Challenges in Direct Detection of Flaviviruses: A Review
Abstract
:1. Introduction
2. Conventional Methodologies for Direct Detection of Flavivirus
2.1. Molecular Diagnosis
2.2. Serological Diagnosis (NS1 Protein)
3. New Methodologies for Direct Detection of Flavivirus
3.1. RT-LAMP
3.2. CRISPR
3.3. Microfluidics
3.4. Nanotechnology-LSPR
3.5. Surface-Enhanced Raman Scattering (SERS)
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knipe David, M.; Howley, P. Fields Virology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 1, ISBN 978-1-4511-0563-6. [Google Scholar]
- Thomas, S.J.; Martinez, L.J.; Endy, T.P. Flaviviruses: Yellow Fever, Japanese B, West Nile, and Others. In Viral Infections of Humans: Epidemiology and Control; Kaslow, R.A., Stanberry, L.R., Le Duc, J.W., Eds.; Springer: Boston, MA, USA, 2014; pp. 383–415. ISBN 978-1-4899-7448-8. [Google Scholar]
- Rocha, T.C.; Svoboda, W.K.; Gomes, E.C. The Importance of Investigation of Arboviruses in Public Health: An Overview and the Role of Non-Human Primates. Visão Acadêmica 2014, 15, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Lima-Camara, T.N. Arboviroses emergentes e novos desafios para a saúde pública no Brasil. Rev. Saúde Pública 2016, 50. [Google Scholar] [CrossRef] [Green Version]
- Donalisio, M.R.; Freitas, A.R.R.; Zuben, A.P.B.V. Arboviroses Emergentes No Brasil: Desafios Para a Clínica e Implicações Para a Saúde Pública. Rev. Saúde Pública 2017, 51, 30. [Google Scholar] [PubMed]
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.G.; Wint, G.R.W.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The Current and Future Global Distribution and Population at Risk of Dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, P.-Y.; Huang, J.-H. Current Advances in Dengue Diagnosis. Clin. Diagn Lab. Immunol. 2004, 11, 642–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, L.T.M. Emergent Arboviruses in Brazil. Rev. Soc. Bras. Med. Trop. 2007, 40, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Charrel, R.N. Diagnosis of Arboviral Infections–A Quagmire of Cross Reactions and Complexities. Travel Med. Infect. Dis. 2016, 14, 11–12. [Google Scholar] [CrossRef]
- Magalhaes, T.; Chalegre, K.D.M.; Braga, C.; Foy, B.D. The Endless Challenges of Arboviral Diseases in Brazil. Trop. Med. Infect. Dis. 2020, 5, 75. [Google Scholar] [CrossRef]
- Musso, D.; Desprès, P. Serological Diagnosis of Flavivirus-Associated Human Infections. Diagnostics 2020, 10, 302. [Google Scholar] [CrossRef]
- Sharma, S.; Kabir, M.A.; Asghar, W. Lab-on-a-Chip Zika Detection With Reverse Transcription Loop-Mediated Isothermal Amplification–Based Assay for Point-of-Care Settings. Arch. Pathol. Lab. Med. 2020, 144, 1335–1343. [Google Scholar] [CrossRef]
- Da Silva, S.J.R.; Paiva, M.H.S.; Guedes, D.R.D.; Krokovsky, L.; de Melo, F.L.; da Silva, M.A.L.; da Silva, A.; Ayres, C.F.J.; Pena, L.J. Development and Validation of Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) for Rapid Detection of ZIKV in Mosquito Samples from Brazil. Sci. Rep. 2019, 9, 4494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vina-Rodriguez, A.; Sachse, K.; Ziegler, U.; Chaintoutis, S.C.; Keller, M.; Groschup, M.H.; Eiden, M. A Novel Pan-Flavivirus Detection and Identification Assay Based on RT-QPCR and Microarray. BioMed. Res. Int. 2017, 2017, e4248756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roldán, J.S.; Cassola, A.; Castillo, D.S. Development of a Novel NS1 Competitive Enzyme-Linked Immunosorbent Assay for the Early Detection of Zika Virus Infection. PLoS ONE 2021, 16, e0256220. [Google Scholar] [CrossRef] [PubMed]
- Licínio, C.O.L.; Ayres, F.M. The Use of Real Time PCR for Arboviruses Diagnostics: Integrative Review. J. Bras. Patol. Med. Lab. 2021, 57, e2882021. [Google Scholar] [CrossRef]
- Daidoji, T.; Morales Vargas, R.E.; Hagiwara, K.; Arai, Y.; Watanabe, Y.; Nishioka, K.; Murakoshi, F.; Garan, K.; Sadakane, H.; Nakaya, T. Development of Genus-Specific Universal Primers for the Detection of Flaviviruses. Virol. J. 2021, 18, 187. [Google Scholar] [CrossRef]
- Cunha, M.S.; Luchs, A.; dos Santos, F.C.P.; Caleiro, G.S.; Nogueira, M.L.; Maiorka, P.C. Applying a Pan-Flavivirus RT-QPCR Assay in Brazilian Public Health Surveillance. Arch. Virol. 2020, 165, 1863–1868. [Google Scholar] [CrossRef]
- Ricciardi-Jorge, T.; Bordignon, J.; Koishi, A.; Zanluca, C.; Mosimann, A.L.; Duarte dos Santos, C.N. Development of a Quantitative NS1-Capture Enzyme-Linked Immunosorbent Assay for Early Detection of Yellow Fever Virus Infection. Sci. Rep. 2017, 7, 16229. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Kim, T.-Y.; Park, J.-S.; Park, J.S.; Lee, J.; Moon, J.; Chong, C.-K.; Junior, I.N.; Ferry, F.R.; Ahn, H.-J.; et al. Development and Clinical Evaluation of a Rapid Diagnostic Test for Yellow Fever Non-Structural Protein 1. Korean J. Parasitol. 2019, 57, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Mora-Cárdenas, E.; Aloise, C.; Faoro, V.; Gašper, N.K.; Korva, M.; Caracciolo, I.; D’Agaro, P.; Avšič-Županc, T.; Marcello, A. Comparative Specificity and Sensitivity of NS1-Based Serological Assays for the Detection of Flavivirus Immune Response. PLoS Negl. Trop. Dis. 2020, 14, e0008039. [Google Scholar] [CrossRef]
- Kim, Y.C.; Garcia-Larragoiti, N.; Cano-Mendez, A.; Hernandez-Flores, K.G.; Domínguez-Alemán, C.A.; Cabrera-Jorge, F.J.; Mar, M.A.; Vivanco-Cid, H.; Viveros-Sandoval, M.E.; Reyes-Sandoval, A. Development of Zika NS1 ELISA Methodology for Seroprevalence Detection in a Cohort of Mexican Patients in an Endemic Region. J. Clin. Virol. Plus 2021, 1, 100024. [Google Scholar] [CrossRef]
- Mata, V.E.; de Andrade, C.A.F.; Passos, S.R.L.; Hökerberg, Y.H.M.; Fukuoka, L.V.B.; Silva, S.A. da Rapid Immunochromatographic Tests for the Diagnosis of Dengue: A Systematic Review and Meta-Analysis. Cad. Saúde Pública 2020, 36, e00225618. [Google Scholar] [CrossRef]
- Tan, L.K.; Wong, W.Y.; Yang, H.T.; Huber, R.G.; Bond, P.J.; Ng, L.C.; Maurer-Stroh, S.; Hapuarachchi, H.C. Flavivirus Cross-Reactivity to Dengue Nonstructural Protein 1 Antigen Detection Assays. Diagnostics 2019, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, I.; Rosenberger, K.D.; Magalhaes, T.; Morais, C.N.L.; Braga, C.; Marques, E.T.A.; Calvet, G.A.; Damasceno, L.; Brasil, P.; Filippis, A.M.B.d.; et al. Diagnostic Performance of Anti-Zika Virus IgM, IgAM and IgG ELISAs during Co-Circulation of Zika, Dengue, and Chikungunya Viruses in Brazil and Venezuela. PLoS Negl. Trop. Dis. 2021, 15, e0009336. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Nakayama, E.E.; Saito, A.; Egawa, A.; Sato, T.; Phadungsombat, J.; Rahim, R.; Hasan, A.; Iwamoto, H.; Rahman, M.; et al. Evaluation of Novel Rapid Detection Kits for Dengue Virus NS1 Antigen in Dhaka, Bangladesh, in 2017. Virol. J. 2019, 16, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, S.S.; Andreata-Santos, R.; Pereira, L.R.; Soares, C.P.; Félix, A.C.; Andrade, P. de M.J.C. de; Durigon, E.L.; Romano, C.M.; Ferreira, L.C. de S. NS1-Based ELISA Test Efficiently Detects Dengue Infections without Cross-Reactivity with Zika Virus. Int. J. Infect. Dis. 2021, 112, 202–204. [Google Scholar] [CrossRef]
- Lima, M.d.R.Q.; Chouin-Carneiro, T.; Azeredo, E.; Barbosa, L.S.; Souza, T.M.A.; da Silva, J.B.C.; Nunes, P.C.G.; Dal Fabbro, M.; Facco, I.H.R.; Venâncio-da-Cunha, R.; et al. The Inability of a Dengue NS1 ELISA to Detect Zika Infections. Sci. Rep. 2019, 9, 18596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [Green Version]
- Parida, M.; Posadas, G.; Inoue, S.; Hasebe, F.; Morita, K. Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification for Rapid Detection of West Nile Virus. J. Clin. Microbiol. 2004, 42, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Parida, M.M. Rapid and Real-Time Detection Technologies for Emerging Viruses of Biomedical Importance. J. Biosci. 2008, 33, 617–628. [Google Scholar] [CrossRef]
- Lau, Y.-L.; Lai, M.-Y.; Teoh, B.-T.; Abd-Jamil, J.; Johari, J.; Sam, S.-S.; Tan, K.-K.; AbuBakar, S. Colorimetric Detection of Dengue by Single Tube Reverse-Transcription-Loop-Mediated Isothermal Amplification. PLoS ONE 2015, 10, e0138694. [Google Scholar] [CrossRef]
- Zhou, Y.; Wan, Z.; Yang, S.; Li, Y.; Li, M.; Wang, B.; Hu, Y.; Xia, X.; Jin, X.; Yu, N.; et al. A Mismatch-Tolerant Reverse Transcription Loop-Mediated Isothermal Amplification Method and Its Application on Simultaneous Detection of All Four Serotype of Dengue Viruses. Front. Microbiol. 2019, 10, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, M.N.; de Oliveira Coelho, B.; Góes, L.G.B.; Minoprio, P.; Durigon, E.L.; Morello, L.G.; Marchini, F.K.; Riediger, I.N.; do Carmo Debur, M.; Nakaya, H.I.; et al. Colorimetric RT-LAMP SARS-CoV-2 Diagnostic Sensitivity Relies on Color Interpretation and Viral Load. Sci. Rep. 2021, 11, 9026. [Google Scholar] [CrossRef] [PubMed]
- Priye, A.; Bird, S.W.; Light, Y.K.; Ball, C.S.; Negrete, O.A.; Meagher, R.J. A Smartphone-Based Diagnostic Platform for Rapid Detection of Zika, Chikungunya, and Dengue Viruses. Sci. Rep. 2017, 7, 44778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Yin, F.; Bi, Y.; Cheng, G.; Li, J.; Hou, L.; Li, Y.; Yang, B.; Liu, W.; Yang, L. Rapid and Sensitive Detection of Zika Virus by Reverse Transcription Loop-Mediated Isothermal Amplification. J. Virol. Methods 2016, 238, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Lamb, L.E.; Bartolone, S.N.; Tree, M.O.; Conway, M.J.; Rossignol, J.; Smith, C.P.; Chancellor, M.B. Rapid Detection of Zika Virus in Urine Samples and Infected Mosquitos by Reverse Transcription-Loop-Mediated Isothermal Amplification. Sci. Rep. 2018, 8, 3803. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Qiu, Z.; Ma, J.; Zardán Gómez de la Torre, T.; Johansson, C.; Svedlindh, P.; Strömberg, M. Attomolar Zika Virus Oligonucleotide Detection Based on Loop-Mediated Isothermal Amplification and AC Susceptometry. Biosens. Bioelectron. 2016, 86, 420–425. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Martins, D.B.; Kimura, M.; Catena, A.D.; Borba, M.A.; Mattos, S.D.; Abe, H.; Yoshikawa, R.; de Lima Filho, J.L.; Yasuda, J. Development and Evaluation of a Rapid Molecular Diagnostic Test for Zika Virus Infection by Reverse Transcription Loop-Mediated Isothermal Amplification. Sci. Rep. 2017, 7, 13503. [Google Scholar] [CrossRef] [Green Version]
- Neeraja, M.; Lakshmi, V.; Lavanya, V.; Priyanka, E.N.; Parida, M.M.; Dash, P.K.; Sharma, S.; Rao, P.V.L.; Reddy, G. Rapid Detection and Differentiation of Dengue Virus Serotypes by NS1 Specific Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Assay in Patients Presenting to a Tertiary Care Hospital in Hyderabad, India. J. Virol. Methods 2015, 211, 22–31. [Google Scholar] [CrossRef] [PubMed]
- ole Kwallah, A.; Inoue, S.; Muigai, A.W.T.; Kubo, T.; Sang, R.; Morita, K.; Mwau, M. A Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for the Rapid Detection of Yellow Fever Virus. J. Virol. Methods 2013, 193, 23–27. [Google Scholar] [CrossRef]
- Nunes, M.R.T.; Vianez, J.L.; Nunes, K.N.B.; da Silva, S.P.; Lima, C.P.S.; Guzman, H.; Martins, L.C.; Carvalho, V.L.; Tesh, R.B.; Vasconcelos, P.F.C. Analysis of a Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) for Yellow Fever Diagnostic. J. Virol. Methods 2015, 226, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, Z.-J.; Jing, J.; Ren, J.-Q.; Liu, Y.-Y.; Guo, H.-H.; Fan, M.; Lu, H.-J.; Jin, N.-Y. Reverse Transcription Loop-Mediated Isothermal Amplification for Rapid Detection of Japanese Encephalitis Virus in Swine and Mosquitoes. Vector Borne Zoonotic Dis. 2012, 12, 1042–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.; Pei, J.; Gou, H.; Ye, Z.; Liu, C.; Chen, J. Rapid and Simple Detection of Japanese Encephalitis Virus by Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Dipstick. J. Virol. Methods 2015, 213, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Dhanze, H.; Bhilegaonkar, K.N.; Ravi Kumar, G.V.P.P.S.; Thomas, P.; Chethan Kumar, H.B.; Suman Kumar, M.; Rawat, S.; Kerketta, P.; Rawool, D.B.; Kumar, A. Comparative Evaluation of Nucleic Acid-Based Assays for Detection of Japanese Encephalitis Virus in Swine Blood Samples. Arch. Virol. 2015, 160, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.S.; Saxena, D.; Parida, M.; Rathinam, S. Evaluation of Real-Time Reverse-Transcription Loop-Mediated Isothermal Amplification Assay for Clinical Diagnosis of West Nile Virus in Patients. Indian J. Med. Res. 2018, 147, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Wang, B.; Li, J.; Ni, P.; Jin, Y.; Chen, S.; Xi, Y.; Zhang, R.; Duan, G. The CRISPR-Cas System as a Tool for Diagnosing and Treating Infectious Diseases. Mol. Biol. Rep. 2022, 49, 11301–11311. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439. [Google Scholar] [CrossRef] [Green Version]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic Diagnostic Technologies for Global Public Health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef]
- Weibel, D.B.; Whitesides, G.M. Applications of Microfluidics in Chemical Biology. Curr. Opin. Chem. Biol. 2006, 10, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors 2015, 15, 30011–30031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikoleli, G.-P.; Siontorou, C.G.; Nikolelis, D.P.; Bratakou, S.; Karapetis, S.; Tzamtzis, N. Chapter 13-Biosensors Based on Microfluidic Devices Lab-on-a-Chip and Microfluidic Technology. In Nanotechnology and Biosensors; Nikolelis, D.P., Nikoleli, G.-P., Eds.; Advanced Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 375–394. ISBN 978-0-12-813855-7. [Google Scholar]
- Kovarik, M.L.; Gach, P.C.; Ornoff, D.M.; Wang, Y.; Balowski, J.; Farrag, L.; Allbritton, N.L. Micro Total Analysis Systems for Cell Biology and Biochemical Assays. Anal. Chem. 2012, 84, 516–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Bedin, F.; Boulet, L.; Voilin, E.; Theillet, G.; Rubens, A.; Rozand, C. Paper-Based Point-of-Care Testing for Cost-Effective Diagnosis of Acute Flavivirus Infections. J. Med. Virol. 2017, 89, 1520–1527. [Google Scholar] [CrossRef] [Green Version]
- Sher, M.; Zhuang, R.; Demirci, U.; Asghar, W. Paper-Based Analytical Devices for Clinical Diagnosis: Recent Advances in the Fabrication Techniques and Sensing Mechanisms. Expert Rev. Mol. Diagn. 2017, 17, 351–366. [Google Scholar] [CrossRef] [Green Version]
- Prabowo, M.H.; Chatchen, S.; Rijiravanich, P.; Limkittikul, K.; Surareungchai, W. Dengue NS1 Detection in Pediatric Serum Using Microfluidic Paper-Based Analytical Devices. Anal. Bioanal Chem. 2020, 412, 2915–2925. [Google Scholar] [CrossRef]
- Draz, M.S.; Moazeni, M.; Venkataramani, M.; Lakshminarayanan, H.; Saygili, E.; Lakshminaraasimulu, N.K.; Kochehbyoki, K.M.; Kanakasabapathy, M.K.; Shabahang, S.; Vasan, A.; et al. Hybrid Paper–Plastic Microchip for Flexible and High-Performance Point-of-Care Diagnostics-Draz-2018-Advanced Functional Materials-Wiley Online Library. Adv. Funct. Mater 2018, 28, 1707161. [Google Scholar] [CrossRef]
- Yuzon, M.K.; Kim, J.-H.; Kim, S. A Novel Paper-Plastic Microfluidic Hybrid Chip Integrated with a Lateral Flow Immunoassay for Dengue Nonstructural Protein 1 Antigen Detection. Bio. Chip. J. 2019, 13, 277–287. [Google Scholar] [CrossRef]
- Lee, W.-C.; Lien, K.-Y.; Lee, G.-B.; Lei, H.-Y. An Integrated Microfluidic System Using Magnetic Beads for Virus Detection. Diagn Microbiol. Infect. Dis. 2008, 60, 51–58. [Google Scholar] [CrossRef]
- Kaarj, K.; Akarapipad, P.; Yoon, J.-Y. Simpler, Faster, and Sensitive Zika Virus Assay Using Smartphone Detection of Loop-Mediated Isothermal Amplification on Paper Microfluidic Chips. Sci. Rep. 2018, 8, 12438. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, A.; Ornob, A.; Yu, H.; Damhorst, G.L.; Chen, W.; Sun, F.; Bhuiya, A.; Cunningham, B.T.; Bashir, R. Hands-Free Smartphone-Based Diagnostics for Simultaneous Detection of Zika, Chikungunya, and Dengue at Point-of-Care. Biomed Microdevices 2017, 19, 73. [Google Scholar] [CrossRef]
- Lo, S.-J.; Yang, S.-C.; Yao, D.-J.; Chen, J.-H.; Tu, W.-C.; Cheng, C.-M. Molecular-Level Dengue Fever Diagnostic Devices Made out of Paper. Lab. Chip. 2013, 13, 2686–2692. [Google Scholar] [CrossRef] [PubMed]
- Dincau, B.M.; Lee, Y.; Kim, J.-H.; Yeo, W.-H. Recent Advances in Nanoparticle Concentration and Their Application in Viral Detection Using Integrated Sensors. Sensors 2017, 17, 2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-Based Biosensors for Detection of Pathogenic Virus. TrAC Trends Anal. Chem. 2017, 97, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Zhou, Z.; Chen, Z.; Tan, H. Optical Diagnostic Based on Functionalized Gold Nanoparticles. Int. J. Mol. Sci. 2019, 20, 4346. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Alberti, G.; Zanoni, C.; Magnaghi, L.R.; Biesuz, R. Gold and Silver Nanoparticle-Based Colorimetric Sensors: New Trends and Applications. Chemosensors 2021, 9, 305. [Google Scholar] [CrossRef]
- Yen, C.-W.; de Puig, H.; Tam, J.; Gómez-Márquez, J.; Bosch, I.; Hamad-Schifferli, K.; Gehrke, L. Multicolored Silver Nanoparticles for Multiplexed Disease Diagnostics: Distinguishing Dengue, Yellow Fever, and Ebola Viruses. Lab. Chip. 2015, 15, 1638–1641. [Google Scholar] [CrossRef] [Green Version]
- Awan, M.; Rauf, S.; Abbas, A.; Nawaz, M.H.; Yang, C.; Shahid, S.A.; Amin, N.; Hayat, A. A Sandwich Electrochemical Immunosensor Based on Antibody Functionalized-Silver Nanoparticles (Ab-Ag NPs) for the Detection of Dengue Biomarker Protein NS1. J. Mol. Liq. 2020, 317, 114014. [Google Scholar] [CrossRef]
- Carter, J.R.; Balaraman, V.; Kucharski, C.A.; Fraser, T.S.; Fraser, M.J. A Novel Dengue Virus Detection Method That Couples DNAzyme and Gold Nanoparticle Approaches. Virol. J. 2013, 10, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosak, A.; Saraf, N.; Willenberg, A.; Kwan, M.W.C.; Alto, B.W.; Jackson, G.W.; Batchelor, R.H.; Nguyen-Huu, T.D.; Sankarapani, V.; Parks, G.D.; et al. Aptamer–Gold Nanoparticle Conjugates for the Colorimetric Detection of Arboviruses and Vector Mosquito Species. RSC Adv. 2019, 9, 23752–23763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, C.R.; Tozato, C.C.; Crulhas, B.P.; Castro, G.R.; Junior, J.P.A.; Pedrosa, V.A. An Easy Way to Detect Dengue Virus Using Nanoparticle-Antibody Conjugates. Virology 2018, 513, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Wali, F.; Zezell, D.M.; de Araujo, R.E.; Rativa, D. Optimizing and Quantifying Gold Nanospheres Based on LSPR Label-Free Biosensor for Dengue Diagnosis. Polymers 2022, 14, 1592. [Google Scholar] [CrossRef] [PubMed]
- Bantz, K.C.; Meyer, A.F.; Wittenberg, N.J.; Im, H.; Kurtuluş, Ö.; Lee, S.H.; Lindquist, N.C.; Oh, S.-H.; Haynes, C.L. Recent Progress in SERS Biosensing. Phys. Chem. Chem. Phys. 2011, 13, 11551–11567. [Google Scholar] [CrossRef]
- Marks, H.; Schechinger, M.; Garza, J.; Locke, A.; Coté, G. Surface Enhanced Raman Spectroscopy (SERS) for in Vitro Diagnostic Testing at the Point of Care. Nanophotonics 2017, 6, 681–701. [Google Scholar] [CrossRef]
- Peixoto, L.P.F.; Santos, J.F.L.; Andrade, G.F.S. Biossensores Plasmônicos Baseados em Espalhamento Raman Intensificado por Superfície Utilizando Nanobastões de Ouro. Quím. Nova 2019, 42, 1044–1049. [Google Scholar] [CrossRef]
- Ngo, H.T.; Wang, H.-N.; Fales, A.M.; Nicholson, B.P.; Woods, C.W.; Vo-Dinh, T. DNA Bioassay-on-Chip Using SERS Detection for Dengue Diagnosis. Analyst 2014, 139, 5655–5659. [Google Scholar] [CrossRef]
- Zhang, H.; Harpster, M.H.; Park, H.J.; Johnson, P.A.; Wilson, W.C. Surface-Enhanced Raman Scattering Detection of DNA Derived from the West Nile Virus Genome Using Magnetic Capture of Raman-Active Gold Nanoparticles. Anal. Chem. 2011, 83, 254–260. [Google Scholar] [CrossRef]
- Neng, J.; Harpster, M.H.; Wilson, W.C.; Johnson, P.A. Surface-Enhanced Raman Scattering (SERS) Detection of Multiple Viral Antigens Using Magnetic Capture of SERS-Active Nanoparticles. Biosens. Bioelectron. 2013, 41, 316–321. [Google Scholar] [CrossRef]
- Paul, A.M.; Fan, Z.; Sinha, S.S.; Shi, Y.; Le, L.; Bai, F.; Ray, P.C. Bioconjugated Gold Nanoparticle Based SERS Probe for Ultrasensitive Identification of Mosquito-Borne Viruses Using Raman Fingerprinting. J. Phys. Chem. C 2015, 119, 23669–23675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, P.R.; Sethy, K.; Mohapatra, S.; Panda, D. Loop Mediated Isothermal Amplification: An Innovative Gene Amplification Technique for Animal Diseases. Vet. World 2016, 9, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Fang, M.; Zhou, B.; Ni, H.; Shen, Q.; Zhang, H.; Han, Y.; Yin, J.; Chang, W.; Xu, G.; et al. Simultaneous Detection and Differentiation of Dengue Virus Serotypes 1–4, Japanese Encephalitis Virus, and West Nile Virus by a Combined Reverse-Transcription Loop-Mediated Isothermal Amplification Assay. Virol. J. 2011, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- Jolany Vangah, S.; Katalani, C.; Boone, H.A.; Hajizade, A.; Sijercic, A.; Ahmadian, G. CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases. Biol. Proced. Online 2020, 22, 22. [Google Scholar] [CrossRef] [PubMed]
- Carrell, C.; Kava, A.; Nguyen, M.; Menger, R.; Munshi, Z.; Call, Z.; Nussbaum, M.; Henry, C. Beyond the Lateral Flow Assay: A Review of Paper-Based Microfluidics. Microelectron. Eng. 2019, 206, 45–54. [Google Scholar] [CrossRef]
- Graham, D.; Faulds, K. Surface-Enhanced Raman Scattering as a Detection Technique for Molecular Diagnostics. Expert Rev. Mol. Diagn. 2009, 9, 537–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Detect | Detection Limit (LOD) | Time (Minutes) | Reference |
---|---|---|---|---|
RT-LAMP | RNA | 4000 copies/mL; 4 PFU/mL | ~60 | [36] |
RNA | ~1 genome | ~30 | [37] | |
RNA | −2.98 log10 PFU of ZIKV (~1/1000 PFU) | 20 | [13] | |
RNA | 1 aM synthetic ZIKV oligonucleotide | 27 | [38] | |
RNA | 14.5 TCID50/mL in RNA in serum and urine samples; 10 copies per reaction | 15 | [39] | |
RNA | <100 PFU/mL | 10–15 | [35] | |
RNA | 35 copies of viral RNA per reaction (DENV 4) (104 copies of RNA or 1.34 PFU). | 50 | [33] | |
RNA | 100 copies for DENV-1 and DENV-2; 10 copies for DENV-3 and DENV-4. | 20–25 | [40] | |
RNA | 10 RNA copies | 30–45 | [32] | |
RNA | 0.29 PFU/mL | ~60 | [41] | |
RNA | 19 PFU/mL | 30 | [42] | |
RNA | 2.57 copies/µL for JEV I and 2.34 copies/µL for JEV III | 50 | [43] | |
RNA | 5 pg of RNA | 70 | [44] | |
RNA | 12 copies/µl | 60 | [45] | |
RNA | 0.1 PFU/mL | 30 | [46] | |
CRISPR | ssRNA | 2 aM | ~30–180 | [48] |
ssRNA | 2 aM | 60 | [49] | |
RNA | 0.9 aM | <2 h | [50] | |
Microfluidic | NS1 protein | 46.7 ng mL−1 | 20–60 | [60] |
NS1 protein | 10 ng/mL | <8 | [58] | |
Viral lysate | 102 particles/µL | <60 | [61] | |
NS1 protein | 84.66 ng/mL | 2 | [62] | |
RNA | 10 PFU/ml | ~180 | [63] | |
RNA | 102 copies/mL | 40 | [12] | |
RNA | 1 copy/µL | 15 | [64] | |
RNA | 1.56 × 105 PFU/mL | 35 | [65] | |
RNA | 6 × 103 PFU/mL | 100 | [66] | |
Nanotechnology-LSPR | NS1 protein | 150 ng/mL | - | [72] |
NS1 protein | 0.5 ng/mL | ~45 | [73] | |
RNA | 101 TCID50 units | 5 | [74] | |
Viral particle | 105 PFU/ml | 1440 (24 h) | [75] | |
Viral particle | 107 TCID50 | <5 | [76] | |
NS1 protein | 0.07 µg/mL | 60 | [77] | |
SERS | ssDNA viral | ~6 aM | ~120 | [81] |
DNA | 10 pM | ~60 | [82] | |
Protein E | ~5 fg/ml | ~60 | [83] | |
Protein E | 10 PFU/mL | <30 | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, B.d.P.; Barbosa, C.C.; Ferreira, C.S.; Mayra Soares Alves dos Santos, S.; Arrieta, O.A.P.; Malta, W.C.; Gomes, M.L.M.D.; Alves e Silva, M.; Fonseca, J.d.M.; Borges, L.P.; et al. Challenges in Direct Detection of Flaviviruses: A Review. Pathogens 2023, 12, 643. https://doi.org/10.3390/pathogens12050643
Dias BdP, Barbosa CC, Ferreira CS, Mayra Soares Alves dos Santos S, Arrieta OAP, Malta WC, Gomes MLMD, Alves e Silva M, Fonseca JdM, Borges LP, et al. Challenges in Direct Detection of Flaviviruses: A Review. Pathogens. 2023; 12(5):643. https://doi.org/10.3390/pathogens12050643
Chicago/Turabian StyleDias, Bruna de Paula, Camila Cavadas Barbosa, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Orlando Alfredo Pineda Arrieta, Wellington Carvalho Malta, Maria Laura Maximiano Dias Gomes, Mariela Alves e Silva, Júlia de Matos Fonseca, Lysandro Pinto Borges, and et al. 2023. "Challenges in Direct Detection of Flaviviruses: A Review" Pathogens 12, no. 5: 643. https://doi.org/10.3390/pathogens12050643
APA StyleDias, B. d. P., Barbosa, C. C., Ferreira, C. S., Mayra Soares Alves dos Santos, S., Arrieta, O. A. P., Malta, W. C., Gomes, M. L. M. D., Alves e Silva, M., Fonseca, J. d. M., Borges, L. P., & Silva, B. d. M. (2023). Challenges in Direct Detection of Flaviviruses: A Review. Pathogens, 12(5), 643. https://doi.org/10.3390/pathogens12050643