef]
- Olsen, I.; Singhrao, S.K. Is there a link between genetic defects in the complement cascade and Porphyromonas gingivalis in Alzheimer’s disease? J. Oral Microbiol. 2020, 12, 1676486. [Google Scholar] [CrossRef]
- Leira, Y.; Ameijeira, P.; Domínguez, C.; López-Arias, E.; Ávila-Gómez, P.; Pérez-Mato, M.; Sobrino, T.; Campos, F.; D’Aiuto, F.; Leira, R. Severe periodontitis is linked with increased peripheral levels of sTWEAK and PTX3 in chronic migraineurs. Clin. Oral Investig. 2020, 24, 597–606. [Google Scholar] [CrossRef] [PubMed]
- An, G.; Ren, G.; An, F.; Zhang, C. Role of C5a-C5aR axis in the development of atherosclerosis. Sci. China Life Sci. 2014, 57, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, S.; Asare, Y.; Grommes, J.; Soehnlein, O.; Lutgens, E.; Shagdarsuren, G.; Togtokh, A.; Jacobs, M.J.; Fischer, J.W.; Bernhagen, J. High expression of C5L2 correlates with high proinflammatory cytokine expression in advanced human atherosclerotic plaques. Am. J. Pathol. 2014, 184, 2123–2133. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Stover, C.M.; Dupont, A. P. gingivalis in periodontal disease and atherosclerosis–scenes of action for antimicrobial peptides and complement. Front. Immunol. 2015, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Vignesh, P.; Tiewsoh, K.; Rawat, A. Revisiting the complement system in systemic lupus erythematosus. Expert Rev. Clin. Immunol. 2020, 16, 397–408. [Google Scholar] [CrossRef]
- Kumar, V.; Lee, J.D.; Clark, R.J.; Noakes, P.G.; Taylor, S.M.; Woodruff, T.M. Preclinical pharmacokinetics of complement C5a receptor antagonists PMX53 and PMX205 in mice. ACS Omega 2020, 5, 2345–2354. [Google Scholar] [CrossRef]
- Jain, U.; Woodruff, T.; Stadnyk, A. The C5a receptor antagonist PMX205 ameliorates experimentally induced colitis associated with increased IL-4 and IL-10. Br. J. Pharmacol. 2013, 168, 488–501. [Google Scholar] [CrossRef]
- Woodruff, T.M.; Crane, J.W.; Proctor, L.M.; Buller, K.M.; Shek, A.B.; De Vos, K.; Pollitt, S.; Williams, H.M.; Shiels, I.A.; Monk, P.N. Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J. 2006, 20, 1407–1417. [Google Scholar] [CrossRef]
- Jusko, M.; Potempa, J.; Karim, A.Y.; Ksiazek, M.; Riesbeck, K.; Garred, P.; Eick, S.; Blom, A.M. A metalloproteinase karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system. J. Immunol. 2012, 188, 2338–2349. [Google Scholar] [CrossRef]
- Patters, M.R.; Niekrash, C.E.; Lang, N.P. Assessment of complement cleavage in gingival fluid during experimental gingivitis in man. J. Clin. Periodontol. 1989, 16, 33–37. [Google Scholar] [CrossRef]
- Grande, M.A.; Belstrøm, D.; Damgaard, C.; Holmstrup, P.; Thangaraj, S.S.; Nielsen, C.H.; Palarasah, Y. Complement split product C3c in saliva as biomarker for periodontitis and response to periodontal treatment. J. Periodontal Res. 2021, 56, 27–33. [Google Scholar] [PubMed]
- Jia, L.; Han, N.; Du, J.; Guo, L.; Luo, Z.; Liu, Y. Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors. Front. Cell. Infect. Microbiol. 2019, 9, 262. [Google Scholar] [CrossRef] [PubMed]
Periodontitis n = 28 | Control n = 16 | |
---|---|---|
Age (min-max) | 19–88 | 27–92 |
Bleeding on probing (%) | 48.3 ± 26.6 | 6.4 ± 3.4 |
Probing depths > 4 mm (%) | 57.9 ± 23.9 | 8.0 ± 5.9 |
Mean probing depth (mm ± SD) | 6.1 ± 1.6 | 2.3 ± 1.2 |
The mean volume of GCF collected (µL ± SD) | 0.9 ± 0.3 | 0.6 ± 0.5 |
C5a | n | Mean (ng/mL) | Std. Error Mean | Area Under Curve (ROC Curve) |
---|---|---|---|---|
GCF Periodontitis | 28 | 1.06 * | 0.245 | 0.748 |
GCF Control | 16 | Undetectable | Undetectable | -- |
Saliva Periodontitis | 28 | 1.82 # | 0.437 | 0.962 |
Saliva Control | 16 | 0.603 | 0.180 | -- |
C5a in Saliva | Probing Depths ≥ 4 mm (%) | Bleeding on Probing (%) | |
---|---|---|---|
C5a in GCF | 0.531 | 0.455 | 0.543 |
Probing depths ≥ 4 mm (%) | 0.551 | -- | -- |
Bleeding on probing (%) | 0.211 | -- | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhalla, S.P.; Shaju, A.M.; Figueredo, C.M.d.S.; Miranda, L.A. Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease. Pathogens 2022, 11, 983. https://doi.org/10.3390/pathogens11090983
Bhalla SP, Shaju AM, Figueredo CMdS, Miranda LA. Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease. Pathogens. 2022; 11(9):983. https://doi.org/10.3390/pathogens11090983
Chicago/Turabian StyleBhalla, Simran Preet, Ann Maria Shaju, Carlos Marcelo da Silva Figueredo, and Leticia Algarves Miranda. 2022. "Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease" Pathogens 11, no. 9: 983. https://doi.org/10.3390/pathogens11090983
APA StyleBhalla, S. P., Shaju, A. M., Figueredo, C. M. d. S., & Miranda, L. A. (2022). Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease. Pathogens, 11(9), 983. https://doi.org/10.3390/pathogens11090983