Molecular Survey of Hemotropic Mycoplasma spp. and Bartonella spp. in Coatis (Nasua nasua) from Central-Western Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. Blood and Ectoparasites Sampling
2.2. DNA Extraction from Coatis’ Blood, Ectoparasite Samples and Conventional PCR (cPCR) for Mammal Gadph, Tick 16S rRNA, and Insects Cox-1 Endogenous Genes
2.3. Quantitative PCR Assay (qPCR) and Molecular Characterization of Hemoplasmas
2.4. Culturing for Bartonella spp.
2.5. Quantitative PCR Assay (qPCR) and Molecular Characterization of Bartonella spp.
2.6. Agarose gel Electrophoresis, Sequencing and Phylogenetic Analyses
2.7. Hematological and Path Analyses
3. Results
3.1. DNA Extraction from Coatis’ Blood and Ectoparasites Samples and Conventional PCR (PCR) Assays for Endogenous Genes
3.2. Quantitative PCR Assay (qPCR) for Hemoplasmas
3.3. Molecular Characterization of Hemoplasmas
3.4. Culturing and qPCR Assay (qPCR) for Bartonella spp.
3.5. Hematological Analyses and Path Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Cataldo, S.; Hidalgo-Hermoso, E.; Sacristán, I.; Cevidanes, A.; Napolitano, C.; Hernández, C.V.; Cabello, J.; Muller, A.; Millán, J. Hemoplasmas are endemic and cause asymptomatic infection in the endangered Darwin’s fox (Lycalopex fulvipes). Appl. Environ. Microbiol. 2020, 86, e00779-20. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.; Di Cataldo, S.; Volokhov, D.V.; Becker, D.J. Worldwide occurrence of haemoplasmas in wildlife: Insights into the patterns of infection, transmission, pathology and zoonotic potential. Transbound. Emerg. Dis. 2021, 68, 3236–3256. [Google Scholar] [CrossRef] [PubMed]
- Volokhov, D.V.; Hwang, J.; Chizhikov, V.E.; Danaceau, H.; Gottdenker, N.L. Prevalence, Genotype Richness, and Coinfection Patterns of Hemotropic Mycoplasmas in Raccoons (Procyon lotor) on Environmentally Protected and Urbanized Barrier Islands. Appli. Environ. Microbiol. 2017, 83, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sousa, K.C.M.; Herrera, H.M.; Secato, C.T.; Oliveira, A.D.V.; Santos, F.M.; Rocha, F.L.; Barreto, W.T.G.; Macedo, G.C.; de Andrade Pinto, P.C.E.; Machado, R.Z.; et al. Occurrence and molecular characterization of hemoplasmas in domestic dogs and wild mammals in a Brazilian wetland. Acta Trop. 2017, 171, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Cubilla, M.P.; Santos, L.C.; De Moraes, W.; Cubas, Z.S.; Leutenegger, C.M.; Estrada, M.; Lindsay, L.L.; Trindade, E.S.; Franco, C.R.C.; Vieira, R.F.C.; et al. Microscopic and molecular identification of hemotropic mycoplasmas in South American coatis (Nasua nasua). Comp. Immunol. Microbiol. Infect. Dis. 2017, 53, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Collere, F.C.M.; Delai, R.M.; Ferrari, L.D.R.; da Silva, L.H.; Fogaça, P.L.; Rodrigues, A.N.; Gonçalves, D.D.; Baggio, R.A.; Moraes, M.F.D.; Hoppe, E.G.L.; et al. ‘Candidatus Mycoplasma haematonasua’ and tick-borne pathogens in ring-tailed coatis (Nasua nasua, Linnaeus, 1976) from the Iguaçu National Park, Paraná State, southern Brazil. Transb. Emerg. Dis. 2021, 68, 3222–3229. [Google Scholar] [CrossRef]
- Messick, J.B. Hemotrophic mycoplasmas (hemoplasmas): A review and new insights into pathogenic potential. Vet. Clin. Pathol. 2004, 33, 2–13. [Google Scholar] [CrossRef]
- Breitschwerdt, E.B.; Maggi, R.G.; Chomel, B.B.; Lappin, M.R. Bartonellosis: An emerging infectious disease of zoonotic importance to animals and human beings. J. Vet. Emerg. Crit. Care 2010, 20, 8–30. [Google Scholar] [CrossRef]
- Okaro, U.; Addisu, A.; Casanas, B.; Anderson, B. Bartonella species, an emerging cause of blood-culture-negative endocarditis. Clin. Microbial. Rev. 2017, 30, 709–746. [Google Scholar] [CrossRef] [Green Version]
- Billeter, S.A.; Levy, M.G.; Chomel, B.B.; Breitschwerdt, E.B. Vector transmission of Bartonella species with emphasis on the potential for tick transmission. Med. Vet. Entomol. 2008, 22, 11–15. [Google Scholar] [CrossRef]
- Wechtaisong, W.; Bonnet, S.I.; Lien, Y.Y.; Chuang, S.T.; Tsai, Y.L. Transmission of Bartonella henselae within Rhipicephalus sanguineus: Data on the Potential Vector Role of the Tick. PLoS Negl. Trop. Dis. 2020, 14, e0008664. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Gottdenker, N.L. Bartonella species in raccoons and feral cats, Georgia, USA. Emerg. Infect. Dis. 2013, 19, 1167–1168. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Gilbert, A.; Fox, K.; Osikowicz, L.; Kosoy, M. Bartonella rochalimae and B. vinsonii subsp. berkhoffii in wild carnivores from colorado, USA. J. Wildl. Dis. 2016, 52, 844–849. [Google Scholar] [PubMed] [Green Version]
- Perles, L.; Martins, T.F.; Barreto, W.T.G.; Carvalho de Macedo, G.; Herrera, H.M.; Mathias, L.A.; Labruna, M.B.; Barros-Battesti, D.M.; Machado, R.Z.; André, M.R. Diversity and Seasonal Dynamics of Ticks on Ring-Tailed Coatis Nasua nasua (Carnivora: Procyonidae) in Two Urban Areas from Midwestern Brazil. Animals 2022, 12, 293. [Google Scholar] [CrossRef] [PubMed]
- Olifiers, N.; de Cassia Bianchi, R.; D’Andrea, P.S.; Mourao, G.; Gompper, M.E. Estimating age of carnivores from the Pantanal region of Brazil. Wildl. Biol. 2010, 16, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Martins, T.F.; Onofrio, V.C.; Barros-Battesti, D.M.; Labruna, M.B. Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: Descriptions, redescriptions, and identification key. Ticks Tick-borne Dis. 2010, 1, 75–99. [Google Scholar] [CrossRef]
- Dantas-Torres, F.; Martins, T.F.; Muñoz-Leal, S.; Onofrio, V.C.; Barros-Battesti, D.M. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: Updated species checklist and taxonomic keys. Ticks Tick-Borne Dis. 2019, 10, 101252. [Google Scholar] [CrossRef]
- Birkenheuer, A.; Whittington, J.; Neel, J.; Large, E.; Barge, A.; Levy, M.; Breitschwerdt, E. Molecular characterization of a Babesia species identified in a North American raccoon. J. Wild. Dis. 2006, 42, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Black, W.C.; Piesman, J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. PNAS 1994, 91, 10034–10038. [Google Scholar] [CrossRef] [Green Version]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Biol. Biotech. 1994, 3, 294–299. [Google Scholar]
- Willi, B.; Meli, M.L.; Lüthy, R.; Honegger, H.; Wengi, N.; Hoelzle, L.E.; Hofmann-Lehmann, R. Development and application of a universal hemoplasma screening assay based on the SYBR Green PCR principle. J. Clin. Microbiol. 2009, 47, 4049–4054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Wittwer, C.T. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Maggi, R.G.; Compton, S.M.; Trull, C.L.; Mascarelli, P.E.; Mozayeni, B.R.; Breitschwerdt, E.B. Infection with hemotropic Mycoplasma species in patients with or without extensive arthropod or animal contact. J. Clin. Microbiol. 2013, 51, 3237–3241. [Google Scholar] [CrossRef] [Green Version]
- Mongruel, A.C.; Spanhol, B.; Valente, V.C.; Porto, J.D.M.; Ogawa, P.P.; Otomura, L.; Vieira, R.F.C. Survey of vector-borne and nematode parasites involved in the etiology of anemic syndrome in sheep from Southern Brazil. Braz. J. Vet. Parasitol. 2020, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sonalio, K.; Perles, L.; Gatto, I.R.H.; do Amaral, R.B.; Almeida, H.M.; Galdeano, J.V.B.; André, M.R.; de Oliveira, L.G. Genetic diversity of emerging hemotropic mycoplasmas in domestic pigs from Brazil. Transb. Emerg. Dis. 2021, 68, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Maggi, R.G.; Duncan, A.W.; Breitschwerdt, E.B. Novel chemically modified liquid medium that will support the growth of seven Bartonella species. J. Clin. Microbiol. 2005, 43, 2651–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, A.W.; Maggi, R.G.; Breitschwerdt, E.B. A combined approach for the enhanced detection and isolation of Bartonella species in dog blood samples: Pre-enrichment liquid culture followed by PCR and subculture onto agar plates. J. Microbiol. Meth. 2007, 69, 273–281. [Google Scholar] [CrossRef]
- Keim, P.; Price, L.B.; Klevytska, A.M.; Smith, K.L.; Schupp, J.M.; Okinaka, R.; Hugh-Jones, M.E. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J. Bacteriol. 2000, 182, 2928–2936. [Google Scholar] [CrossRef] [Green Version]
- André, M.R.; Dumler, J.S.; Herrera, H.M.; Gonçalves, L.R.; de Sousa, K.C.; Scorpio, D.G. Assessment of a quantitative 5′ nuclease real-time polymerase chain reaction using the nicotinamide adenine dinucleotide dehydrogenase gamma subunit (nuoG) for Bartonella species in domiciled and stray cats in Brazil. J. Feline. Med. Surg. 2015, 18, 783–790. [Google Scholar] [CrossRef]
- Furquim, M.E.C.; do Amaral, R.; Dias, C.M.; Gonçalves, L.R.; Perles, L.; de Paula Lima, C.A.; André, M.R. Genetic diversity and Multilocus Sequence Typing Analysis of Bartonella henselae in domestic cats from Southeastern Brazil. Acta Trop. 2021, 222, 106037. [Google Scholar] [CrossRef]
- Dias, C.M.; do Amaral, R.B.; Perles, L.; dos Santos Muniz, A.L.; Rocha, T.F.G.; Machado, R.Z.; André, M.R. Multi-locus Sequencing Typing of Bartonella henselae isolates reveals coinfection with different variants in domestic cats from Midwestern Brazil. Acta Trop. 2022, 237, 106742. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. PNAS 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, B.; Hillier, L.; Wendl, M.C.; Green, P. Base-calling of automated sequencer traces usingPhred. I. Accuracy assessment. Genome Res. 1998, 8, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 12, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stover, B.C.; Muller, K.F. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform. 2010, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, F.M.; Macedo, G.C.; Barreto, W.T.G.; Oliveira-Santos, L.G.R.; Garcia, C.M.; Miranda Mourão, G.D.; Miraglia Herrera, H. Outcomes of Trypanosoma cruzi and Trypanosoma evansi infections on health of Southern coati (Nasua nasua), crab-eating fox (Cerdocyon thous), and ocelot (Leopardus pardalis) in the Brazilian Pantanal. PLoS ONE 2018, 13, e0201357. [Google Scholar] [CrossRef]
- Dean, R.S.; Helps, C.R.; Jones, T.J.G.; Tasker, S. Use of the real-time PCR to detect Mycoplasma haemofelis and ‘Candidatus Mycoplasma haemominutum’ in the saliva and salivary glands of hemoplasma infected cats. J. Feline Med. Surg. 2008, 10, 413–417. [Google Scholar] [CrossRef]
- Cohen, C.; Shemesh, M.; Garrido, M.; Messika, I.; Einav, M.; Khokhlova, I.; Hawlena, H. Haemoplasmas in wild rodents: Routes of transmission and infection dynamics. Mol. Ecol. 2018, 27, 3714–3726. [Google Scholar] [CrossRef]
- Lashnits, E.; Grant, S.; Thomas, B.; Qurollo, B.; Breitschwerdt, E.B. Evidence for vertical transmission of Mycoplasma haemocanis, but not Ehrlichia ewingii, in a dog. J. Vet. Int. Med. 2019, 33, 1747–1752. [Google Scholar] [CrossRef] [Green Version]
- Stadler, J.; Willi, S.; Ritzmann, M.; Eddicks, M.; Hoelzle, K.; Hoelzle, L.E. Detection of Mycoplasma suis in pre-suckling piglets indicates a vertical transmission. BCM Vet. Res. 2019, 15, 1–7. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.; Yoon, E.; Bae, H.; Chun, D.; Kang, J.G.; Yu, D.H. Clinical Case of a Transfusion-Associated Canine Mycoplasma haemocanis Infection in the Republic of Korea: A Case Report. Korean J. Parasitol. 2020, 58, 565. [Google Scholar] [CrossRef] [PubMed]
- Barreto, W.T.G.; Herrera, H.M.; de Macedo, G.C.; Rucco, A.C.; de Assis, W.O.; Oliveira-Santos, L.G.; Porfirio, G.E.M.O. Density and survivorship of the South American coati (Nasua nasua) in urban areas in Central–Western Brazil. Hystrix Italian J. Mammol. 2021, 31, 82–88. [Google Scholar]
- Harrus, S.; Klement, E.; Aroch, I.; Stein, T.; Bark, H.; Lavy, E.; Mazaki-Tovi, M.; Baneth, G. Retrospective study of 46 cases of feline haemobartonellosis in Israel and their relationships with FeLV and FIV infections. Vet. Rec. 2002, 151, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Tasker, S.; Binns, S.H.; Day, M.J.; Gruffydd-Jones, T.J.; Harbour, D.A.; Helps, C.R. Use of a PCR assay to assess the prevalence and risk factors for Mycoplasma haemofelis and ‘Candidatus Mycoplasma haemominutum’ in cats in the United Kingdom. Vet. Rec. 2003, 152, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J.; Sasaoka, F.; Fujihara, M.; Watanabe, Y.; Tasaki, T.; Oda, S.; Harasawa, R. Molecular identification of ‘Candidatus Mycoplasma haemovis’ in sheep with hemolytic anemia. J. Vet. Med. Sci. 2011, 73, 1113–1115. [Google Scholar] [CrossRef] [Green Version]
- Tasker, S.; Braddock, J.A.; Baral, R.; Helps, C.R.; Day, M.J.; Gruffydd-Jones, T.J.; Malik, R. Diagnosis of feline haemoplasma infection in Australian cats using a real-time PCR assay. J. Feline Med. Surg. 2004, 6, 345–354. [Google Scholar] [CrossRef]
- Willi, B.; Boretti, F.S.; Baumgartner, C.; Tasker, S.; Wenger, B.; Cattori, V. Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland. J. Clin. Microbiol. 2006, 44, 961–969. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Kosoy, M.; Recuenco, S.; Alvarez, D.; Moran, D.; Turmelle, A.; Ellison, J.; Garcia, D.L.; Estevez, A.; Lindblade, K.; et al. Bartonella spp. in Bats, Guatemala. Emerg. Infect. Dis. 2011, 17, 1269–1272. [Google Scholar] [CrossRef]
- Morse, S.F.; Olival, K.J.; Kosoy, M.; Billeter, S.; Patterson, B.D.; Dick, C.W.; Dittmar, K. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infec. Genet. Evol. 2012, 12, 1717–1723. [Google Scholar] [CrossRef]
ID | Sex | 1C | 2C | 3C | 4C | 5C | 6C |
---|---|---|---|---|---|---|---|
PEP01 | M | 2.02 × 104 (Tm = 79.5) myc1 | 2.66 × 102 (Tm = 79.5) myc1 | 1.18 × 103 (Tm = 79.5) myc1 | x | x | x |
PEP02 | M | 6.97 × 102 (Tm = 79.5) myc1 | 8.76 × 102 (Tm = 79.5) myc1 | x | x | x | x |
PEP04 | M | Negative | 6.83 × 102 (Tm = 79.5) myc1 | 3.80 × 103 (Tm = 79.5) myc1 | x | x | x |
PEP05 | M | 5.28 × 101 (Tm = 77.5) myc2 | 3.43 × 102 (Tm = 77.5) myc2 | x | x | x | x |
PEP12 | F | 1.65 × 102 (Tm = 79/79.5) myc1 | 4.09 × 102 (Tm = 79/79.5) myc1 | x | x | x | x |
PEP17 | F | 2.86 × 101 (Tm = 79/79.5) myc1 | 1.83 × 102 (Tm = 79/79.5) myc1 | x | x | x | x |
PEP18 | F | Negative | Negative | x | x | x | x |
PEP20 | F | 1.97 × 102 (Tm = 79/79.5) myc1 | 3.63 × 102 (Tm = 79/79.5) myc1 | x | x | x | x |
PEP23 | F | 1.89 × 102 (Tm = 79.5) myc1 | 1.36 × 103 (Tm = 79.5) myc1 | x | x | x | x |
PEP24 | F | 1.12 × 102 (Tm = 79/79.5) myc1 | 1.65 × 102 (Tm = 79/79.5) myc1 | x | x | x | x |
PEP31 | M | 1.38 × 103 (Tm = 79.5) myc1 | 4.66 × 103 (Tm = 79.5) myc1 | x | x | x | x |
PEP32 | M | 1.61 × 103 (Tm = 79.5) myc1 | 1.04 × 103 (Tm = 79.5) myc1 | x | x | x | x |
PEP43 | M | 6.30 × 102 (Tm = 79.5) myc1 | 1.58 × 103 (Tm = 79.5) myc1 | x | x | x | x |
VBA01 | M | 2.32 × 102 (Tm = 79/79.5) myc1 | 1.36 × 101 (Tm = 79/79.5) myc1 | x | x | x | x |
VBA03 | F | 5.02 × 101 (Tm = 79.5) myc1 | 3.95 × 102 (Tm = 79.5) myc1 | 2.12 × 102 (Tm = 79.5) myc1 | 3.49 × 102 (Tm = 79.5) myc1 | 1.55 × 102 (Tm = 79.5) myc1 | 5.39 × 101 (Tm = 79.5) myc1 |
VBA05 | M | 4.00 × 102 (Tm = 79.5) myc1 | 1.70 × 102 (Tm = 79.5) myc1 | x | x | x | x |
VBA06 | M | 1.62 × 102 (Tm = 79.5) myc1 | 5.74 × 102 (Tm = 79.5) myc1 | x | x | x | x |
VBA07 | M | 3.18 × 102 (Tm = 79.5) myc1 | 3.52 × 102 (Tm = 79.5) myc1 | 2.90 × 102 (Tm = 79.5) myc1 | 2.96 × 102 (Tm = 79.5) myc1 | x | x |
VBA08 | F | 2.25 × 102 (Tm = 79.5) myc1 | 5.49 × 101 (Tm = 79.5) myc1 | 8.98 × 102 (Tm = 79.5) myc1 | x | x | x |
VBA09 | M | Negative | Negative | Negative | Negative | x | x |
VBA10 | F | 1.05 × 103 (Tm = 77.5) myc2 | 6.79 × 101 (Tm = 77.5) myc2 | 7.16 × 101 (Tm = 77.5) myc2 | x | x | x |
VBA11 | M | Negative | 1.88 × 104 (Tm = 79/79.5) myc1 | 7.11 × 103 (Tm = 79/79.5) myc1 | x | x | x |
VBA12 | F | 9.60 × 100 (Tm = 79) myc1 | 7.47 × 100 (Tm = 79) myc1 | x | x | x | x |
VBA16 | F | 5.16 × 102 (Tm = 77.5) myc2 | 1.31 × 101 (Tm = 77.5) myc2 | 2.62 × 101 (Tm = 77.5) myc2 | 1.10 × 102 (Tm = 77.5) myc2 | x | x |
VBA17 | F | 8.10 × 103 (Tm = 79.5) myc1 | 9.79 × 101 (Tm = 79.5) myc1 | x | x | x | x |
VBA19 | F | 2.51 × 102 (Tm = 79.5) myc1 | 5.48 × 101 (Tm = 79.5) myc1 | x | x | x | x |
VBA21 | M | 3.59 × 100 (Tm = 77/77.5) myc2 | 5.64 × 100 (Tm = 77/77.5) myc2 | 3.00 × 102 (Tm = 77/77.5) myc2 | 4.94 × 100 (Tm = 77/77.5) myc2 | 2.85 × 100 (Tm = 77/77.5) myc2 | 5.98 × 104 (Tm = 77/77.5) myc2 |
VBA22 | F | 5.14 × 100 (Tm = 79) myc1 | 5.39 × 100 (Tm = 79) myc1 | x | x | x | x |
VBA23 | F | 7.45 × 100 (Tm = 77.5) myc2 | 7.45 × 100 (Tm = 77.5) myc2 | x | x | x | x |
VBA25 | M | Negative | Negative | 1.70 × 101 (Tm = 79) myc1 | 3.33 × 100 (Tm = 79) myc1 | 9.03 × 103 (Tm = 79.5) myc1 | x |
VBA29 | M | 2.18 × 102 (Tm = 79/79.5) myc1 | 4.65 × 102 (Tm = 79/79.5) myc1 | x | x | x | x |
VBA38 | F | 6.33 × 100 (Tm = 79) myc1 | 3.18 × 100 (Tm = 79) myc1 | x | x | x | x |
VBA41 | F | 2.05 × 103 (Tm = 79/79.5) myc1 | 2.33 × 102 (Tm = 79/79.5) myc1 | x | x | x | x |
VBA44 | M | 2.09 × 102 (Tm = 77.5) myc1 | 2.39 × 102 (Tm = 77.5) myc1 | 1.88 × 102 (Tm = 77.5) myc1 | x | x | x |
VBA55 | M | 2.03 × 102 (Tm = 79) myc1 | 2.09 × 102 (Tm = 79) myc1 | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perles, L.; Barreto, W.T.G.; Santos, F.M.; Duarte, L.L.; de Macedo, G.C.; Barros-Battesti, D.M.; Herrera, H.M.; Machado, R.Z.; André, M.R. Molecular Survey of Hemotropic Mycoplasma spp. and Bartonella spp. in Coatis (Nasua nasua) from Central-Western Brazil. Pathogens 2023, 12, 538. https://doi.org/10.3390/pathogens12040538
Perles L, Barreto WTG, Santos FM, Duarte LL, de Macedo GC, Barros-Battesti DM, Herrera HM, Machado RZ, André MR. Molecular Survey of Hemotropic Mycoplasma spp. and Bartonella spp. in Coatis (Nasua nasua) from Central-Western Brazil. Pathogens. 2023; 12(4):538. https://doi.org/10.3390/pathogens12040538
Chicago/Turabian StylePerles, Lívia, Wanessa Teixeira Gomes Barreto, Filipe Martins Santos, Leidiane Lima Duarte, Gabriel Carvalho de Macedo, Darci Moraes Barros-Battesti, Heitor Miraglia Herrera, Rosangela Zacarias Machado, and Marcos Rogério André. 2023. "Molecular Survey of Hemotropic Mycoplasma spp. and Bartonella spp. in Coatis (Nasua nasua) from Central-Western Brazil" Pathogens 12, no. 4: 538. https://doi.org/10.3390/pathogens12040538
APA StylePerles, L., Barreto, W. T. G., Santos, F. M., Duarte, L. L., de Macedo, G. C., Barros-Battesti, D. M., Herrera, H. M., Machado, R. Z., & André, M. R. (2023). Molecular Survey of Hemotropic Mycoplasma spp. and Bartonella spp. in Coatis (Nasua nasua) from Central-Western Brazil. Pathogens, 12(4), 538. https://doi.org/10.3390/pathogens12040538