Pathogenesis of Cerebral Malaria: New Trends and Insights for Developing Adjunctive Therapies
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). World Malaria Report; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Dondorp, A.M. Pathophysiology, clinical presentation and treatment of cerebral malaria. Neurol. Asia 2005, 10, 67–77. [Google Scholar]
- Mishra, S.K.; Wiese, L. Advances in the management of cerebral malaria in adults. Curr. Opin. Neurol. 2009, 22, 302–307. [Google Scholar] [CrossRef] [PubMed]
- El-Assaad, F.; Wheway, J.; Hunt, N.H.; Grau, G.E.; Combes, V. Production, fate and pathogenicity of plasma microparticles in murine cerebral malaria. PLoS Pathog. 2014, 10, e1003839. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Newton, C.R. Diagnosis and management of the neurological complications of falciparum malaria. Nat. Rev. Neurol. 2009, 5, 189–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.K.; Mohanty, S.; Satpathy, S.K.; Mohapatra, D.N. Cerebral malaria in adults—A description of 526 cases admitted to Ispat General Hospital in Rourkela, India. Ann. Trop. Med. Parasitol. 2007, 101, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Birbeck, G.L.; Molyneux, M.E.; Kaplan, P.W.; Seydel, K.B.; Chimalizeni, Y.F.; Kawaza, K.; Taylor, T.E. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: A prospective cohort study. Lancet Neurol. 2010, 9, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- John, C.C.; Bangirana, P.; Byarugaba, J.; Opoka, R.O.; Idro, R.; Jurek, A.M.; Wu, B.; Boivin, M.J. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics 2008, 122, e92–e99. [Google Scholar] [CrossRef] [Green Version]
- Van der Heyde, H.C.; Nolan, J.; Combes, V.; Gramaglia, I.; Grau, G.E. A unified hypothesis for the genesis of cerebral malaria: Sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol. 2006, 22, 503–508. [Google Scholar] [CrossRef]
- Berendt, A.R.; Tumer, G.D.H.; Newbold, C.I. Cerebral malaria: The sequestration hypothesis. Parasitol. Today 1994, 10, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.; Helmby, H.; Wahlgren, M.; Hill, A.V.S.; Brewster, D.; Greenwood, B.M. Human cerebral malaria: Association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet 1990, 336, 1457–1460. [Google Scholar] [CrossRef]
- Medana, I.M.; Turner, G.D. Human cerebral malaria and the blood–brain barrier. Int. J. Parasitol. 2006, 36, 555–568. [Google Scholar] [CrossRef]
- Clark, I.A.; Rockett, K.A. The cytokine theory of human cerebral malaria. Parasitol. Today 1994, 10, 410–412. [Google Scholar] [CrossRef]
- Sanni, L.A.; Fu, S.; Dean, R.T.; Bloomfield, G.; Stocker, R.; Chaudhri, G.; Dinauer, M.C.; Hunt, N.H. Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria? J. Infect. Dis. 1999, 179, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Idro, R.; Marsh, K.; John, C.C.; Newton, C.R. Cerebral malaria: Mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr. Res. 2010, 68, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Rénia, L.; Howland, S.W.; Claser, C.; Gruner, A.C.; Suwanarusk, R.; Teo, T.H.; Russell, B.; Ng, L.F. Cerebral malaria: Mysteries at the blood-brain barrier. Virulence 2012, 3, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namutangula, B.; Ndeezi, G.; Byarugaba, J.S.; Tumwine, J.K. Mannitol as adjunct therapy for childhood cerebral malaria in Uganda: A randomized clinical trial. Malar. J. 2007, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Mishra, S.K.; Patnaik, R.; Dutt, A.K.; Pradhan, S.; Das, B.; Patnaik, J.; Mohanty, A.K.; Lee, S.J.; Dondorp, A.M. Brain swelling and mannitol therapy in adult cerebral malaria: A randomized trial. Clin. Infect. Dis. 2011, 53, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Benjamin, L.A.; Majhi, M.; Panda, P.; Kampondeni, S.; Sahu, P.K.; Mohanty, A.; Mahanta, K.C.; Pattnaik, R.; Mohanty, R.R.; et al. Magnetic resonance imaging of cerebral malaria patients reveals distinct pathogenetic processes in different parts of the brain. MSphere 2017, 2, e00193-17. [Google Scholar] [CrossRef] [Green Version]
- Potchen, M.J.; Kampondeni, S.D.; Seydel, K.B.; Haacke, E.M.; Sinyangwe, S.S.; Mwenechanya, M.; Glover, S.J.; Milner, D.A.; Zeli, E.; Hammond, C.A.; et al. 1.5 Tesla magnetic resonance imaging to investigate potential etiologies of brain swelling in pediatric cerebral malaria. Am. J. Trop. Med. Hyg. 2018, 98, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, P.K.; Hoffmann, A.; Majhi, M.; Pattnaik, R.; Patterson, C.; Mahanta, K.C.; Mohanty, A.K.; Mohanty, R.R.; Joshi, S.; Mohanty, A.; et al. Brain magnetic resonance imaging reveals different courses of disease in pediatric and adult cerebral malaria. Clin. Infect. Dis. 2021, 73, e2387–e2396. [Google Scholar] [CrossRef]
- Seydel, K.B.; Kampondeni, S.D.; Valim, C.; Potchen, M.J.; Milner, D.A.; Muwalo, F.W.; Birbeck, G.L.; Bradley, W.G.; Fox, L.L.; Glover, S.J.; et al. Brain swelling and death in children with cerebral malaria. N. Engl. J. Med. 2015, 372, 1126–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, P.K.; Duffy, F.J.; Dankwa, S.; Vishnyakova, M.; Majhi, M.; Pirpamer, L.; Vigdorovich, V.; Bage, J.; Maharana, S.; Mandala, W.; et al. Determinants of brain swelling in pediatric and adult cerebral malaria. J. Clin. Investig. 2021, 6, e145823. [Google Scholar] [CrossRef]
- Bernabeu, M.; Danziger, S.A.; Avril, M.; Vaz, M.; Babar, P.H.; Brazier, A.J.; Herricks, T.; Maki, J.N.; Pereira, L.; Mascarenhas, A.; et al. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc. Natl. Acad. Sci. USA 2016, 113, E3270–E3279. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Sahu, P.K.; Pattnaik, R.; Majhi, M.; Maharana, S.; Bage, J.; Mohanty, A.; Mohanty, A.; Bendszus, M.; Patterson, C.; et al. Evidence of Brain Alterations in Noncerebral Falciparum Malaria. Clin. Infect. Dis. 2022, 75, 11–18. [Google Scholar] [CrossRef]
- Sahu, P.K.; Satpathi, S.; Behera, P.K.; Mishra, S.K.; Mohanty, S.; Wassmer, S.C. Pathogenesis of cerebral malaria: New diagnostic tools, biomarkers, and therapeutic approaches. Front. Cell. Infect. Microbiol. 2015, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Patel, D.K.; Pati, S.S.; Mishra, S.K. Adjuvant therapy in cerebral malaria. Indian J. Med. Res. 2006, 124, 245–260. [Google Scholar] [PubMed]
- Pati, S.S.; Mishra, S.K. Pathogenesis of cerebral malaria—A step forward. Nat. Rev. Neurol. 2012, 8, 415–416. [Google Scholar] [CrossRef]
- Riggle, B.A.; Sinharay, S.; Schreiber-Stainthorp, W.; Munasinghe, J.P.; Maric, D.; Prchalova, E.; Slusher, B.S.; Powell, J.D.; Miller, L.H.; Pierce, S.K.; et al. MRI demonstrates glutamine antagonist-mediated reversal of cerebral malaria pathology in mice. Proc. Natl. Acad. Sci. USA 2018, 115, E12024–E12033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Miranda, A.S.; Brant, F.; Vieira, L.B.; Rocha, N.P.; Vieira, É.L.M.; Rezende, G.H.S.; de Oliveira Pimentel, P.M.; Moraes, M.F.; Ribeiro, F.M.; Ransohoff, R.M.; et al. A neuroprotective effect of the glutamate receptor antagonist MK801 on long-term cognitive and behavioral outcomes secondary to experimental cerebral malaria. Mol. Neurobiol. 2017, 54, 7063–7082. [Google Scholar] [CrossRef]
- Gul, S.; Ribeiro-Gomes, F.L.; Moreira, A.S.; Sanches, G.S.; Conceição, F.G.; Daniel-Ribeiro, C.T.; Ackerman, H.C.; Carvalho, L.J. Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria. Sci. Rep. 2021, 11, 12077. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.C.; Silva, J.D.; Pádua, T.A.; Torres, N.D.; Antunes, M.A.; Xisto, D.G.; Abreu, T.P.; Capelozzi, V.L.; Morales, M.M.; Sa Pinheiro, A.A.; et al. Mesenchymal stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral malaria. Stem Cell Res. Ther. 2015, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Qian, H.; Cao, J. Stem cell therapy: A novel treatment option for cerebral malaria? Stem Cell Res. Ther. 2015, 6, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T. Available online: https://clinicaltrials.gov/ct2/show/NCT03300648 (accessed on 20 March 2023).
- John, C.C. Adults Are Not Big Children: What Brain Magnetic Resonance Imaging Findings Tell Us About Differences in Pediatric and Adult Cerebral Malaria. Clin. Infect. Dis. 2021, 73, e2397–e2398. [Google Scholar] [CrossRef]
- Beare, N.A. Cerebral malaria—Using the retina to study the brain. Eye 2023, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mbengue, B.; Fall, M.M.; Varela, M.L.; Loucoubar, C.; Joos, C.; Fall, B.; Niang, M.S.; Niang, B.; Mbow, M.; Dieye, A.; et al. Analysis of antibody responses to selected Plasmodium falciparum merozoite surface antigens in mild and cerebral malaria and associations with clinical outcomes. Clin. Exp. Immunol. 2019, 196, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Zelter, T.; Strahilevitz, J.; Simantov, K.; Yajuk, O.; Adams, Y.; Ramstedt Jensen, A.; Dzikowski, R.; Granot, Z. Neutrophils impose strong immune pressure against PfEMP1 variants implicated in cerebral malaria. EMBO Rep. 2022, 23, e53641. [Google Scholar] [CrossRef] [PubMed]
- Lennartz, F.; Adams, Y.; Bengtsson, A.; Olsen, R.W.; Turner, L.; Ndam, N.T.; Ecklu-Mensah, G.; Moussiliou, A.; Ofori, M.F.; Gamain, B.; et al. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria. Cell Host. Microbe 2017, 21, 403–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, Y.; Olsen, R.W.; Bengtsson, A.; Dalgaard, N.; Zdioruk, M.; Satpathi, S.; Behera, P.K.; Sahu, P.K.; Lawler, S.E.; Qvortrup, K.; et al. Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood–brain barrier in cerebral malaria. J. Exp. Med. 2021, 218, e20201266. [Google Scholar] [CrossRef]
- Sulistyaningsih, E.; Istinaroh, N.; Dewi, R.; Hairrudin, H. Expression and in silico Analysis of CIDRα1 Recombinant Protein from Plasmodium Falciparum as a Malaria Subunit Vaccine Candidate. Trends Sci. 2022, 19, 1621. [Google Scholar] [CrossRef]
- Obeng-Adjei, N.; Larremore, D.B.; Turner, L.; Ongoiba, A.; Li, S.; Doumbo, S.; Yazew, T.B.; Kayentao, K.; Miller, L.H.; Traore, B.; et al. Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection. J. Clin. Investig. 2020, 5, e137262. [Google Scholar] [CrossRef]
- Hviid, L.; Lavstsen, T.; Jensen, A.T. A vaccine targeted specifically to prevent cerebral malaria–is there hope? Expert Rev. Vaccines 2018, 17, 565–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hviid, L.; Lopez-Perez, M.; Larsen, M.D.; Vidarsson, G. No sweet deal: The antibody-mediated immune response to malaria. Trends Parasitol. 2022, 38, 428–434. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, P.K.; Mohanty, S. Pathogenesis of Cerebral Malaria: New Trends and Insights for Developing Adjunctive Therapies. Pathogens 2023, 12, 522. https://doi.org/10.3390/pathogens12040522
Sahu PK, Mohanty S. Pathogenesis of Cerebral Malaria: New Trends and Insights for Developing Adjunctive Therapies. Pathogens. 2023; 12(4):522. https://doi.org/10.3390/pathogens12040522
Chicago/Turabian StyleSahu, Praveen Kishore, and Sanjib Mohanty. 2023. "Pathogenesis of Cerebral Malaria: New Trends and Insights for Developing Adjunctive Therapies" Pathogens 12, no. 4: 522. https://doi.org/10.3390/pathogens12040522
APA StyleSahu, P. K., & Mohanty, S. (2023). Pathogenesis of Cerebral Malaria: New Trends and Insights for Developing Adjunctive Therapies. Pathogens, 12(4), 522. https://doi.org/10.3390/pathogens12040522