Detection and Epidemiology of Drug-Resistant Bacteria

A special issue of Pathogens (ISSN 2076-0817). This special issue belongs to the section "Bacterial Pathogens".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 34245

Special Issue Editors


E-Mail Website
Guest Editor
1. School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
2. Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
Interests: veterinary microbiology; antimicrobial resistance; One Health

E-Mail Website
Guest Editor
Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Interests: environmental microbiology; antimicrobial resistance; whole-genome sequence-based analysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
Interests: antimicrobial resistance; wildlife; veterinary microbiology; whole-genome sequencing

Special Issue Information

Dear Colleagues,

Antimicrobial resistance (AMR) is one of the primary global public health problems. This topic is historic, complex, and multifactorial, since AMR is an evolutionary phenomenon that has been increasing mainly due to the intensive use of antimicrobials and as a result of overall anthropogenic activities. The emergence of antimicrobial-resistant bacterial pathogens, highlighting those resistant to critically important antimicrobials, currently threatens human, animal, plant, and environmental health, impacting mainly low-income and lower middle-income countries. Over the preceding years, the frequency of multidrug-resistant strains has increased even more due to the massive use of antibiotics during the COVID-19 pandemic, accelerating the spread of AMR across different sectors and representing a One Health challenge. In this context, monitoring antimicrobial-resistant bacteria in the human, animal, environmental, and food safety sectors becomes essential to achieving a better understanding of the spread and evolution of AMR. This Special Issue will focus on investigations of antimicrobial-resistant bacterial strains that impact public health. We welcome manuscripts related to the characterization, genomics, and epidemiology of relevant antimicrobial-resistant Enterobacterales, nonfermenting Gram-negative bacilli, Staphylococcus, and enterococci isolated from different sectors, although submissions are not limited to these topics.

Dr. Fábio P. Sellera
Dr. João Pedro Rueda Furlan
Dr. Danny Fuentes-Castillo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pathogens is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • critical-priority pathogens
  • multidrug resistance
  • public health
  • antimicrobial resistance (AMR)
  • Staphylococcus

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4590 KiB  
Article
Analysis of Efflux Pump Contributions and Plasmid-Mediated Genetic Determinants in Ciprofloxacin-Resistant Salmonella
by Xiujuan Zhou, Shanrong Yi, Dai Kuang, Chunlei Shi and Chunbo Qu
Pathogens 2024, 13(12), 1126; https://doi.org/10.3390/pathogens13121126 - 20 Dec 2024
Viewed by 1763
Abstract
This study aimed to explore the interactions among genetic determinants influencing ciprofloxacin resistance in Salmonella. Treatment with PAβN, an efflux pump inhibitor, resulted in a 4–32-fold reduction in the minimum inhibitory concentration (MIC) across all 18 ciprofloxacin-resistant Salmonella isolates. Notably, isolates without [...] Read more.
This study aimed to explore the interactions among genetic determinants influencing ciprofloxacin resistance in Salmonella. Treatment with PAβN, an efflux pump inhibitor, resulted in a 4–32-fold reduction in the minimum inhibitory concentration (MIC) across all 18 ciprofloxacin-resistant Salmonella isolates. Notably, isolates without point mutations reverted from resistance to sensitivity. The efflux pump played a crucial role in resistance development, particularly in serovar Enteritidis, where PAβN treatment caused a more significant MIC reduction (16–32-fold) in five strains carrying the GyrA (Asp87Tyr) mutation, which initially exhibited high MICs (8 μg/mL). Several resistance genes were identified on transferable plasmids: oqxAB and aac(6′)-Ib-cr were associated with IncF plasmids in S. Enteritidis, IncA/C plasmids in S. Typhimurium, and IncHI2 plasmids in S. Virchow. Additionally, qnrS1 and/or qepA were carried by IncA/C plasmids in S. Thompson. Whole-genome sequencing revealed the presence of an oqxAB module integrated into the chromosomal DNA of S. Derby. Although the MICs of ciprofloxacin in transconjugants and transformants remained low (1–4 μg/mL), they exceeded the clinical breakpoint for susceptibility. These findings highlight the synergistic impact of efflux pumps and plasmid-mediated resistance mechanisms, contributing to the increasing prevalence of ciprofloxacin resistance and posing a significant threat to food safety. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

13 pages, 1677 KiB  
Article
Phenotypic and Genotypic Analysis of Antimicrobial Resistance in Mycoplasma hyopneumoniae Isolated from Pigs with Enzootic Pneumonia in Australia
by Raziallah Jafari Jozani, Mauida F. Hasoon Al Khallawi, Hanh Thi Hong Nguyen, Majed H. Mohammed, Kiro Petrovski, Yan Ren, Darren Trott, Farhid Hemmatzadeh and Wai Yee Low
Pathogens 2024, 13(12), 1044; https://doi.org/10.3390/pathogens13121044 - 28 Nov 2024
Viewed by 752
Abstract
Mycoplasma hyopneumoniae, an important cause of enzootic pneumonia in pigs in many countries, has recently been shown to exhibit reduced susceptibility to several antimicrobial classes. In the present study, a total of 185 pig lung tissue samples were collected from abattoirs in [...] Read more.
Mycoplasma hyopneumoniae, an important cause of enzootic pneumonia in pigs in many countries, has recently been shown to exhibit reduced susceptibility to several antimicrobial classes. In the present study, a total of 185 pig lung tissue samples were collected from abattoirs in Australia, from which 21 isolates of M. hyopneumoniae were obtained. The antimicrobial resistance profile of the isolates was determined for 12 antimicrobials using minimum inhibitory concentration (MIC) testing, and a subset (n = 14) underwent whole-genome sequence analysis. MIC testing revealed uniformly low values for enrofloxacin (≤1 μg/mL), florfenicol (≤8 μg/mL), lincomycin (≤4 μg/mL), spectinomycin (≤4 μg/mL), tetracycline (≤0.5 μg/mL), tiamulin (≤2 μg/mL), tildipirosin (≤4 μg/mL), tilmicosin (≤16 μg/mL) tulathromycin (≤2 μg/mL), and tylosin (≤2 μg/mL). Higher MICs were observed for erythromycin (MIC range: 16–32 μg/mL), gamithromycin, and tilmicosin (MIC range of both: 32–64 μg/mL). Whole-genome sequencing of the isolates and additional screening using mismatch amplification mutation assay PCR did not identify any known genetic resistance markers within 23S rRNA (macrolides), DNA gyrase A, and topoisomerase IV genes (fluoroquinolones). The WGS data also indicated that the Australian M. hyopneumoniae isolates exhibited limited genetic diversity and formed a distinct monophylectic clade when compared to isolates from other countries. These findings indicate that Australian M. hyopneumoniae likely remains susceptible to the major antimicrobials used to treat enzootic pneumonia in pigs and have evolved in isolation from strains identified in other pig-producing countries. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

18 pages, 3173 KiB  
Article
Interrelation Between Pathoadaptability Factors and Crispr-Element Patterns in the Genomes of Escherichia coli Isolates Collected from Healthy Puerperant Women in Ural Region, Russia
by Yulia Mikhaylova, Marina Tyumentseva, Konstantin Karbyshev, Aleksandr Tyumentsev, Anna Slavokhotova, Svetlana Smirnova, Andrey Akinin, Andrey Shelenkov and Vasiliy Akimkin
Pathogens 2024, 13(11), 997; https://doi.org/10.3390/pathogens13110997 - 14 Nov 2024
Viewed by 2424
Abstract
Escherichia coli is a commensal and opportunistic bacterium widely distributed around the world in different niches including intestinal of humans and animals, and its extraordinary genome plasticity led to the emergence of pathogenic strains causing a wide range of diseases. E. coli is [...] Read more.
Escherichia coli is a commensal and opportunistic bacterium widely distributed around the world in different niches including intestinal of humans and animals, and its extraordinary genome plasticity led to the emergence of pathogenic strains causing a wide range of diseases. E. coli is one of the monitored species in maternity hospitals, being the main etiological agent of urogenital infections, endometriosis, puerperal sepsis, and neonatal diseases. This study presents a comprehensive analysis of E. coli isolates obtained from the maternal birth canal of healthy puerperant women 3–4 days after labor. According to whole genome sequencing data, 31 sequence types and six phylogenetic groups characterized the collection containing 53 isolates. The majority of the isolates belonged to the B2 phylogroup. The data also includes phenotypic and genotypic antibiotic resistance profiles, virulence factors, and plasmid replicons. Phenotypic and genotypic antibiotic resistance testing did not demonstrate extensive drug resistance traits except for two multidrug-resistant E. coli isolates. The pathogenic factors revealed in silico were assessed with respect to CRISPR-element patterns. Multiparametric and correlation analyses were conducted to study the interrelation of different pathoadaptability factors, including antimicrobial resistance and virulence genomic determinants carried by the isolates under investigation. The data presented will serve as a valuable addition to further scientific investigations in the field of bacterial pathoadaptability, especially in studying the role of CRISPR/Cas systems in the E. coli genome plasticity and evolution. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

27 pages, 6051 KiB  
Article
Immunoinformatics Design of a Multiepitope Vaccine (MEV) Targeting Streptococcus mutans: A Novel Computational Approach
by Romen Singh Naorem, Bandana Devi Pangabam, Sudipta Sankar Bora, Csaba Fekete and Anju Barhai Teli
Pathogens 2024, 13(10), 916; https://doi.org/10.3390/pathogens13100916 - 21 Oct 2024
Cited by 1 | Viewed by 4496
Abstract
Dental caries, a persistent oral health challenge primarily linked to Streptococcus mutans, extends its implications beyond dental decay, affecting over 4 billion individuals globally. Despite its historical association with childhood, dental caries often persists into adulthood with prevalence rates ranging from 60 [...] Read more.
Dental caries, a persistent oral health challenge primarily linked to Streptococcus mutans, extends its implications beyond dental decay, affecting over 4 billion individuals globally. Despite its historical association with childhood, dental caries often persists into adulthood with prevalence rates ranging from 60 to 90% in children and 26 to 85% in adults. Currently, there is a dearth of multiepitope vaccines (MEVs) specifically designed to combat S. mutans. To address this gap, we employed an immunoinformatics approach for MEV design, identifying five promising vaccine candidates (PBP2X, PBP2b, MurG, ATP-F, and AGPAT) based on antigenicity and conservation using several tools including CELLO v.2.5, Vaxign, v2.0, ANTIGENpro, and AllerTop v2.0 tools. Subsequent identification of linear B-cell and T-cell epitopes by SVMTrip and NetCTL/NetMHC II tools, respectively, guided the construction of a MEV comprising 10 Cytotoxic T Lymphocyte (CTL) epitopes, 5 Helper T Lymphocyte (HTL) epitopes, and 5 linear B-cell epitopes, interconnected by suitable linkers. The resultant MEV demonstrated high antigenicity, solubility, and structural stability. In silico immune simulations showcased the MEV’s potential to elicit robust humoral and cell-mediated immune responses. Molecular docking studies revealed strong interactions between the MEV construct and Toll-Like Receptors (TLRs) and Major Histocompatibility Complex (MHC) molecules. Remarkably, the MEV–TLR-4 complexes exhibited a low energy score, high binding affinity, and a low dissociation constant. The Molecular Dynamic (MD) simulation analysis suggested that MEV–TLR-4 complexes had the highest stability and minimal conformational changes indicating equilibrium within 40 nanosecond time frames. Comprehensive computational analyses strongly support the potential of the proposed MEV to combat dental caries and associated infections. The study’s computational assays yielded promising results, but further validation through in vitro and in vivo experiments is needed to assess its efficacy and safety. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

10 pages, 1617 KiB  
Article
Prevalence and Characteristics of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 among Salmonella Enteritidis Isolates from Retail Chickens and Children with Gastroenteritis in China
by Liyuan Liu, Shanrong Yi, Xuebin Xu, Liya Zheng, Hong Liu and Xiujuan Zhou
Pathogens 2024, 13(9), 816; https://doi.org/10.3390/pathogens13090816 - 21 Sep 2024
Viewed by 1192
Abstract
A total of 265 Salmonella Enteritidis isolates collected from retail markets and children’s hospitals in Shanghai were used to investigate the prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes. Nine of the isolates—7 from the 146 (4.79%) retail chicken-related samples and 2 [...] Read more.
A total of 265 Salmonella Enteritidis isolates collected from retail markets and children’s hospitals in Shanghai were used to investigate the prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes. Nine of the isolates—7 from the 146 (4.79%) retail chicken-related samples and 2 from the 119 (1.68%) samples from clinical children—were fosfomycin-resistant (FosR). The fosA3 gene was detected in all of the nine FosR isolates, which were located on Inc F-type (8/9, 88.9%) and unknown-type (1/9, 11.1%) transferable plasmids. In total, five plasmid types, namely Inc HI2 (1/9, 11.1%), Inc I1 (3/9, 33.3%), Inc X (8/9, 88.9%), Inc FIIs (9/9, 100%), and Inc FIB (9/9, 100%), were detected in these FosR isolates, which possessed five S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) profiles. The extended-spectrum β-lactamase determinant blaCTX-M-14 subtype was identified in one FosR S. Enteritidis isolate, which was located in a transferable unknown-type plasmid co-carrying fosA3 and tetR genes. Sequence homology analysis showed that this plasmid possessed high sequence similarity to previously reported blaCTX-M-14- and fosA3-positive plasmids from E. coli strains, implying that plasmids carrying the fosA3 gene might be disseminated among Enterobacterales. These findings highlight further challenges in the prevention and treatment of Enterobacteriaceae infections caused by plasmids containing fosA3. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

9 pages, 4998 KiB  
Article
Detection of Salmonella Mbandaka Carrying the blaCTX-M-8 Gene Located on IncI1 Plasmid Isolated from a Broiler Flock Environment
by Magdalena Zając, Magdalena Skarżyńska, Anna Lalak, Ewelina Iwan and Dariusz Wasyl
Pathogens 2024, 13(9), 723; https://doi.org/10.3390/pathogens13090723 - 27 Aug 2024
Viewed by 919
Abstract
Salmonella Mbandaka is one of the most globally widespread serovars, occurring in many sources and included among twenty serovars that contribute to human salmonellosis in Europe. In Poland, it has been noted in non-human sources since 1996, being found firstly in feeds and [...] Read more.
Salmonella Mbandaka is one of the most globally widespread serovars, occurring in many sources and included among twenty serovars that contribute to human salmonellosis in Europe. In Poland, it has been noted in non-human sources since 1996, being found firstly in feeds and later in waterfowl and chicken. Over the years, it gained epidemiological importance, being isolated from a wide range of animal species, including livestock. Generally, it is characterized by sensitivity to most antimicrobials and the ability to form biofilms. The occurrence of cephalosporin-resistant Salmonella in non-human sources is an extremely rare phenomenon in Poland. In this report, we characterized the full genome of the ESBL-producing S. Mbandaka strain isolated from a broiler farm environment (boot swab sample) in Poland in 2022. The isolate was serotyped as S. Mbandaka according to the White–Kaufmann–Le Minor scheme. Antimicrobial susceptibility testing performed with the microbroth dilution method showed its resistance to ampicillin, cefotaxime, ceftazidime, ciprofloxacin, and nalidixic acid. The whole-genome sequence was reconstructed using short and long reads and assembled into the complete chromosome and three plasmids: IncI1 pST113 (89,439 bp), Col(pHAD28) (2699 bp), and Col440 (2495 bp). The strain belonged to sequence type ST413. Plasmid analysis showed blaCTX-M-8 mobilization on IncI1(alpha) surrounded with insertion sequences. The analyzed genome content draws attention to the possibility of the horizontal spread of the resistance genes. To the best of our knowledge, this is the first report of blaCTX-M-8-positive Salmonella in Poland. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

12 pages, 640 KiB  
Article
Molecular Characterization and Antibacterial Resistance Determination of Escherichia coli Isolated from Fresh Raw Mussels and Ready-to-Eat Stuffed Mussels: A Major Public Health Concern
by Artun Yibar, Izzet B. Saticioglu, Nihed Ajmi and Muhammed Duman
Pathogens 2024, 13(7), 532; https://doi.org/10.3390/pathogens13070532 - 24 Jun 2024
Cited by 2 | Viewed by 1536
Abstract
Our study focused exclusively on analyzing Escherichia coli (E. coli) contamination in fresh raw mussels and ready-to-eat (RTE) stuffed mussels obtained from authorized and regulated facilities. However, it is critical to recognize that such contamination represents a significant public health threat [...] Read more.
Our study focused exclusively on analyzing Escherichia coli (E. coli) contamination in fresh raw mussels and ready-to-eat (RTE) stuffed mussels obtained from authorized and regulated facilities. However, it is critical to recognize that such contamination represents a significant public health threat in regions where unauthorized harvesting and sales practices are prevalent. This study aimed to comprehensively assess the prevalence, molecular characteristics, and antibacterial resistance profiles of E. coli in fresh raw mussels and RTE stuffed mussels. E. coli counts in fresh raw mussel samples ranged from 1 to 2.89 log CFU/g before cooking, with a significant reduction observed post-cooking. RTE stuffed mussel samples predominantly exhibited negligible E. coli presence (<1 log CFU/g). A phylogenetic analysis revealed a dominance of phylogroup A, with variations in the distribution observed across different sampling months. Antibacterial resistance was prevalent among the E. coli isolates, notably showing resistance to ampicillin, streptomycin, and cefotaxime. Extended-spectrum β-lactamase (ESβL) production was rare, with only one positive isolate detected. A variety of antibacterial resistance genes, including tetB and sul1, were identified among the isolates. Notably, virulence factor genes associated with pathogenicity were absent. In light of these findings, it is imperative to maintain rigorous compliance with quality and safety standards at all stages of the mussel production process, encompassing harvesting, processing, cooking, and consumption. Continuous monitoring, implementation of rigorous hygiene protocols, and responsible antibacterial drug use are crucial measures in mitigating food safety risks and combating antibacterial resistance. Stakeholders, including seafood industry players, regulatory agencies, and healthcare professionals, are essential to ensure effective risk mitigation and safeguard public health in the context of seafood consumption. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

16 pages, 1838 KiB  
Article
Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria
by Yacine Titouche, Madjid Akkou, Allelen Campaña-Burguet, Carmen González-Azcona, Yasmina Djaoui, Donia Mechoub, Abdelhak Fatihi, Pascal Bouchez, Laurence Bouhier, Karim Houali, Yacine Nia, Carmen Torres and Jacques-Antoine Hennekinne
Pathogens 2024, 13(5), 408; https://doi.org/10.3390/pathogens13050408 - 15 May 2024
Cited by 1 | Viewed by 1471
Abstract
The present study aimed to determine the phenotypic and genotypic characteristics of S. aureus isolates from the nasal swabs of goats. A total of 232 nasal samples (one per animal) were collected from goats on 13 farms located in two regions of [...] Read more.
The present study aimed to determine the phenotypic and genotypic characteristics of S. aureus isolates from the nasal swabs of goats. A total of 232 nasal samples (one per animal) were collected from goats on 13 farms located in two regions of Algeria and were analyzed for the presence of S. aureus. The detection of virulence factors was carried out using PCR. The antibiotic susceptibility of the recovered isolates was assessed using the disc diffusion method. The biofilm formation ability was assessed by the Congo red agar method and a microtiter plate assay, and the molecular characterization of isolates was carried out by spa-typing, and for selected isolates also by multilocus sequence typing (MLST). Overall, 36 out of 232 nasal swabs (15.5%) contained S. aureus, and 62 isolates were recovered. Regarding the virulence factors, at least one staphylococcal enterotoxin gene was detected in 30 (48.4%) isolates. The gene tst encoding the toxic shock syndrome toxin was detected in fifteen isolates (24.2%), but none of the isolates harbored the gene of Panton–Valentine leukocidin (lukF/S-PV). Nine different spa-types were identified, including the detection of a new one (t21230). The recovered isolates were assigned to three clonal complexes, with CC5 (51.8%) being the most common lineage. Two isolates were methicillin-resistant (MRSA) and belonged to ST5 (CC5) and to spa-types t450 and t688. Moreover, 27 (43.5%) of the S. aureus isolates were found to be slime producers in Congo red agar, and all of the recovered isolates could produce biofilms in the microtiter plate assay. Our study showed that the nares of healthy goats could be a reservoir of toxigenic and antibiotic-resistant strains of S. aureus isolates, including MRSA, which could have implications for public health. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

8 pages, 1226 KiB  
Communication
Genomic Features of an MDR Escherichia coli ST5506 Harboring an IncHI2/In229/blaCTX-M-2 Array Isolated from a Migratory Black Skimmer
by Quézia Moura, Miriam R. Fernandes, Fábio P. Sellera, Brenda Cardoso, Cristiane L. Nascimento, Gustavo H. P. Dutra and Nilton Lincopan
Pathogens 2024, 13(1), 63; https://doi.org/10.3390/pathogens13010063 - 9 Jan 2024
Cited by 1 | Viewed by 1953
Abstract
Migratory birds have contributed to the dissemination of multidrug-resistant (MDR) bacteria across the continents. A CTX-M-2-producing Escherichia coli was isolated from a black skimmer (Rynchops niger) in Southeast Brazil. The whole genome was sequenced using the Illumina NextSeq platform and de [...] Read more.
Migratory birds have contributed to the dissemination of multidrug-resistant (MDR) bacteria across the continents. A CTX-M-2-producing Escherichia coli was isolated from a black skimmer (Rynchops niger) in Southeast Brazil. The whole genome was sequenced using the Illumina NextSeq platform and de novo assembled by CLC. Bioinformatic analyses were carried out using tools from the Center for Genomic Epidemiology. The genome size was estimated at 4.9 Mb, with 4790 coding sequences. A wide resistome was detected, with genes encoding resistance to several clinically significant antimicrobials, heavy metals, and biocides. The blaCTX-M-2 gene was inserted in an In229 class 1 integron inside a ∆TnAs3 transposon located in an IncHI2/ST2 plasmid. The strain was assigned to ST5506, CH type fumC19/fimH32, serotype O8:K87, and phylogroup B1. Virulence genes associated with survival in acid conditions, increased serum survival, and adherence were also identified. These data highlight the role of migratory seabirds as reservoirs and carriers of antimicrobial resistance determinants and can help to elucidate the antimicrobial resistance dynamics under a One Health perspective. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

17 pages, 4431 KiB  
Article
Clonal Diversity, Antibiotic Resistance, and Virulence Factor Prevalence of Community Associated Staphylococcus aureus in Southeastern Virginia
by Katelyn D. Cranmer, Mohan D. Pant, Suzanne Quesnel and Julia A. Sharp
Pathogens 2024, 13(1), 25; https://doi.org/10.3390/pathogens13010025 - 27 Dec 2023
Cited by 1 | Viewed by 1890
Abstract
Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped [...] Read more.
Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped by methicillin resistance, both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity of community-associated strains. In our study, we examined the genetic variability and acquired antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA, sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry several virulence factors compared to MSSA strains. Further, the carriage of various genes was found to vary significantly based on the infection type (SSTI, blood, urine). Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

11 pages, 4903 KiB  
Communication
Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings
by João Pedro Rueda Furlan and Eliana Guedes Stehling
Pathogens 2023, 12(11), 1335; https://doi.org/10.3390/pathogens12111335 - 9 Nov 2023
Cited by 2 | Viewed by 2630
Abstract
Pluralibacter gergoviae is a member of the Enterobacteriaceae family that has been reported sporadically. Although P. gergoviae strains exhibiting multidrug-resistant profiles have been identified an in-depth genomic analysis focusing on antimicrobial resistance (AMR) has been lacking, and was therefore performed in this study. [...] Read more.
Pluralibacter gergoviae is a member of the Enterobacteriaceae family that has been reported sporadically. Although P. gergoviae strains exhibiting multidrug-resistant profiles have been identified an in-depth genomic analysis focusing on antimicrobial resistance (AMR) has been lacking, and was therefore performed in this study. Forty-eight P. gergoviae strains, isolated from humans, animals, foods, and the environment during 1970–2023, were analyzed. A large number of single-nucleotide polymorphisms were found, indicating a highly diverse population. Whilst P. gergoviae strains were found to be circulating at the One Health interface, only human and environmental strains exhibited multidrug resistance genotypes. Sixty-one different antimicrobial resistance genes (ARGs) were identified, highlighting genes encoding mobile colistin resistance, carbapenemases, and extended-spectrum β-lactamases. Worryingly, the co-occurrence of mcr-9.1, blaKPC-2, blaCTX-M-9, and blaSHV-12, as well as mcr-10.1, blaNDM-5, and blaSHV-7, was detected. Plasmid sequences were identified as carrying clinically important ARGs, evidencing IncX3 plasmids harboring blaKPC-2, blaNDM-5, or blaSHV-12 genes. Virulence genotyping underlined P. gergoviae as being a low-virulence species. In this regard, P. gergoviae is emerging as a new multidrug-resistant species belonging to the Enterobacteriaceae family. Therefore, continuous epidemiological genomic surveillance of P. gergoviae is required. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

12 pages, 1900 KiB  
Article
Epidemiological Characteristics of Carbapenem-Resistant Enterobacterales in Japan: A Nationwide Analysis of Data from a Clinical Laboratory Center (2016–2022)
by Kentarou Takei, Miho Ogawa, Ryuji Sakata and Hajime Kanamori
Pathogens 2023, 12(10), 1246; https://doi.org/10.3390/pathogens12101246 - 16 Oct 2023
Cited by 3 | Viewed by 2244
Abstract
In Japan, nationwide epidemiological surveys on carbapenem-resistant Enterobacterales (CREs), including comprehensive information, are scarce, with most data available only through public reports. This study analyzed data on the Enterobacterales family collected from nationwide testing centers between January 2016 and December 2022, focusing on [...] Read more.
In Japan, nationwide epidemiological surveys on carbapenem-resistant Enterobacterales (CREs), including comprehensive information, are scarce, with most data available only through public reports. This study analyzed data on the Enterobacterales family collected from nationwide testing centers between January 2016 and December 2022, focusing on isolates that met the criteria for CRE in Japan based on drug susceptibility. We investigated 5,323,875 Enterobacterales isolates of 12 different species; among 4696 (0.09%) CRE strains, the proportion of major CRE isolates was as follows: Escherichia coli, 31.3%; Klebsiella pneumoniae, 28.0%; Enterobacter cloacae, 18.5%; and Klebsiella aerogenes, 6.7%. Moreover, over a 7-year period, Providencia rettgeri, E. cloacae, K. aerogenes, and K. pneumoniae demonstrated relatively high CRE percentages of 0.6% (156/26,185), 0.47% (869/184,221), 0.28% (313/110,371), and 0.17% (1314/780,958), respectively. The number of CRE strains isolated from different samples was as follows: urine, 2390; respiratory specimens, 1254; stool, 425; blood, 252; others, 375. In the broader context, including colonization, the predominant isolates of CREs collected at nationwide testing centers are E. coli and K. pneumoniae. Furthermore, recently, attention has been directed toward less common CRE species, such as Klebsiella oxytoca and Providencia rettgeri, and thus, it might be necessary to continue monitoring these less common species. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

7 pages, 1435 KiB  
Communication
One Health Spread of 16S Ribosomal RNA Methyltransferase-Harboring Gram-Negative Bacterial Genomes: An Overview of the Americas
by Fábio Parra Sellera, Danny Fuentes-Castillo and João Pedro Rueda Furlan
Pathogens 2023, 12(9), 1164; https://doi.org/10.3390/pathogens12091164 - 15 Sep 2023
Cited by 8 | Viewed by 1863
Abstract
Aminoglycoside antimicrobials remain valuable therapeutic options, but their effectiveness has been threatened by the production of bacterial 16S ribosomal RNA methyltransferases (16S-RMTases). In this study, we evaluated the genomic epidemiology of 16S-RMTase genes among Gram-negative bacteria circulating in the American continent. A total [...] Read more.
Aminoglycoside antimicrobials remain valuable therapeutic options, but their effectiveness has been threatened by the production of bacterial 16S ribosomal RNA methyltransferases (16S-RMTases). In this study, we evaluated the genomic epidemiology of 16S-RMTase genes among Gram-negative bacteria circulating in the American continent. A total of 4877 16S-RMTase sequences were identified mainly in Enterobacterales and nonfermenting Gram-negative bacilli isolated from humans, animals, foods, and the environment during 1931–2023. Most of the sequences identified were found in the United States, Brazil, Canada, and Mexico, and the prevalence of 16S-RMTase genes have increased in the last five years (2018–2022). The three species most frequently carrying 16S-RMTase genes were Acinetobacter baummannii, Klebsiella pneumoniae, and Escherichia coli. The armA gene was the most prevalent, but other 16S-RMTase genes (e.g., rmtB, rmtE, and rmtF) could be emerging backstage. More than 90% of 16S-RMTase sequences in the Americas were found in North American countries, and although the 16S-RMTase genes were less prevalent in Central and South American countries, these findings may be underestimations due to limited genomic data. Therefore, whole-genome sequence-based studies focusing on aminoglycoside resistance using a One Health approach in low- and middle-income countries should be encouraged. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

12 pages, 1057 KiB  
Communication
Antimicrobial Resistance and Extended-Spectrum Beta-Lactamase Genes in Enterobacterales, Pseudomonas and Acinetobacter Isolates from the Uterus of Healthy Mares
by Pamela Thomson, Patricia García, Camila del Río, Rodrigo Castro, Andrea Núñez and Carolina Miranda
Pathogens 2023, 12(9), 1145; https://doi.org/10.3390/pathogens12091145 - 8 Sep 2023
Cited by 3 | Viewed by 2133
Abstract
Antibiotic-resistant bacteria are a growing concern for human and animal health. The objective of this study was to determine the antimicrobial resistance and extended-spectrum beta-lactamase genes in Enterobacterales, Pseudomonas spp. and Acinetobacter spp. isolates from the uterus of healthy mares. For this [...] Read more.
Antibiotic-resistant bacteria are a growing concern for human and animal health. The objective of this study was to determine the antimicrobial resistance and extended-spectrum beta-lactamase genes in Enterobacterales, Pseudomonas spp. and Acinetobacter spp. isolates from the uterus of healthy mares. For this purpose, 21 mares were swabbed for samples, which were later seeded on blood agar and MacConkey agar. The isolates were identified using MALDI-TOF and the antimicrobial susceptibility test was performed using the Kirby–Bauer technique. To characterize the resistance genes, a polymerase chain reaction (PCR) scheme was performed. Of the isolates identified as Gram-negative, 68.8% were Enterobacterales, represented by E. coli, Enterobacter cloacae, Citrobacter spp., and Klebsiella pneumoniae; 28.1% belonged to the genus Acinetobacter spp.; and 3.1% to Pseudomonas aeruginosa. A 9.3% of the isolates were multidrug-resistant (MDR), presenting resistance to antibiotics from three different classes, while 18.8% presented resistance to two or more classes of different antibiotics. The diversity of three genes that code for ESBL (blaTEM, blaCTX-M and blaSHV) was detected in 12.5% of the strains. The most frequent was blaSHV, while blaTEM and blaCTX-M were present in Citrobacter spp. and Klebsiella pneumoniae. These results are an alarm call for veterinarians and their environment and suggest taking measures to prevent the spread of these microorganisms. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

14 pages, 1372 KiB  
Article
Clinically Isolated β-Lactam-Resistant Gram-Negative Bacilli in a Philippine Tertiary Care Hospital Harbor Multi-Class β-Lactamase Genes
by Alecks Megxel S. Abordo, Mark B. Carascal, Roland Remenyi, Doralyn S. Dalisay and Jonel P. Saludes
Pathogens 2023, 12(8), 1019; https://doi.org/10.3390/pathogens12081019 - 8 Aug 2023
Cited by 4 | Viewed by 3379
Abstract
In the Philippines, data are scarce on the co-occurrence of multiple β-lactamases (BLs) in clinically isolated Gram-negative bacilli. To investigate this phenomenon, we characterized BLs from various β-lactam-resistant Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa isolated from a [...] Read more.
In the Philippines, data are scarce on the co-occurrence of multiple β-lactamases (BLs) in clinically isolated Gram-negative bacilli. To investigate this phenomenon, we characterized BLs from various β-lactam-resistant Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa isolated from a Philippine tertiary care hospital. The selected Gram-negative bacilli (n = 29) were resistant to either third-generation cephalosporins (resistance category 1 (RC1)), cephalosporins and penicillin-β-lactamase inhibitors (RC2), or carbapenems (RC3). Isolates resistant to other classes of antibiotics but susceptible to early-generation β-lactams were also selected (RC4). All isolates underwent antibiotic susceptibility testing, disk-diffusion-based BL detection assays, and PCR with sequence analysis of extended-spectrum BLs (ESBLs), metallo-BLs, AmpC BLs, and oxacillinases. Among the study isolates, 26/29 harbored multi-class BLs. All RC1 isolates produced ESBLs, with blaCTX-M as the dominant (19/29) gene. RC2 isolates produced ESBLs, four of which harbored blaTEM plus blaOXA-1 or other ESBL genes. RC3 isolates carried blaNDM and blaIMP, particularly in three of the metallo-BL producers. RC4 Enterobacteriaceae carried blaCTX-M, blaTEM, and blaOXA-24-like, while A. baumannii and P. aeruginosa in this category carried either blaIMP or blaOXA-24. Genotypic profiling, in complement with phenotypic characterization, revealed multi-class BLs and cryptic metallo-BLs among β-lactam-resistant Gram-negative bacilli. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

11 pages, 901 KiB  
Article
Genomics and Antimicrobial Susceptibility of Clinical Pseudomonas aeruginosa Isolates from Hospitals in Brazil
by Carlos Henrique Camargo, Amanda Yaeko Yamada, Andreia Rodrigues de Souza, Marisa de Jesus de Castro Lima, Marcos Paulo Vieira Cunha, Pedro Smith Pereira Ferraro, Claudio Tavares Sacchi, Marlon Benedito Nascimento dos Santos, Karoline Rodrigues Campos, Monique Ribeiro Tiba-Casas, Maristela Pinheiro Freire and Pasqual Barretti
Pathogens 2023, 12(7), 918; https://doi.org/10.3390/pathogens12070918 - 8 Jul 2023
Cited by 4 | Viewed by 1917
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen causing infections in immunocompromised patients, usually shows pronounced antimicrobial resistance. In recent years, the frequency of carbapenemases in P. aeruginosa has decreased, which allows use of new beta-lactams/combinations in antimicrobial therapy. Therefore, the in vitro evaluation of [...] Read more.
Pseudomonas aeruginosa, an opportunistic pathogen causing infections in immunocompromised patients, usually shows pronounced antimicrobial resistance. In recent years, the frequency of carbapenemases in P. aeruginosa has decreased, which allows use of new beta-lactams/combinations in antimicrobial therapy. Therefore, the in vitro evaluation of these drugs in contemporary isolates is warranted. We evaluated the antimicrobial susceptibility and genomic aspects of 119 clinical P. aeruginosa isolates from 24 different hospitals in Brazil in 2021–2022. Identification was performed via MALDI-TOF-MS, and antimicrobial susceptibility was identified through broth microdilution, gradient tests, or disk diffusion. Whole-genome sequencing was carried out using NextSeq equipment. The most active drug was cefiderocol (100%), followed by ceftazidime–avibactam (94.1%), ceftolozane–tazobactam (92.4%), and imipenem–relebactam (81.5%). Imipenem susceptibility was detected in 59 isolates (49.6%), and the most active aminoglycoside was tobramycin, to which 99 (83.2%) isolates were susceptible. Seventy-one different sequence types (STs) were detected, including twelve new STs described herein. The acquired resistance genes blaCTX-M-2 and blaKPC-2 were identified in ten (8.4%) and two (1.7%) isolates, respectively. Several virulence genes (exoSTUY, toxA, aprA, lasA/B, plcH) were also identified. We found that new antimicrobials are effective against the diverse P. aeruginosa population that has been circulating in Brazilian hospitals in recent years. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

Back to TopTop