Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Tumor Prevalence with Respect to Age, Gender, Coat-Color, and Breed
3.2. EcPV DNA Detection Rates in Tumor Patients versus Tumor-Free Horses
3.3. Consensus Herpesvirus PCR Results and Detected Herpesvirus Types
3.4. Equine Papillomavirus and Herpesvirus Co-Infections
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans; WHO/IARC: Lyon, France, 1995; Volume 64. [Google Scholar]
- Schiller, J.T.; Lowy, D.R. Virus infection and human cancer: An overview. Recent Results Cancer Res. 2014, 193, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Campo, M.S. Introduction. In Papillomavirus Research: From Natural History to Vaccines and Beyond, 1st ed.; Campo, M.S., Ed.; Caister Academic Press: Norfolk, UK, 2006; pp. 1–2. [Google Scholar]
- Whitley, R. Herpesviruses. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch: Galveston, TX, USA, 1996. [Google Scholar]
- Ackermann, M. Pathogenesis of gammaherpesvirus infections. Vet. Microbiol. 2006, 113, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Knottenbelt, D.C. Squamous cell carcinoma. In Pascoe’s Principles and Practice of Equine Dermatology, 2nd ed.; Knottenbelt, D.C., Ed.; Elsevier: London, UK, 2009; pp. 427–433. [Google Scholar]
- Oshimori, N. Cancer stem cells and their niche in the progression of squamous cell carcinoma. Cancer Sci. 2020, 111, 3985–3992. [Google Scholar] [CrossRef] [PubMed]
- Withrow, S.J.; Vail, D.M.; Page, R.L. (Eds.) Squamous cell carcinoma. In Withrow & MacEwen’s Small Animal Clinical Oncology, 5th ed.; Elsevier: St. Louis, MO, USA, 2013; pp. 310–312. [Google Scholar]
- Dayyani, F.; Etzel, C.J.; Liu, M.; Ho, C.H.; Lippman, S.M.; Tsao, A.S. Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC). Head Neck Oncol. 2010, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Heawchaiyaphum, C.; Iizasa, H.; Ekalaksananan, T.; Burassakarn, A.; Kiyono, T.; Kanehiro, Y.; Yoshiyama, H.; Pientong, C. Epstein-Barr Virus Infection of Oral Squamous Cells. Microorganisms 2020, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, S.R.; Wilson, D.F. Evidence of Epstein-Barr Virus Association with Head and Neck Cancers: A Review. J. Can. Dent. Assoc. 2016, 82, g2. [Google Scholar]
- Scott, D.W.; Miller, W.H., Jr. (Eds.) Squamous cell carcinoma. In Equine Dermatology, 1st ed.; Elsevier: St. Louis, MO, USA, 2003; Volume 1, pp. 707–712. [Google Scholar]
- Strafuss, A.C. Squamous cell carcinoma in horses. J. Am. Vet. Med. Assoc. 1976, 168, 61–62. [Google Scholar]
- Mair, T.S.; Walmsley, J.P.; Phillips, T.J. Surgical treatment of 45 horses affected by squamous cell carcinoma of the penis and prepuce. Equine Vet. J. 2000, 32, 406–410. [Google Scholar] [CrossRef]
- van den Top, J.G.; de Heer, N.; Klein, W.R.; Ensink, J.M. Penile and preputial squamous cell carcinoma in the horse: A retrospective study of treatment of 77 affected horses. Equine Vet. J. 2008, 40, 533–537. [Google Scholar] [CrossRef]
- Strohmayer, C.; Klang, A.; Kummer, S.; Walter, I.; Jindra, C.; Weissenbacher-Lang, C.; Redmer, T.; Kneissl, S.; Brandt, S. Tumor Cell Plasticity in Equine Papillomavirus-Positive Versus-Negative Squamous Cell Carcinoma of the Head and Neck. Pathogens 2022, 11, 266. [Google Scholar] [CrossRef]
- Scase, T.; Brandt, S.; Kainzbauer, C.; Sykora, S.; Bijmholt, S.; Hughes, K.; Sharpe, S.; Foote, A. Equus caballus papillomavirus-2 (EcPV-2): An infectious cause for equine genital cancer? Equine Vet. J. 2010, 42, 738–745. [Google Scholar] [CrossRef]
- Sykora, S.; Brandt, S. Papillomavirus infection and squamous cell carcinoma in horses. Vet. J. 2017, 223, 48–54. [Google Scholar] [CrossRef]
- Knight, C.G.; Dunowska, M.; Munday, J.S.; Peters-Kennedy, J.; Rosa, B.V. Comparison of the levels of Equus caballus papillomavirus type 2 (EcPV-2) DNA in equine squamous cell carcinomas and non-cancerous tissues using quantitative PCR. Vet. Microbiol. 2013, 166, 257–262. [Google Scholar] [CrossRef]
- Sykora, S.; Jindra, C.; Hofer, M.; Steinborn, R.; Brandt, S. Equine papillomavirus type 2: An equine equivalent to human papillomavirus 16? Vet. J. 2017, 225, 3–8. [Google Scholar] [CrossRef]
- The Papillomavirus Episteme. Available online: https://pave.niaid.nih.gov (accessed on 20 November 2022).
- van den Top, J.G.; Harkema, L.; Lange, C.; Ensink, J.M.; van de Lest, C.H.; Barneveld, A.; van Weeren, P.R.; Grone, A.; Martens, A. Expression of p53, Ki67, EcPV2- and EcPV3 DNA, and viral genes in relation to metastasis and outcome in equine penile and preputial squamous cell carcinoma. Equine Vet. J. 2015, 47, 188–195. [Google Scholar] [CrossRef]
- Linder, K.E.; Bizikova, P.; Luff, J.; Zhou, D.; Yuan, H.; Breuhaus, B.; Nelson, E.; Mackay, R. Generalized papillomatosis in three horses associated with a novel equine papillomavirus (EcPV8). Vet. Dermatol. 2018, 29, 72. [Google Scholar] [CrossRef]
- Bogaert, L.; Willemsen, A.; Vanderstraeten, E.; Bracho, M.A.; De Baere, C.; Bravo, I.G.; Martens, A. EcPV2 DNA in equine genital squamous cell carcinomas and normal genital mucosa. Vet. Microbiol. 2012, 158, 33–41. [Google Scholar] [CrossRef]
- Fischer, N.M.; Favrot, C.; Birkmann, K.; Jackson, M.; Schwarzwald, C.C.; Muller, M.; Tobler, K.; Geisseler, M.; Lange, C.E. Serum antibodies and DNA indicate a high prevalence of equine papillomavirus 2 (EcPV2) among horses in Switzerland. Vet. Dermatol. 2014, 25, 210-e54. [Google Scholar] [CrossRef]
- Sykora, S.; Samek, L.; Schonthaler, K.; Palm, F.; Borzacchiello, G.; Aurich, C.; Brandt, S. EcPV-2 is transcriptionally active in equine SCC but only rarely detectable in swabs and semen from healthy horses. Vet. Microbiol. 2012, 158, 194–198. [Google Scholar] [CrossRef]
- Bell, S.A.; Balasuriya, U.B.; Gardner, I.A.; Barry, P.A.; Wilson, W.D.; Ferraro, G.L.; MacLachlan, N.J. Temporal detection of equine herpesvirus infections of a cohort of mares and their foals. Vet. Microbiol. 2006, 116, 249–257. [Google Scholar] [CrossRef]
- Easton-Jones, C. Recent advancements in our understanding of equid gammaherpesvirus infections. Equine Vet. J. 2022, 54, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Fortier, G.; van Erck, E.; Pronost, S.; Lekeux, P.; Thiry, E. Equine gammaherpesviruses: Pathogenesis, epidemiology and diagnosis. Vet. J. 2010, 186, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Kleiboeker, S.B.; Chapman, R.K. Detection of equine herpesvirus 3 in equine skin lesions by polymerase chain reaction. J. Vet. Diagn. Investig. 2004, 16, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.R.; Heldens, J. Equine herpesviruses 1 (EHV-1) and 4 (EHV-4)—Epidemiology, disease and immunoprophylaxis: A brief review. Vet. J. 2005, 170, 14–23. [Google Scholar] [CrossRef]
- Rushton, J.O.; Kolodziejek, J.; Nell, B.; Nowotny, N. Prevalence of asinine herpesvirus type 5 (AsHV-5) infection in clinically normal Lipizzaner horses. Vet. J. 2014, 200, 200–203. [Google Scholar] [CrossRef]
- Brandt, S.; Haralambus, R.; Schoster, A.; Kirnbauer, R.; Stanek, C. Peripheral blood mononuclear cells represent a reservoir of bovine papillomavirus DNA in sarcoid-affected equines. J. Gen. Virol. 2008, 89, 1390–1395. [Google Scholar] [CrossRef]
- VanDevanter, D.R.; Warrener, P.; Bennett, L.; Schultz, E.R.; Coulter, S.; Garber, R.L.; Rose, T.M. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol. 1996, 34, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- Gaglia, M.M.; Munger, K. More than just oncogenes: Mechanisms of tumorigenesis by human viruses. Curr. Opin. Virol. 2018, 32, 48–59. [Google Scholar] [CrossRef]
- Brandt, S.; Samek, L.; Sykora, S.; Scase, T. Association of EcPV-2 with equine squamous cell carcinoma. In Proceedings of the International Papillomavirus Conference, San Juan, PR, USA, 1–6 December 2012. [Google Scholar]
- Lange, C.E.; Tobler, K.; Lehner, A.; Grest, P.; Welle, M.M.; Schwarzwald, C.C.; Favrot, C. EcPV2 DNA in equine papillomas and in situ and invasive squamous cell carcinomas supports papillomavirus etiology. Vet. Pathol. 2013, 50, 686–692. [Google Scholar] [CrossRef]
- Armando, F.; Mecocci, S.; Orlandi, V.; Porcellato, I.; Cappelli, K.; Mechelli, L.; Brachelente, C.; Pepe, M.; Gialletti, R.; Ghelardi, A.; et al. Investigation of the Epithelial to Mesenchymal Transition (EMT) Process in Equine Papillomavirus-2 (EcPV-2)-Positive Penile Squamous Cell Carcinomas. Int. J. Mol. Sci. 2021, 22, 588. [Google Scholar] [CrossRef]
- Knight, C.G.; Munday, J.S.; Peters, J.; Dunowska, M. Equine penile squamous cell carcinomas are associated with the presence of equine papillomavirus type 2 DNA sequences. Vet. Pathol. 2011, 48, 1190–1194. [Google Scholar] [CrossRef]
- Budras, K.-D.; Röck, S. Chapter 9. In Atlas der Anatomie des Pferdes; Schlüter: Hannover, Germany, 2009; pp. 82–85. [Google Scholar]
- Bellone, R.R.; Liu, J.; Petersen, J.L.; Mack, M.; Singer-Berk, M.; Drogemuller, C.; Malvick, J.; Wallner, B.; Brem, G.; Penedo, M.C.; et al. A missense mutation in damage-specific DNA binding protein 2 is a genetic risk factor for limbal squamous cell carcinoma in horses. Int. J. Cancer 2017, 141, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Lassaline, M.; Cranford, T.L.; Latimer, C.A.; Bellone, R.R. Limbal squamous cell carcinoma in Haflinger horses. Vet. Ophthalmol. 2015, 18, 404–408. [Google Scholar] [CrossRef]
- Singer-Berk, M.; Knickelbein, K.E.; Vig, S.; Liu, J.; Bentley, E.; Nunnery, C.; Reilly, C.; Dwyer, A.; Drogemuller, C.; Unger, L.; et al. Genetic risk for squamous cell carcinoma of the nictitating membrane parallels that of the limbus in Haflinger horses. Anim. Genet. 2018, 49, 457–460. [Google Scholar] [CrossRef]
- Newkirk, K.M.; Hendrix, D.V.; Anis, E.A.; Rohrbach, B.W.; Ehrhart, E.J.; Lyons, J.A.; Kania, S.A. Detection of papillomavirus in equine periocular and penile squamous cell carcinoma. J. Vet. Diagn. Investig. 2014, 26, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Pullos, A.N.; Castilho, R.M.; Squarize, C.H. HPV Infection of the Head and Neck Region and Its Stem Cells. J. Dent. Res. 2015, 94, 1532–1543. [Google Scholar] [CrossRef]
- Lange, C.E.; Vetsch, E.; Ackermann, M.; Favrot, C.; Tobler, K. Four novel papillomavirus sequences support a broad diversity among equine papillomaviruses. J. Gen. Virol. 2013, 94, 1365–1372. [Google Scholar] [CrossRef] [Green Version]
- Gardiol, D.; Kuhne, C.; Glaunsinger, B.; Lee, S.S.; Javier, R.; Banks, L. Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 1999, 18, 5487–5496. [Google Scholar] [CrossRef] [Green Version]
- Borchers, K.; Wolfinger, U.; Ludwig, H.; Thein, P.; Baxi, S.; Field, H.J.; Slater, J.D. Virological and molecular biological investigations into equine herpes virus type 2 (EHV-2) experimental infections. Virus Res. 1998, 55, 101–106. [Google Scholar] [CrossRef]
- Kershaw, O.; von Oppen, T.; Glitz, F.; Deegen, E.; Ludwig, H.; Borchers, K. Detection of equine herpesvirus type 2 (EHV-2) in horses with keratoconjunctivitis. Virus Res. 2001, 80, 93–99. [Google Scholar] [CrossRef]
- Williams, K.J.; Robinson, N.E.; Lim, A.; Brandenberger, C.; Maes, R.; Behan, A.; Bolin, S.R. Experimental induction of pulmonary fibrosis in horses with the gammaherpesvirus equine herpesvirus 5. PLoS ONE 2013, 8, e77754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohrs, R.J.; Gilden, D.H. Human herpesvirus latency. Brain Pathol. 2001, 11, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Sorel, O.; Dewals, B.G. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front. Microbiol. 2018, 9, 3315. [Google Scholar] [CrossRef] [PubMed]
- Borchers, K.; Ebert, M.; Fetsch, A.; Hammond, T.; Sterner-Kock, A. Prevalence of equine herpesvirus type 2 (EHV-2) DNA in ocular swabs and its cell tropism in equine conjunctiva. Vet. Microbiol. 2006, 118, 260–266. [Google Scholar] [CrossRef]
- Bell, S.A.; Balasuriya, U.B.; Nordhausen, R.W.; MacLachlan, N.J. Isolation of equine herpesvirus-5 from blood mononuclear cells of a gelding. J. Vet. Diagn. Investig. 2006, 18, 472–475. [Google Scholar] [CrossRef] [Green Version]
- Mekuria, Z.H.; El-Hage, C.; Ficorilli, N.P.; Washington, E.A.; Gilkerson, J.R.; Hartley, C.A. Mapping B lymphocytes as major reservoirs of naturally occurring latent equine herpesvirus 5 infection. J. Gen. Virol. 2017, 98, 461–470. [Google Scholar] [CrossRef]
- Van Cleemput, J.; Poelaert, K.C.K.; Laval, K.; Nauwynck, H.J. Unravelling the first key steps in equine herpesvirus type 5 (EHV5) pathogenesis using ex vivo and in vitro equine models. Vet. Res. 2019, 50, 13. [Google Scholar] [CrossRef] [Green Version]
- Ji, A.L.; Rubin, A.J.; Thrane, K.; Jiang, S.; Reynolds, D.L.; Meyers, R.M.; Guo, M.G.; George, B.M.; Mollbrink, A.; Bergenstrahle, J.; et al. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell 2020, 182, 497–514.e22. [Google Scholar] [CrossRef]
- Rushton, J.O.; Kolodziejek, J.; Tichy, A.; Nell, B.; Nowotny, N. Detection of equid herpesviruses 2 and 5 in a herd of 266 Lipizzaners in association with ocular findings. Vet. Microbiol. 2013, 164, 139–144. [Google Scholar] [CrossRef]
- Borchers, K.; Wolfinger, U.; Goltz, M.; Broll, H.; Ludwig, H. Distribution and relevance of equine herpesvirus type 2 (EHV-2) infections. Arch. Virol. 1997, 142, 917–928. [Google Scholar] [CrossRef]
- Hughes, A.L. Origin and evolution of viral interleukin-10 and other DNA virus genes with vertebrate homologues. J. Mol. Evol. 2002, 54, 90–101. [Google Scholar] [CrossRef]
- Telford, E.A.; Studdert, M.J.; Agius, C.T.; Watson, M.S.; Aird, H.C.; Davison, A.J. Equine herpesviruses 2 and 5 are gamma-herpesviruses. Virology 1993, 195, 492–499. [Google Scholar] [CrossRef]
- Albanese, M.; Tagawa, T.; Hammerschmidt, W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front. Microbiol. 2022, 13, 955603. [Google Scholar] [CrossRef]
- Jochum, S.; Moosmann, A.; Lang, S.; Hammerschmidt, W.; Zeidler, R. The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog. 2012, 8, e1002704. [Google Scholar] [CrossRef] [Green Version]
- Zeidler, R.; Eissner, G.; Meissner, P.; Uebel, S.; Tampe, R.; Lazis, S.; Hammerschmidt, W. Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood 1997, 90, 2390–2397. [Google Scholar] [CrossRef]
- Dunowska, M.; Meers, J.; Johnson, R.D.; Wilks, C.R. Influence of equine herpesvirus type 2 infection on monocyte chemoattractant protein 1 gene transcription in equine blood mononuclear cells. Res. Vet. Sci. 2001, 71, 111–113. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon. Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Chiu, Y.F.; Sugden, B. Plasmid Partitioning by Human Tumor Viruses. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Valentine, R.; Dawson, C.W.; Hu, C.; Shah, K.M.; Owen, T.J.; Date, K.L.; Maia, S.P.; Shao, J.; Arrand, J.R.; Young, L.S.; et al. Epstein-Barr virus-encoded EBNA1 inhibits the canonical NF-kappaB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol. Cancer 2010, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Huo, S.; Luo, Y.; Deng, R.; Liu, X.; Wang, J.; Wang, L.; Zhang, B.; Wang, F.; Lu, J.; Li, X. EBV-EBNA1 constructs an immunosuppressive microenvironment for nasopharyngeal carcinoma by promoting the chemoattraction of Treg cells. J. Immunother. Cancer 2020, 8, e001588. [Google Scholar] [CrossRef]
Sample Source | Number of | Type of Samples | Number of Samples per Type | |
---|---|---|---|---|
Horses | Samples | |||
Group 1: Horses with HNSCCs (77.2%) or precursor lesions | 22 | 33 | Tumor tissue | 21 |
Nasal swabs | 3 | |||
Lymph node tissue | 2 | |||
Saliva | 3 | |||
Tissue from ocular lesion | 1 | |||
Genital swabs | 1 | |||
Intact mucosa | 1 | |||
PBMCs | 1 | |||
Tumor-free control horses for Group 1 | 31 | 31 | Saliva | 26 |
Periodontal fluid | 5 | |||
Group 2: Horses with (peri-)ocular SCCs (79.1%) or precursor lesions | 24 | 36 | Ocular tumor tissue | 23 |
Periocular tumor tissue | 2 | |||
Tissue from metastases | 2 | |||
Intact conjunctiva/nictitating membrane | 3 | |||
Oral SCC | 1 | |||
Ocular swabs | 1 | |||
Ocular tumor swab | 1 | |||
PBMCs | 3 | |||
Tumor-free control horses for Group 2 | 30 | 30 | Ocular swabs | 30 |
Group 3: Horses with penile SCCs (83.3%) or precursor lesions | 36 | 53 | Tumor tissue | 34 |
Tumor swabs | 3 | |||
Tumor cytobrush | 1 | |||
Smegma | 7 | |||
Ocular swabs | 3 | |||
Intact skin | 1 | |||
Primary tumor cells | 2 | |||
PBMCs | 2 | |||
Tumor-free control horses for Group 3 | 34 | 34 | Swabs from urethral fossa | 9 |
Smegma | 25 | |||
Group 4: Horses with vulvar SCCs (85.7%) or precursor lesions | 7 | 7 | Vulvar tumor tissue | 6 |
Tumor cytobrush | 1 | |||
Tumor-free control horses for Group 4 | 49 | 49 | Vulvovaginal swabs | 49 |
Parameter | Description | HN Tumors (22 Patients) | (Peri-)Ocular Tumors (24 Patients) | Genital Tumors (43 Patients) |
---|---|---|---|---|
Gender | Mares | 8 | 11 | 7 |
Geldings | 14 | 13 | 36 * | |
Coat color | Black | 4 | 0 | 4 |
Bay | 3 | 2 | 8 | |
Chestnut | 7 | 2 | 9 | |
Sorrel | 4 | 13 * | 6 | |
Grey | 2 | 3 | 4 | |
Other * | 2 | 4 | 11 | |
Breed | WB | 4 | 5 | 10 |
Trotter | 3 | 0 | 0 | |
Haflinger | 4 | 13 * | 5 | |
Icelandic horse | 3 | 0 | 14 | |
Pony | 4 | 2 | 4 | |
Other § | 4 | 5 | 10 |
EcPV2 | EcPV3 | EcPV4 | EcPV5 | |
---|---|---|---|---|
HN tumor patients | 10/22 (45.5%) * | 0/22 | 0/22 | 2/22 (9%) |
Control horses | 0/31 | 0/31 | 0/31 | 0/31 |
(Peri-)ocular tumor patients | 2/24 § (8.3%) | 0/24 | 1/24 (4.1%) | 0/24 |
Control horses | 0/30 | 0/30 | 0/30 | 0/30 |
Male genital tumor patients | 36/36 (100%) * | 0/36 | 0/36 | 0/36 |
Control horses | 1/34 (2.9%) | 0/34 | 0/34 | 0/34 |
Female genital tumor patients | 7/7 (100%) | 0/7 | 0/7 | 0/7 |
Control horses | 0/49 | 0/49 | 0/49 | 0/49 |
Horses | Herpesvirus-Positive (in %) | EHV2 | EHV5 | AsHV5 | Type NI |
---|---|---|---|---|---|
HN tumor patients | 14/22 (63.6%) | 5/22 | 4/22 | 5/22 | 2/22 |
Control horses | 3/31 (9.6%) | 1/31 | 0/31 | 1/31 | 1/32 |
(Peri-)ocular tumor patients | 16/24 (66.6%) | 5/24 | 5/24 | 2/24 | 5/24 |
Control horses | 14/30 (46.6%) | 4/30 | 3/30 | 2/30 | 5/30 |
Male genital tumor patients | 17/36 § (47.2%) | 6/36 | 4/36 | 4/36 | 1/36 |
Control horses | 16/34 (47.0%) | 9/34 | 2/34 | 4/34 | 1/34 |
Female genital tumor patients | 1/7 (14.2%) | 0/7 | 0/7 | 1/7 | - |
Control horses | 12/49 (24.5%) | 5/49 | 1/49 | 7/49 | - |
Horses | Herpesvirus-Positive | EcPV2 | EcPV4 | EcPV5 |
---|---|---|---|---|
HN tumor patients | 14/22 | 6/14 | 0/14 | 1/14 |
(Peri-)ocular tumor patients | 16/24 | 2/16 | 1/16 | 0/16 |
Male genital tumor patients | 17/36 | 17/17 | 0/17 | 0/17 |
Female genital tumor patients | 1/7 | 1/1 | 0/1 | 0/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miglinci, L.; Reicher, P.; Nell, B.; Koch, M.; Jindra, C.; Brandt, S. Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma. Pathogens 2023, 12, 179. https://doi.org/10.3390/pathogens12020179
Miglinci L, Reicher P, Nell B, Koch M, Jindra C, Brandt S. Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma. Pathogens. 2023; 12(2):179. https://doi.org/10.3390/pathogens12020179
Chicago/Turabian StyleMiglinci, Lea, Paul Reicher, Barbara Nell, Michelle Koch, Christoph Jindra, and Sabine Brandt. 2023. "Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma" Pathogens 12, no. 2: 179. https://doi.org/10.3390/pathogens12020179
APA StyleMiglinci, L., Reicher, P., Nell, B., Koch, M., Jindra, C., & Brandt, S. (2023). Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma. Pathogens, 12(2), 179. https://doi.org/10.3390/pathogens12020179