Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings
Abstract
:1. Introduction
2. Materials and Methods
Bacterial Genomes and Genomic Analysis
3. Results
3.1. Distribution of P. gergoviae Strains
3.2. SNPs Data
3.3. ARG-Producing Strains
3.4. WGS-Predicted Antimicrobial Susceptibility
3.5. Plasmid-Mediated Clinically Important ARGs
3.6. Virulence Genotyping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug. Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Golli, A.L.; Cristea, O.M.; Zlatian, O.; Glodeanu, A.D.; Balasoiu, A.T.; Ionescu, M.; Popa, S. Prevalence of Multidrug-Resistant Pathogens Causing Bloodstream Infections in an Intensive Care Unit. Infect. Drug. Resist. 2022, 15, 5981–5992. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022, 11, 2966. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- Brenner, D.J.; Richard, C.; Steigerwalt, A.G.; Asbury, M.A.; Mandel, M. Enterobacter gergoviae sp. nov.: A New Species of Enterobacteriaceae Found in Clinical Specimens and the Environment. Syst. Appl. Microbiol. 1980, 30, 1–6. [Google Scholar] [CrossRef]
- Brady, C.; Cleenwerck, I.; Venter, S.; Coutinho, T.; De Vos, P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst. Appl. Microbiol. 2013, 36, 309–319. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Chollet, R.; Bredin, J.; Chevalier, J.; Lepine, F.; Pagès, J.M. Enterobacter gergoviae and the prevalence of efflux in parabens resistance. J. Antimicrob. Chemother. 2006, 57, 757–760. [Google Scholar] [CrossRef]
- Leão-Vasconcelos, L.S.; Lima, A.B.; Costa Dde, M.; Rocha-Vilefort, L.O.; Oliveira, A.C.; Gonçalves, N.F.; Vieira, J.D.; Prado-Palos, M.A. Enterobacteriaceae isolates from the oral cavity of workers in a Brazilian oncology hospital. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 121–127. [Google Scholar] [CrossRef]
- Ganeswire, R.; Thong, K.L.; Puthucheary, S.D. Nosocomial outbreak of Enterobacter gergoviae bacteraemia in a neonatal intensive care unit. J. Hosp. Infect. 2003, 53, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.P.; de Oliveira Garcia, D.; Cury, A.P.; Spadão, F.; Di Gioia, T.S.R.; Francisco, G.R.; Bueno, M.F.C.; Tomaz, M.; de Paula, F.J.; de Faro, L.B.; et al. Outbreak of IMP-producing carbapenem-resistant Enterobacter gergoviae among kidney transplant recipients. J. Antimicrob. Chemother. 2016, 71, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Satlin, M.J.; Jenkins, S.G.; Chen, L.; Helfgott, D.; Feldman, E.J.; Kreiswirth, B.N.; Schuetz, A.N. Septic shock caused by Klebsiella pneumoniae carbapenemase-producing Enterobacter gergoviae in a neutropenic patient with leukemia. J. Clin. Microbiol. 2013, 51, 2794–2796. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.C.S.; de Castro, K.K.A.; Fehlberg, L.C.C.; Gales, A.C.; Vilela, M.A.; de Morais, M.M.C. Carbapenem-resistant Enterobacter gergoviae harbouring blaKPC-2 in Brazil. Int. J. Antimicrob. Agents. 2014, 44, 369–370. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Arredondo-Alonso, S.; Rogers, M.R.C.; Braat, J.C.; Verschuuren, T.D.; Top, J.; Corander, J.; Willems, R.J.L.; Schürch, A.C. mlplasmids: A user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb. Genom. 2018, 4, e000224, Erratum in Microb Genom. 2019, 5, e000249. [Google Scholar] [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Lynch, J.P., 3rd; Clark, N.M.; Zhanel, G.G. Escalating antimicrobial resistance among Enterobacteriaceae: Focus on carbapenemases. Expert Opin. Pharmacother. 2021, 22, 1455–1473, Erratum in Expert Opin. Pharmacother. 2021, 22, i–ii. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Berglund, B.; Wang, S.; Zhou, Z.; Gu, C.; Zhao, L.; Meng, C.; Li, X. Emergence of blaNDM-1, blaNDM-5, blaKPC-2 and blaIMP-4 carrying plasmids in Raoultella spp. in the environment. Environ. Pollut. 2022, 306, 119437. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Chen, C.; Zhao, L.; Ma, J.; Dong, K. Analysis of NDM-1 and IMP-8 carbapenemase producing Raoultella planticola clinical isolates. Acta Microbiol. Immunol. Hung. 2023, 70, 193–198. [Google Scholar] [CrossRef]
- El Salabi, A.; Walsh, T.R.; Chouchani, C. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Crit. Rev. Microbiol. 2013, 39, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Verdial, C.; Serrano, I.; Tavares, L.; Gil, S.; Oliveira, M. Mechanisms of Antibiotic and Biocide Resistance That Contribute to Pseudomonas aeruginosa Persistence in the Hospital Environment. Biomedicines 2023, 11, 1221. [Google Scholar] [CrossRef]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [PubMed]
- Weiss, Z.F.; Hoffmann, M.; Seetharaman, S.; Taffner, S.; Allerd, M.; Luo, Y.; Pearson, Z.; Baker, M.A.; Klompas, M.; Bry, L.; et al. Nosocomial Pluralibacter gergoviae Isolates Expressing NDM and KPC Carbapenemases Characterized Using Whole-Genome Sequencing. Antimicrob. Agents Chemother. 2022, 66, e0109322. [Google Scholar] [CrossRef]
- Guo, X.; Chen, R.; Wang, Q.; Li, C.; Ge, H.; Qiao, J.; Li, Y. Global prevalence, characteristics, and future prospects of IncX3 plasmids: A review. Front. Microbiol. 2022, 13, 979558. [Google Scholar] [CrossRef] [PubMed]
- Macesic, N.; Blakeway, L.V.; Stewart, J.D.; Hawkey, J.; Wyres, K.L.; Judd, L.M.; Wick, R.R.; Jenney, A.W.; Holt, K.E.; Peleg, A.Y. Silent spread of mobile colistin resistance gene mcr-9.1 on IncHI2 ‘superplasmids’ in clinical carbapenem-resistant Enterobacterales. Clin. Microbiol. Infect. 2021, 27, 1856.e7–1856.e13. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, S.; Wu, Y.; Dong, N.; Ju, X.; Cai, C.; Li, R.; Li, Y.; Liu, C.; Lu, J.; et al. Carriage of the mcr-9 and mcr-10 genes in clinical strains of the Enterobacter cloacae complex in China: A prevalence and molecular epidemiology study. Int. J. Antimicrob. Agents 2022, 60, 106645. [Google Scholar] [CrossRef]
- Marsh, J.W.; Mustapha, M.M.; Griffith, M.P.; Evans, D.R.; Ezeonwuka, C.; Pasculle, A.W.; Shutt, K.A.; Sundermann, A.; Ayres, A.M.; Shields, R.K.; et al. Evolution of Outbreak-Causing Carbapenem-Resistant Klebsiella pneumoniae ST258 at a Tertiary Care Hospital over 8 Years. mBio 2019, 10, e01945-19. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.H.; Li, C.; Hsu, C.H.; Ayers, S.; Borenstein, S.; Mukherjee, S.; Tran, T.T.; McDermott, P.F.; Zhao, S. The mcr-9 Gene of Salmonella and Escherichia coli Is Not Associated with Colistin Resistance in the United States. Antimicrob. Agents Chemother. 2020, 64, e00573-20. [Google Scholar] [CrossRef] [PubMed]
- Ruppé, E.; Cherkaoui, A.; Charretier, Y.; Girard, M.; Schicklin, S.; Lazarevic, V.; Schrenzel, J. From genotype to antibiotic susceptibility phenotype in the order Enterobacterales: A clinical perspective. Clin. Microbiol. Infect. 2020, 26, 643.e1–643.e7. [Google Scholar] [CrossRef]
- Rashid, A.M.A.; Lim, C.T.S. Enterobacter gergoviae peritonitis in a patient on chronic ambulatory peritoneal dialysis-first reported case. Malaysian J. Med. Health Sci. 2017, 13, 67–69. [Google Scholar]
- Khashei, R.; Edalati Sarvestani, F.; Malekzadegan, Y.; Motamedifar, M. The first report of Enterobacter gergoviae carrying blaNDM-1 in Iran. Iran J. Basic Med. Sci. 2020, 23, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Suay-García, B.; Pérez-Gracia, M.T. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Bueris, V.; Sellera, F.P.; Fuga, B.; Sano, E.; Carvalho, M.P.N.; Couto, S.C.F.; Moura, Q.; Lincopan, N. Convergence of virulence and resistance in international clones of WHO critical priority Enterobacterales isolated from Marine Bivalves. Sci. Rep. 2022, 12, 5707. [Google Scholar] [CrossRef] [PubMed]
Strain 1 | Antimicrobial Agent 2,3 | Pattern 4 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL | AMP | AMC | PTZ | CFO | CAZ | CPM | ATM | MPM | CIP | STP | GEN | AMI | TET | MIN | TGC | SXT | CHL | FOS | ||
1613625 * | S | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | S | S | S | MDR |
2021DK-00143 * | S | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | R | S | MDR |
2021DK-00148 * | S | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | R | R | S | MDR |
2021DK-00170 * | R | R | R | R | R | R | R | R | R | S | R | R | S | R | S | S | R | R | S | MDR |
2022DK-00148 * | R | R | R | R | R | R | R | R | R | S | R | S | S | S | S | S | S | R | S | MDR |
2022DK-00154 * | S | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | R | S | MDR |
2022DK-00156 * | R | R | R | R | R | R | R | R | R | S | R | R | S | S | S | S | R | R | S | MDR |
2022DK-00159 * | S | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | R | S | MDR |
2022KU-00264 * | R | R | R | R | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | MDR |
2023BM-00012 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
2023BM-00013 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
214632 * | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
40874 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
AK5227 * | S | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | R | S | S | MDR |
ATCC 33028 * | S | R | S | S | S | S | S | S | S | S | R | R | S | R | S | S | R | R | S | MDR |
BWH-P-GER-1 * | S | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | R | S | MDR |
BWH-P-GER-6 * | S | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | R | S | MDR |
C3 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
C7B * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
CCBH27438 * | S | R | R | R | R | R | R | R | R | R | R | S | R | S | S | S | S | S | S | MDR |
DL84A27 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
DS82E24 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
DTU-2020-1001845-1 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
DTU-2021-1003198-1 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
ECO77-3 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
FDAARGOS-386 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
JB83E35 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
JP84E9 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
JS81F13 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
MGH173 * | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | R | R | S | MDR |
MGH183 * | R | R | R | R | R | R | R | R | R | R | R | S | R | R | S | S | R | S | S | MDR |
Microbial * | R | R | R | R | R | R | R | R | R | S | R | S | R | R | S | S | R | R | S | MDR |
SF84F43 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
SN86A38 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
SS84A28 * | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
PG1351 ^ | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
FB2 $ | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
H11 $ | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | – |
1951017-11 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
1951017-12 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
1951017-13 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
1951017-14 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
1951017-15 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
1952417-11 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
1952417-12 # | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | S | R | S | S | MDR |
1952417-13 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
1952417-14 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
1952417-15 # | R | R | R | R | R | R | R | R | R | R | R | R | R | R | S | S | R | S | S | MDR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furlan, J.P.R.; Stehling, E.G. Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings. Pathogens 2023, 12, 1335. https://doi.org/10.3390/pathogens12111335
Furlan JPR, Stehling EG. Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings. Pathogens. 2023; 12(11):1335. https://doi.org/10.3390/pathogens12111335
Chicago/Turabian StyleFurlan, João Pedro Rueda, and Eliana Guedes Stehling. 2023. "Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings" Pathogens 12, no. 11: 1335. https://doi.org/10.3390/pathogens12111335
APA StyleFurlan, J. P. R., & Stehling, E. G. (2023). Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings. Pathogens, 12(11), 1335. https://doi.org/10.3390/pathogens12111335