Virulence and Antimicrobial Resistance Profiling of Salmonella Serovars Recovered from Retail Poultry Offal in KwaZulu-Natal Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Clearance
2.2. Study Area
2.3. Study Design
2.4. Sample Collection
2.5. Microbiological Analysis
2.5.1. Reference Strains for Quality Control
2.5.2. Isolation and Identification of Salmonella
2.5.3. Salmonella Serotyping
2.5.4. Antimicrobial Susceptibility Testing
2.6. Detection of Salmonella Virulence Genes Using Polymerase Chain Reaction (PCR)
2.7. Statistical Analysis
3. Results
3.1. Prevalence of Salmonella from Chicken Offal
3.2. Salmonella Serotypes
3.3. Antimicrobial Resistance of Salmonella
3.4. PCR for Detection of Virulence Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- South African Poultry Association. South African Poultry Association 2021 Industry Profile. 2021. Available online: https://www.sapoultry.co.za/wp-content/uploads/2023/01/2021-Industry-Profile.pdf (accessed on 1 March 2023).
- Mokgophi, T.M.; Gcebe, N.; Fasina, F.; Adesiyun, A.A. Antimicrobial resistance profiles of Salmonella isolates on chickens processed and retailed at outlets of the informal market in Gauteng Province, South Africa. Pathogens 2021, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED). Salmonella; 2023. Available online: https://www.cdc.gov/salmonella/index.html#:~:text=CDC%20estimates%20Salmonella%20bacteria%20cause,for%20most%20of%20these%20illnesses (accessed on 2 March 2023).
- Feasey, N.A.; Dougan, G.; Kingsley, R.A.; Heyderman, R.S.; Gordon, M.A. Invasive non-typhoidal Salmonella disease: An emerging and neglected tropical disease in Africa. Lancet 2012, 379, 2489–2499. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.; Novais, C.; Peixe, L. Food-to-humans bacterial transmission. Microbiol. Spectr. 2020, 8, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.G.; Rosario, D.K.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.; Conte-Junior, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 85, 14. [Google Scholar] [CrossRef] [PubMed]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Madoroba, E.; Gelaw, A.K.; Kapeta, D. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort. J. Vet. Res. 2016, 83, 1–8. [Google Scholar] [CrossRef]
- McEwen, S.A.; Fedorka-Cray, P.J. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 2002, 34, S93–S106. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- South African Government. Fertilizers, Farm Feeds, Seeds and Remedies Act 36 of 1947. Available online: https://www.gov.za/sites/default/files/gcis_document/201505/act-36-1947.pdf (accessed on 14 February 2023).
- Konishi, N.; Obata, H.; Yokoyama, K.; Sadamasu, K.; Kai, A. Comparison of the Serovars and Characteristics of Salmonella Isolated from Human Feces and Foods in the 1990s and 2010s in Tokyo. Jpn. J. Infect. Dis. 2023, 24, 14–19. [Google Scholar] [CrossRef]
- Shimojima, Y.; Nishino, Y.; Fukui, R.; Kuroda, S.; Suzuki, J.; Sadamasu, K. Salmonella serovars isolated from retail meats in Tokyo, Japan and their antimicrobial susceptibility. Shokuhin Eiseigaku zasshi. J. Food Hyg. Soc. Jpn. 2020, 61, 211–217. [Google Scholar] [CrossRef]
- Liu, S.; Kilonzo-Nthenge, A.; Nahashon, S.N.; Pokharel, B.; Mafiz, A.I.; Nzomo, M. Prevalence of multidrug-resistant foodborne pathogens and indicator bacteria from edible offal and muscle meats in Nashville, Tennessee. Foods 2020, 9, 1190. [Google Scholar] [CrossRef] [PubMed]
- Municipalities of South Africa. 2023. Available online: https://municipalities.co.za/overview/124/king-cetshwayo-district-municipality (accessed on 15 March 2023).
- Africa, Municipalities of South Africa. KwaZulu-Natal. 2017. Available online: https://municipalities.co.za/provinces/view/4/kwazulu-natal (accessed on 23 October 2022).
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Porto-Fett, A.C.; Shoyer, B.A.; Henry, E.; Shane, L.E.; Osoria, M.; Luchansky, J.B. Prevalence, levels, and viability of Salmonella in and on raw chicken livers. J. Food Prot. 2019, 82, 834–843. [Google Scholar] [CrossRef]
- Naidoo, S.; Butaye, P.; Maliehe, T.S.; Magwedere, K.; Basson, A.K.; Madoroba, E. Virulence factors and antimicrobial resistance in Salmonella species isolated from retail beef in selected KwaZulu-Natal municipality areas, South Africa. Appl. Sci. 2022, 12, 2843. [Google Scholar] [CrossRef]
- Dieckmann, R.; Helmuth, R.; Erhard, M.; Malorny, B. Rapid classification and identification of Salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2008, 74, 7767–7778. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Li, N.; Li, P.; Zhou, Y.; Gao, S.; Gao, H.; Xin, W.; Wang, J. MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars. Eur. J. Mass Spectrom. 2017, 23, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed]
- Grimont, P.A.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Centre for Reference and Research on Salmonella; Institut Pasteur: Paris, France, 2007; pp. 1–66. [Google Scholar]
- Mathole, M.A.; Muchadeyi, F.C.; Mdladla, K.; Malatji, D.P.; Dzomba, E.F.; Madoroba, E. Presence, distribution, serotypes and antimicrobial resistance profiles of Salmonella among pigs, chickens and goats in South Africa. Food Control 2017, 72, 219–224. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility: Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Siddiky, N.A.; Sarker, S.; Khan, S.R.; Rahman, T.; Kafi, A.; Samad, M.A. Virulence and antimicrobial resistance profile of non-typhoidal Salmonella enterica serovars recovered from poultry processing environments at wet markets in Dhaka, Bangladesh. PLoS ONE 2022, 17, e0254465. [Google Scholar] [CrossRef]
- Norman, G.; Streiner, D. Biostatistics: The Bare Essentials, 4th ed.; People’s Medical Publishing House: Shelton, CT, USA, 2014. [Google Scholar]
- Madoroba, E.; Magwedere, K.; Chaora, N.S.; Matle, I.; Muchadeyi, F.; Mathole, M.A.; Pierneef, R. Microbial communities of meat and meat products: An exploratory analysis of the product quality and safety at selected enterprises in South Africa. Microorganisms 2021, 9, 507. [Google Scholar] [CrossRef]
- Raji, M.A.; Kazeem, H.M.; Magyigbe, K.A.; Ahmed, A.O.; Lawal, D.N.; Raufu, I.A. Salmonella Serovars, antibiotic resistance, and virulence factors isolated from intestinal content of slaughtered chickens and ready-to-eat chicken gizzards in the ilorin metropolis, Kwara State, Nigeria. Int. J. Food Sci. 2021, 2021, 8872137. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Whole Genome Sequencing for Foodborne Disease Surveillance: Landscape Paper; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Smith, A.M.; Tau, N.P.; Ngomane, H.M.; Sekwadi, P.; Ramalwa, N.; Moodley, K.; Govind, C.; Khan, S.; Archary, M.; Thomas, J. Whole-genome sequencing to investigate two concurrent outbreaks of Salmonella enteritidis in South Africa, 2018. J. Med. Microbiol. 2020, 69, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.I.; Saraiva, M.M.; Casas, M.R.; Oliveira, G.M.; Cardozo, M.V.; Benevides, V.P.; Barbosa, F.O.; Freitas Neto, O.C.; Almeida, A.M.; Berchieri, A. High occurrence of β-lactamase-producing Salmonella Heidelberg from poultry origin. PLoS ONE 2020, 15, e0230676. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [PubMed]
- Borges, K.A.; Furian, T.Q.; Borsoi, A.; Moraes, H.L.; Salle, C.T.; Nascimento, V.P. Detection of virulence-associated genes in Salmonella Enteritidis isolates from chicken in South of Brazil. Pesqui. Vet. Bras. 2013, 33, 1416–1422. [Google Scholar] [CrossRef]
- Webber, B.; Borges, K.A.; Furian, T.Q.; Rizzo, N.N.; Tondo, E.C.; Santos, L.R.D.; Rodrigues, L.B.; Nascimento, V.P.D. Detection of virulence genes in Salmonella Heidelberg isolated from chicken carcasses. Rev. Instig. Med. Trop. 2019, 61, e36. [Google Scholar] [CrossRef]
- Darwin, K.H.; Miller, V.L. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 1999, 12, 405–428. [Google Scholar] [CrossRef]
- Gibson, D.L.; White, A.P.; Rajotte, C.M.; Kay, W.W. AgfC and AgfE facilitate extracellular thin aggregative fimbriae synthesis in Salmonella enteritidis. Microbiology 2007, 153, 1131–1140. [Google Scholar] [CrossRef]
- Austin, J.W.; Sanders, G.; Kay, W.W.; Collinson, S.K. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol. Lett. 1998, 162, 295–301. [Google Scholar] [CrossRef]
- Campos-Galvão, M.E.M.; Ribon, A.O.B.; Araújo, E.F.; Vanetti, M.C.D. Changes in the Salmonella enterica Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals. J. Basic Microbiol. 2016, 56, 493–501. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Sequence (5′–3′) | Amplicon Size (bp) | Reference |
---|---|---|---|
InvA | F-GTGAAATTATCGCCACGTTCGGGCAA R-TCATCGCACCGTCAAAGGAACC | 284 | [26] |
AgfA | F-TCCACAATGGGGCGGCGGCG R-CCTGACGCACCATTACGCTG | 350 | [26] |
LpfA | F-CTTTCGCTGCTGAATCTGGT R-CAGTGTTAACAGAAACCAGT | 250 | [26] |
SivH | F-GTATGCGAACAAGCGTAACAC R-CAGAATGCGAATCCTTCGCAC | 763 | [26] |
Offal Type | Number of Samples | Positive Samples | Prevalence (%) | CI |
---|---|---|---|---|
Gizzards | 284 | 12 | 4.23 | 2.2–7 |
Hearts | 90 | 1 | 1.1 | 0.03–6 |
Livers | 72 | 0 | 0 | 0–5 |
Total | 446 | 13 | 2.91 | 1.6–5 |
Sample ID | AP | K | CTX | FOX | CIP | C | OT |
---|---|---|---|---|---|---|---|
G180 | S | S | S | S | S | S | S |
169 | S | S | S | S | S | S | S |
H207 | S | S | S | S | S | S | S |
G398 | R | R | S | S | S | R | R |
G362 | S | S | S | S | S | S | S |
G444 | S | S | S | S | S | S | S |
G345 | S | S | S | S | S | S | S |
G343 | S | S | S | S | S | S | S |
G399 | S | S | S | S | S | S | S |
G352 | S | S | S | S | S | S | S |
G357 | S | S | S | S | S | S | S |
G307 | R | R | S | S | S | R | R |
127 | S | S | S | S | S | S | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndlovu, L.; Butaye, P.; Maliehe, T.S.; Magwedere, K.; Mankonkwana, B.B.; Basson, A.K.; Ngema, S.S.; Madoroba, E. Virulence and Antimicrobial Resistance Profiling of Salmonella Serovars Recovered from Retail Poultry Offal in KwaZulu-Natal Province, South Africa. Pathogens 2023, 12, 641. https://doi.org/10.3390/pathogens12050641
Ndlovu L, Butaye P, Maliehe TS, Magwedere K, Mankonkwana BB, Basson AK, Ngema SS, Madoroba E. Virulence and Antimicrobial Resistance Profiling of Salmonella Serovars Recovered from Retail Poultry Offal in KwaZulu-Natal Province, South Africa. Pathogens. 2023; 12(5):641. https://doi.org/10.3390/pathogens12050641
Chicago/Turabian StyleNdlovu, Lindokuhle, Patrick Butaye, Tsolanku. S. Maliehe, Kudakwashe Magwedere, Bongi B. Mankonkwana, Albertus K. Basson, Siyanda. S. Ngema, and Evelyn Madoroba. 2023. "Virulence and Antimicrobial Resistance Profiling of Salmonella Serovars Recovered from Retail Poultry Offal in KwaZulu-Natal Province, South Africa" Pathogens 12, no. 5: 641. https://doi.org/10.3390/pathogens12050641
APA StyleNdlovu, L., Butaye, P., Maliehe, T. S., Magwedere, K., Mankonkwana, B. B., Basson, A. K., Ngema, S. S., & Madoroba, E. (2023). Virulence and Antimicrobial Resistance Profiling of Salmonella Serovars Recovered from Retail Poultry Offal in KwaZulu-Natal Province, South Africa. Pathogens, 12(5), 641. https://doi.org/10.3390/pathogens12050641