Coffee Pulp: A Natural Alternative for Control of Resistant Nematodes in Small Ruminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Collection and Processing of Samples
Obtaining Gastrointestinal Nematode (GIN) Infective Larvae
2.3. Gastrointestinal Nematode Identification by Multiplex Polymerase Chain Reaction (PCR)
2.4. Resistance/Susceptibility Assays through Allele-Specific Chain Reaction (AS-PCR)
2.5. Obtaining the Coffee Pulp Hydroalcoholic Extract
2.6. Anthelmintic Activity of Coffee Pulp Hydroalcoholic Extract
2.6.1. Egg Hatching Inhibition (EHI) Test
2.6.2. Larval Mortality Test
2.7. Statistical Analysis
3. Results
3.1. Identification of GIN by Flotation Technique and Determination of Parasitic Load
3.2. Gastrointestinal Nematode Identification by Polymerase Chain Reaction (PCR)
3.3. Resistance/Susceptibility Assays
Determination of Anthelmintic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Caprinocultura en México. Available online: https://www.gob.mx/agricultura/es/articulos/la-caprinocultura-en-mexico (accessed on 9 July 2022).
- Escareño-Sánchez, L.M.; Wurzinger, M.; Pastor-López, F.; Salinas, H.; Sölkner, J.; Iñiguez, L. La cabra y los sistemas de producción caprina de los pequeños productores de la comarca lagunera, en el norte de México. Rev. Chapingo Ser. Cienc. For. Ambiente 2011, XVII, 235–246. [Google Scholar] [CrossRef]
- Morales, G.C.; Pino, L.A.; Sandoval, E.L.; De Moreno, L.G. Evidence for differential predisposition to gastrointestinal Strongylida within adults ewes and goats naturally infected. Analecta Vet. 2019, 1, 1–6. Available online: https://core.ac.uk/download/pdf/296335518.pdf (accessed on 25 December 2022).
- Herrera, L.E.; Ríos, L.O.; Zapata, R.S. Infection frequency of gastrointestinal nematode in goats and sheep of five municipalities in Antioquia. Rev. MVZ Córdoba 2013, 3, 3851–3860. Available online: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-02682013000300015 (accessed on 25 December 2022).
- Kaplan, R.M. Biology, epidemiology, diagnosis, and management of anthelmintic resistance in gastrointestinal nematodes of livestock. Vet. Clin. N. Am. Food Anim. Pract. 2020, 1, 17–30. [Google Scholar] [CrossRef]
- Kotze, A.C.; Prichard, R.K. Anthelmintic resistance in Haemonchus contortus: History, mechanisms and diagnosis. Adv. Parasitol. 2016, 93, 397–428. [Google Scholar] [CrossRef]
- Geary, T.G.; Sakanari, J.A.; Caffrey, C.R. Anthelmintic drug discovery: Into the future. J. Parasitol. 2015, 2, 125–133. [Google Scholar] [CrossRef]
- Sales, N.; Love, S. Resistance of Haemonchus sp to monepantel and reduced efficacy of a derquantel/abamectin combination confirmed in sheep in NSW, Australia. Vet. Parasitol. 2016, 228, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Zajíčková, M.; Nguyen, L.T.; Skálová, L.; Raisová, S.; Matoušková, P. Anthelmintics in the future: Current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov. Today 2020, 2, 430–437. [Google Scholar] [CrossRef]
- Ramsay, A.; Williams, A.R.; Thamsborg, S.M.; Mueller-Harvey, I. Galloylated proanthocyanidins from shea (Vitellaria paradoxa) meal have potent anthelmintic activity against Ascaris suum. Phytochemistry 2016, 122, 146–153. [Google Scholar] [CrossRef]
- Silva-Soares, S.C.; de Lima, G.C.; Carlos-Laurentiz, A.; Féboli, A.; Dos Anjos, L.A.; de Paula-Carlis, M.S.; da Silva-Filardi, R.; da Silva-de Laurentiz, R. In vitro anthelmintic activity of grape pomace extract against gastrointestinal nematodes of naturally infected sheep. Int. J. Vet. Sci. Med. 2018, 2, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castañeda-Ramírez, G.S.; Lara-Vergara, I.Y.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Sánchez, J.E.; Ventura-Cordero, J.; García-Rubio, V.G.; Aguilar-Marcelino, L. In vitro anthelmintic activity of extracts from coffee pulp waste, maize comb waste and Digitaria eriantha S. hay alone or mixed, against Haemonchus contortus. Waste Biomass Valor. 2022, 13, 3523–3533. [Google Scholar] [CrossRef]
- Ortiz-Ocampo, G.I.; Chan-Pérez, J.I.; Covarrubias-Cárdenas, A.G.; Santos-Ricalde, R.H.; Sandoval-Castro, C.A.; Hoste, H.; Capetillo-Leal, C.M.; González-Pech, P.G.; Torres-Acosta, J.F.J. Efecto antihelmíntico in vitro e in vivo de residuos de Coffea arabica sobre un aislado de Haemonchus contortus con baja susceptibilidad a taninos. Trop. Subtropo. Agroecosyst. 2016, 19, 41–50. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/2198 (accessed on 30 December 2022).
- Hansen, J.; Perry, B. The Epidemiology. In Diagnosis and Control of Helminth Parasites of Ruminants, 2nd ed.; International Laboratory for Research on Animal Diseases: Nairobi, Kenya, 1994; ISBN 92-9055-703-1. [Google Scholar]
- Zarlenga, D.S.; Barry-Chute, M.; Gasbarre, L.C.; Boyd, P.C. A multiplex PCR assay for differentiating economically important gastrointestinal nematodes of cattle. Vet. Parasitol. 2001, 3, 201–211. [Google Scholar] [CrossRef]
- Mondragón-Ancelmo, J.; Olmedo-Juárez, A.; Reyes-Guerrero, D.E.; Ramírez-Vargas, G.; Ariza-Román, A.E.; López-Arellano, M.E.; de Gives, P.M.; Napolitano, F. Detection of gastrointestinal nematode populations resistant to albendazole and ivermectin in sheep. Animals 2019, 10, 775. [Google Scholar] [CrossRef] [Green Version]
- Rivero-Perez, N.; Jaramillo-Colmenero, A.; Peláez-Acero, A.; Ballesteros-Rodea, G.; Zaragoza-Bastida, A. Antihelmintic activity of Leucaena leucocephala podo on gastrointestinal nematodes of sheep (In Vitro). Aba Vet. 2019, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Galaviz-Rodríguez, J.R.; Vargas-López, S.; Zaragoza-Ramírez, J.L.; Bustamante-González, A.; Ramírez-Bribiesca, E.; De Dios Guerrero-Rodríguez, J.; Hernández Zepeda, J.S. Territorial evaluation of sheep production systems in Northwest Tlaxcala. Rev. Mex. Cienc. Pecu. 2011, 1, 53–68. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242011000100005 (accessed on 5 November 2022).
- Instituto Nacional del para el Federalismo y el Desarrollo Municipal. Available online: http://www.inafed.gob.mx/work/enciclopedia/EMM13hidalgo/municipios/13061a.html (accessed on 21 May 2022).
- Suarez, V.; Olaechea, V.; Romero, J.; Rossanigo, C. Parasitic Diseases of Sheep and Other Minor Ruminants in the Southern Cone of America; INTA: La Pampa, Argentina, 2007; pp. 1–298. [Google Scholar] [CrossRef]
- Alva-Perez, J.; López-Corona, L.E.; Zapata-Campos, C.; Vázquez-Villanueva, J.; García, H.B. Productive and zoosanitary conditions of goat’s production in Tamaulipas highlands, Mexico. Interciencia 2019, 44, 152–158. Available online: https://www.redalyc.org/journal/339/33958848008/html/ (accessed on 5 November 2022).
- Ronquillo, J.C.C.; Quintana, F.U.; Hernández, J.E.H.; Espíndola, G.G.A.; Peralta, F.B.; Meneses, E.C.F.; González, M.Á.Z.; Rosas, A.P. Prevalence of gastrointestinal parasitism in two yearly epochs, in hairy ovines of the Mexican southeast. Braz. J. Anim. Environ. Res. 2021, 4, 4898–4907. [Google Scholar] [CrossRef]
- Torres-Acosta, J.F.J.; Mendoza-de-Gives, P.; Aguilar-Caballero, A.J.; Cuéllar-Ordaz, J.A. Anthelmintic resistance in sheep farms: Update of the situation in the American continent. Vet. Parasitol. 2012, 1, 89–96. [Google Scholar] [CrossRef]
- Chaudhry, U.; Redman, E.M.; Kaplan, R.; Yazwinski, T.; Sargison, N.; Gilleard, J.S. Contrasting patterns of isotype-1 β-tubulin allelic diversity in Haemonchus contortus and Haemonchus placei in the southern USA are consistent with a model of localized emergence of benzimidazole resistance. Vet. Parasitol. 2020, 286, 109–240. [Google Scholar] [CrossRef]
- Zaragoza-Bastida, A.; Rodríguez-Salazar, E.; Valladares-Carranza, B.; Rivas-Jacobo, M.A.; Herrera-Corredor, C.A.; Rivero-Perez, N. Cassia fistula extract as alternative treatment against gastrointestinal nematodes of sheep. Aba Vet. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Mkandawire, T.T.; Grencis, R.K.; Berriman, M.; Duque-Correa, M.A. Hatching of parasitic nematode eggs: A crucial step determining infection. Trends Parasitol. 2022, 2, 174–187. [Google Scholar] [CrossRef] [PubMed]
Nematode Genera | Bp | Sequence Fw 1 (5′-3′) | Sequence Rv 2 (5′-3′) |
---|---|---|---|
Haemonchus spp. | 176 | CATTTTCGTCTTGGGCGATAT | TGAGACCGCACGCGTTGATTCGAA |
Teladorsagia spp. | 257 | GCAGAACCGTGACTATGGTC | GACAAGGAGATCACGACATCAGCAT |
Cooperia spp. | 151 | TCGATGAAGAGTTTTCGGTGTTC | TTCACGCTCGCTCGTGACTTCA |
Oesophagostomum spp. | 329 | CAGGGTCAGTGTCGAATGGTC ATTGTCAAATA | CAGGGTCAGTGGTTGCAATACAAATGATAATT |
Trichostrongylus spp. | 243 | TAAAAGTCGTAACAAGGTATCTGTAGGT | GTCTCAAGCTCAACCATAACCAACCATTGG |
Primer | Sequence Fw 1 (5′-3′) | Primer | Sequence Rv 2 (5′-3′) |
---|---|---|---|
Pn1 | 5′GGCAAATATGTCCCACGTGC3′ | Pn2 | 5′GAAGCGCGATACGCTTGAGC3′ |
P1 | 5′GGAACGATGGACTCCTTTCG3′ | P2 | 5′ATACAGAGCTTCGTTGTCAATACAGA3′ |
P3 | 5′CTGGTAGAGAACACCGATGAAACATA3′ | P4 | 5′GATCAGCATTCAGCTGTCCA3′ |
Farm | EPG Average, Infestation Level | ||
---|---|---|---|
Light (50–800) | Moderate (800–1200) | Heavy (>1200) | |
1 | 600 ± 183 | ||
2 | 850 ± 135 | ||
3 | 500 ± 378 | ||
4 | 1550 ± 287 | ||
5 | 350 ± 125 | ||
6 | 600 ± 128 | ||
7 | 2300 ± 209 | ||
8 | 2350 ± 266 | ||
9 | 1450 ± 226 | ||
10 | 1500 ± 303 |
PCR Amplification Products (bp) | |||||
---|---|---|---|---|---|
Farm | 329 | 257 | 243 | 176 | 151 |
1 | Nd | Nd | + | + | Nd |
2 | Nd | Nd | + | + | Nd |
3 | Nd | Nd | + | + | Nd |
4 | Nd | Nd | + | + | Nd |
5 | Nd | Nd | + | + | Nd |
6 | Nd | Nd | + | + | Nd |
7 | Nd | Nd | + | + | Nd |
8 | Nd | Nd | + | + | Nd |
9 | Nd | Nd | + | + | Nd |
10 | Nd | Nd | + | + | Nd |
Treatments (mg/mL) | %IEH | % LM |
---|---|---|
Distilled water | 1.43 ± 0.5 k | 3.2 ± 0.3 b |
Ivermectin (5 mg/mL) | 95.33 ± 0.5 b | 99.46 ± 0.8 a |
EPC 200 | 100 a | 2.07 ± 0.1 bc |
EPC 100 | 100 a | 1.93 ± 0.3 bc |
EPC 50 | 92.87 ± 0.5 c | 1.77 ± 0.2 bc |
EPC 25 | 90.97 ± 0.1 d | 1.63 ± 0.3 bc |
EPC 12.5 | 88.78 ± 0.4 e | 0.61 ± 0.3 c |
EPC 6.25 | 67.87 ± 0.6 f | 0 |
EPC 3.125 | 49.58 ± 0.5 g | 0 |
EPC 1.56 | 31.40 ± 0.4 h | 0 |
EPC 0.78 | 16.90 ± 0.5 i | 0 |
EPC 0.39 | 7.63 ± 0.1 j | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Rodríguez, G.; Zaragoza-Bastida, A.; Reyes-Guerrero, D.E.; Olmedo-Juárez, A.; Valladares-Carranza, B.; Vega-Castillo, L.F.; Rivero-Perez, N. Coffee Pulp: A Natural Alternative for Control of Resistant Nematodes in Small Ruminants. Pathogens 2023, 12, 124. https://doi.org/10.3390/pathogens12010124
López-Rodríguez G, Zaragoza-Bastida A, Reyes-Guerrero DE, Olmedo-Juárez A, Valladares-Carranza B, Vega-Castillo LF, Rivero-Perez N. Coffee Pulp: A Natural Alternative for Control of Resistant Nematodes in Small Ruminants. Pathogens. 2023; 12(1):124. https://doi.org/10.3390/pathogens12010124
Chicago/Turabian StyleLópez-Rodríguez, Gabino, Adrian Zaragoza-Bastida, David Emanuel Reyes-Guerrero, Agustín Olmedo-Juárez, Benjamín Valladares-Carranza, Luis Fernando Vega-Castillo, and Nallely Rivero-Perez. 2023. "Coffee Pulp: A Natural Alternative for Control of Resistant Nematodes in Small Ruminants" Pathogens 12, no. 1: 124. https://doi.org/10.3390/pathogens12010124
APA StyleLópez-Rodríguez, G., Zaragoza-Bastida, A., Reyes-Guerrero, D. E., Olmedo-Juárez, A., Valladares-Carranza, B., Vega-Castillo, L. F., & Rivero-Perez, N. (2023). Coffee Pulp: A Natural Alternative for Control of Resistant Nematodes in Small Ruminants. Pathogens, 12(1), 124. https://doi.org/10.3390/pathogens12010124