Pathogenicity and Antibiotic Resistance Diversity in Clostridium perfringens Isolates from Poultry Affected by Necrotic Enteritis in Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Collection, Maintenance and Propagation
2.2. Antibiotic Susceptibility Testing
2.3. Screening for Bacteriocinetic Activity
2.4. Whole-genome Sequencing (WGS) Analysis
3. Results
3.1. Resistance Phenotype
3.2. Whole Genome Sequencing
3.2.1. Resistome
3.2.2. Toxinotyping, Virulence Factors, and Plasmidome
3.2.3. Secondary Metabolites
3.3. Bacteriocinetic Activity of the Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alizadeh, M.; Shojadoost, B.; Boodhoo, N.; Astill, J.; Taha-Abdelaziz, K.; Hodgins, D.C.; Kulkarni, R.R.; Sharif, S. Necrotic enteritis in chickens: A review of pathogenesis, immune responses and prevention, focusing on probiotics and vaccination. Anim. Health Res. Rev. 2021, 22, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Immerseel, F.; Buck, J.; Pasmans, Ç.F.; Huyghebaert, G.; Haesebrouck, F.; Ducatelle, R. Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol. 2004, 33, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Kiu, R.; Hall, L.J. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg. Microbes Infect. 2018, 7, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villagrán-de la Mora, Z.; Macías-Rodríguez, M.E.; Arratia-Quijada, J.; Gonzalez-Torres, Y.S.; Nuño, K.; Villarruel-López, A. Clostridium perfringens as Foodborne Pathogen in Broiler Production: Pathophysiology and Potential Strategies for Controlling Necrotic Enteritis. Animals 2020, 10, 1718. [Google Scholar] [CrossRef]
- Shrestha, A.; Uzal, F.A.; McClane, B.A. Enterotoxic Clostridia: Clostridium perfringens Enteric Diseases. Microbiol. Spectr. 2018, 6, 5–6. [Google Scholar] [CrossRef]
- Rood, J.I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B.A.; Melville, S.B.; Moore, R.J.; Popoff, M.R.; Sarker, M.R.; Songer, J.G.; et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018, 53, 5–10. [Google Scholar] [CrossRef]
- Keyburn, A.L.; Boyce, J.D.; Vaz, P.; Bannam, T.L.; Ford, M.E.; Parker, D.; Di Rubbo, A.; Rood, J.I.; Moore, R.J. NetB, a New Toxin That Is Associated with Avian Necrotic Enteritis Caused by Clostridium perfringens. PLoS Pathog. 2008, 4, e26. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.X.; Porter, C.J.; Hardy, S.P.; Steer, D.; Smith, A.I.; Quinsey, N.S.; Hughes, V.; Cheung, J.K.; Keyburn, A.L.; Kaldhusdal, M.; et al. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. MBio 2013, 4, e00019-13. [Google Scholar] [CrossRef] [Green Version]
- Lacey, J.A.; Johanesen, P.A.; Lyras, D.; Moore, R.J. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens. A review. Avian Pathol. 2013, 45, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Naylor, C.E.; Eaton, J.T.; Howells, A.; Justin, N.; Moss, D.S.; Titball, R.W.; Basak, A.K. Structure of the key toxin in gas gangrene. Nat. Struct. Biol. 1998, 5, 738–746. [Google Scholar] [CrossRef]
- Sakurai, J.; Nagahama, M.; Oda, M. Clostridium perfringens Alpha-Toxin: Characterization and Mode of Action. J. Biochem. 2004, 136, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Urbina, P.; Collado, M.I.; Alonso, A.; Goñi, F.M.; Flores-Díaz, M.; Alape-Girón, A.; Ruysschaert, J.M.; Lensink, M.F. Unexpected wide substrate specificity of C. perfringens α-toxin phospholipase C. Biochim. Biophys. Acta (BBA) Biomembr. 2011, 1808, 2618–2627. [Google Scholar] [CrossRef] [PubMed]
- Gibert, M.; Jolivet-Renaud, C.; Popoff, M.R. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 1997, 203, 65–73. [Google Scholar] [CrossRef]
- Van Asten, A.J.; Nikolaou, G.N.; Gröne, A. The occurrence of cpb2-toxigenic Clostridium perfringens and the possible role of the β2-toxin in enteric disease of domestic animals, wild animals and humans. Vet. J. 2010, 183, 135–140. [Google Scholar] [CrossRef]
- Popoff, M.R. Clostridial pore-forming toxins: Powerful virulence factors. Anaerobe 2014, 30, 220–238. [Google Scholar] [CrossRef] [Green Version]
- Gohari, I.M.; Navarro, M.A.; Li, J.; Shrestha, A. Pathogenicity and virulence of Clostridium. Virulence 2021, 12, 723–753. [Google Scholar] [CrossRef]
- Gochez, D.; Moulin, G.; Erlacher-Vindel, E. OIE Annual Report on Antimicrobial Agents Intended for Use in Animals: Methos Used. Front. Vet. Sci. 2021, 6, 317. [Google Scholar] [CrossRef] [Green Version]
- Agunos, A.; Pierson, F.; Lungu, B.; Dunn, P.; Tablante, N. Review of nonfoodborne zoonotic and potentially zoonotic poultry diseases. Avian Dis. 2020, 60, 553–575. [Google Scholar] [CrossRef]
- Adams, V.; Han, X.; Lyras, D.; Rood, J.I. Antibiotic resistance plasmids and mobile genetic elements of Clostridium. Plasmid 2018, 99, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Bendary, M.M.; Abd El-Hamid, M.I.; El-Tarabili, R.M.; Hefny, A.A.; Algendy, R.M.; Elzohairy, N.A.; Moustafa, W.H. Clostridium perfringens Associated with Foodborne infections of Animal Origins: Insights into Prevalence, Antimicrobial Resistance, Toxin Genes Profiles, and Toxinotypes. Biology 2022, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.P.; Kaur, S.; Dhaka, P.; Vijay, D.; Bedi, J.S. Prevalence, molecular characterization, and antimicrobial resistance profile of Clostridium perfringens from India: A scoping review. Anaerobe 2022, 77, 102639. [Google Scholar] [CrossRef]
- Haider, Z.; Ali, T.; Ullah, A.; Basit, A.; Tahir, H.; Tariq, H.; Rehman, S.U. Isolation, toxinotyping and antimicrobial susceptibility tsting of Clostridium perfringens isolated from Pakistan poultry. Anaerobe 2022, 73, 102499. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.; Guerrero-Araya, E.; Castañeda, S.; Vega, L.; Cardenas-Alvarez, M.X.; Rodríguez, C.; Paredes-Sabja, D.; Ramírez, J.D.; Muñoz, M. Intra-species diversity of Clostridium perfringens: A diverse genetic repertoire reveals its pathogenic potential. Front. Microbiolo. 2022, 22, 952081. [Google Scholar] [CrossRef] [PubMed]
- Elnar, A.G.; Kim, G.B. Complete genome sequence of Clostridium perfringens B20, a bacteriocin-producing pathogen. J. Anim. Sci. Technol. 2021, 63, 1468. [Google Scholar] [CrossRef]
- CLSI. Perfromance standars for antimicrobial susceptibility testing. In CLSI Supplement M100 Wayne, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- García-Vela, S.; Ben Said, L.; Soltani, S.; Guerbaa, R.; Fernández-Fernández, R.; Ben Yahia, H.; Ben Slama, K.; Torres, C.; Fliss, I. Targeting Enterococci with Antimicrobial Activity against Clostridium perfringens from Poultry. Antibiotics 2023, 12, 231. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.A. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Comput. Biol. 2012, 19, 445–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyatt, D.; Chen, G.L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. Resfinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Zankari, E.; Allesøe, R.; Joensen, K.; Cavaco, L.; Lund, O.; Aarestrup, F. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef] [PubMed]
- Kiu, R.; Caim, S.; Alexander, S.; Pachori, P.; Hall, L.J. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors. Front. Microbiol. 2017, 8, 2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1361–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartual, S.; Seifert, H.; Hippler, C.; Luzon, M.; Wisplinghoff, H.; Rodríguez-Valera, F. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumanii. J. Clin. Microbiol. 2005, 43, 4382–4390. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.; Fawley, W.; Kachrimanidou, M.; Bowden, R.; Crook, D.W.; Fung, R.; Golubchik, T.; Harding, R.M.; Jeffery, K.J.; Jolley, K.A.; et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 2010, 48, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Lemee, L.; Dhalluin, A.; Pestel-Caron, M.; Lemeland, J.-F.; Pons, J.-L. Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J. Clin. Microbiol. 2004, 42, 2607–2617. [Google Scholar] [CrossRef] [Green Version]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaureguy, F.; Landraud, L.; Passet, V.; Diancourt, L.; Frapy, E.; Guigon, G.; Carbonnelle, E.; Lortholary, O.; Clermont, O.; Denamur, E.; et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genom. 2008, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Pritchard, L.G. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. Ape 5.0: An enviroment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; Van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2-a multiple sequence alignment editor and analysiss workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, C.L.; Chooi, Y.H. Clinker & clustermap.js: Automatic generation of gene cluster comparison figures. Bioinformatics 2021, 37, 2473–2475. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef] [Green Version]
- Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial resistance in Enterococcus spp. of animal origin. Antimicrob. Resist. Bact. Livest. Companion Anim. 2018, 9, 185–227. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Yu, R.; Xu, C.; Shang, Y.; Li, D.; Du, X.D. A small miltihost plasmid carrying erm (T) identified in Enterococcus faecalis. Front. Vet. Sci. 2022, 9, 612. [Google Scholar] [CrossRef]
- Gómez-Sanz, E.; Kadlec, K.; Feßler, A.; Zarazaga, M.; Torres, C.; Schwarz, S. Novel erm(T)-carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant Staphylococcus aureus ST398 that also harbor cadmium adn copper resistance determinants. Agents Chemother. 2013, 57, 3275–3282. [Google Scholar] [CrossRef] [Green Version]
- DiPersio, L.P.; DiPersio, J.R.; Frey, K.C.; Beach, J.A. Prevalence of the erm (T) gene in clinical isolates of erythromycin-resistant group D Streptococcus and Enterococcus. Antimicrob. Agents Chemother. 2008, 52, 1567–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiPersio, L.P.; DiPersio, J.R. Identification of an erm (T) gene in srtains of inducibly clinadmycin-resistant group B Streptococcus. Diagn. Microbiol. Infect. Dis. 2007, 57, 189–193. [Google Scholar] [CrossRef]
- Labrou, N.E.; Rigden, D.J. The structure–function relationship in the clostripain family of peptidases. Eur. J. Biochem. 2004, 271, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Chakravorty, A.; Awad, M.M.; Hiscox, T.J.; Cheung, J.K.; Carter, G.P.; Choo, J.M.; Rood, J.I. The cysteine protease α-Clostripain is not essential for the pathogenesis of Clostridium perfringens-mediated myonecrosis. PLoS ONE 2011, 6, e2. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, O.; Okabe, A. Clostridial hydrolytic enzymes degrading extracellular components. Toxicon 2001, 39, 1769–1780. [Google Scholar] [CrossRef]
- Rood, J.I. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 1998, 52, 333. [Google Scholar] [CrossRef]
- Wang, Y.H. Sialidases from Clostridium perfringens and their inhibitors. Front. Cell. Infect. Microbiol. 2020, 9, 462. [Google Scholar] [CrossRef]
- Li, C.; Yan, X.; Lillehoj, H.S. Complete genome sequences of Clostridium perfringens Del1 strain isolated from chickens affected by necrotic enteritis. Gut Pathog. 2017, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Fan, X.; Zhu, L.; Yang, X.; Liu, Y.; Gao, S.; Jin, X.; Liu, D.; Ding, J.; Guo, Y.; et al. Phylogenetic and genomic analysis reveals high genomic openness and genetic diversity of Clostridium perfringens. Microb. Genom. 2020, 6, e000441. [Google Scholar] [CrossRef] [PubMed]
- Hibberd, M.C.; Neumann, A.P.; Rehberger, T.G.; Siragusa, G.R. Multilocus sequence typing subtypes of poultry Clostridium perfringens isolates demonstrate disease niche partitioning. J. Clin. Microbiol. 2011, 49, 1556–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, J.; Li, G.; Yang, Y.; Ding, W. Current advancements in sactipeptide natural products. Front. Chem. 2021, 9, 595991. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Hua, Z.C. Lasso peptides: Heterologous production and potential medical application. Front. Bioeng. Biotechnol. 2020, 8, 571165. [Google Scholar] [CrossRef]
- Sosunov, V.; Mischenko, V.; Eruslanov, B.; Svetoch, E.; Shakina, Y.; Stern, N.; Apt, A. Antimycobacterial activity of bacteriocins and their complexes with liposomes. J. Antimicrob. Chemother. 2007, 59, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Garnier, T.; Cole, S.T. Characterization of a bacteriocinogenic plasmid from Clostridium perfringens and molecular genetic analysis of the bacteriocin-encoding gene. J. Bacteriol. 1986, 168, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, B.; Mani, N.; Katayama, S.; Sonenshein, A.L. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel σ factor. Mol. Microbiol. 2005, 55, 1196–1206. [Google Scholar] [CrossRef]
- Miyamoto, K.; Seike, S.; Takagishi, T.; Okui, K.; Oda, M.; Takehara, M.; Nagahama, M. Identification of the replication region in pBCNF5603, a bacteriocin-encoding plasmid, in the enterotoxigenic Clostridium perfringens strain F5603. BMC Microbiol. 2015, 15, 118. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.X.; Li, W.F.; Ma, G.X.; Pan, Y.J. The nisin-controlled gene expression system: Construction, application and improvements. Biotechnol. Adv. 2006, 24, 285–295. [Google Scholar] [CrossRef]
- Moreno, F.; Gónzalez-Pastor, J.E.; Baquero, M.R.; Bravo, D. The regulation of microcin B, C and J operons. Biochimie 2002, 84, 521–529. [Google Scholar] [CrossRef] [PubMed]
C. perfringens Isolate | Resistance Phenotype | TET | CLI | AMP | CTX | CHL | MTZ | IPM | ERY |
---|---|---|---|---|---|---|---|---|---|
MLG0418 | Susceptible | 2 | <0.25 | <0.25 | 2 | 4 | 4 | <0.25 | 16 |
MLG2203 | Susceptible | <0.25 | <0.25 | <0.25 | <0.25 | 4 | 2 | <0.25 | 8 |
MLG4201 | TET | 16 | 2 | <0.25 | 1 | 4 | 2 | <0.25 | 16 |
MLG5719 | TET | 8 | 2 | <0.25 | 2 | 4 | 4 | <0.25 | 8 |
MLG5806 | TET | 16 | 2 | <0.25 | <0.25 | 4 | 8 | <0.25 | 16 |
MLG7814 | TET | 32 | 2 | <0.25 | 1 | 4 | 2 | <0.25 | 8 |
MLG1819 | CLI | <0.25 | 4 | <0.25 | 1 | 4 | 8 | <0.25 | 16 |
MLG1619 | CLI | <0.25 | 8 | <0.25 | 4 | 4 | 8 | <0.25 | 16 |
MLG6907 | CLI | 4 | 8 | <0.25 | <0.25 | 4 | 4 | <0.25 | 8 |
MLG4206 | CLI | 4 | 4 | <0.25 | 1 | 4 | 4 | <0.25 | 1 |
MLG0618 | TET, CLI | 32 | 4 | <0.25 | 2 | 4 | 2 | <0.25 | 8 |
MLG0712 | TET, CLI | 16 | 8 | <0.25 | 2 | 4 | 4 | <0.25 | 16 |
MLG2314 | TET, CLI | 16 | >128 | <0.25 | 4 | 8 | 4 | 1 | 16 |
MLG2919 | TET, CLI | 64 | >128 | <0.25 | 2 | 8 | 8 | 0.5 | 8 |
MLG3406 | TET, CLI | 8 | 4 | <0.25 | 1 | 4 | 4 | <0.25 | 16 |
MLG7309 | TET, CLI | 16 | 4 | <0.25 | 1 | 4 | 1 | <0.25 | 4 |
MLG3111 | TET, ERY | 16 | 1 | <0.25 | 0.5 | 4 | 1 | <0.25 | >128 |
MLG1108 | TET, CLI, ERY | 8 | >128 | <0.25 | 1 | 4 | 4 | <0.25 | >128 |
MLG7009 | TET, CLI, ERY | 16 | >128 | 0.5 | 2 | 4 | 8 | <0.25 | >128 |
MLG7307 | CLI, AMP, CTX | 2 | 32 | 1 | 64 | 4 | 8 | 2 | 4 |
C. perfringens Isolate | Resistance Phenotype a | Resistance Genotype Detected | ||
---|---|---|---|---|
Resistance Genes | Identity | Accession Number c | ||
MLG0418 | Susceptible Susceptible | tetA | 99.17 | L20800 |
MLG2203 | No genes detected | |||
MLG4201 | TET | tetA | 99.84 | AB001076 |
tetB | 99.74 | NC_010937 | ||
InuP | 99.8 | FJ589781 | ||
MLG5719 | TET | tetA | 100 | AB001076 |
tetB | 99.74 | NC_010937 | ||
MLG5806 | TET | tetA | 100 | AB001076 |
tetB | 99.74 | NC_010937 | ||
MLG7814 | TET | tetA | 99.84 | AB001076 |
tetB | 99.74 | NC_010937 | ||
lnuP | 99.8 | FJ589781 | ||
MLG1819 | CLI | No genes detected | ||
MLG1619 | CLI | No genes detected | ||
MLG6907 | CLI | tetA | 99.26 | AB001076 |
MLG4206 | TET, CLI | tetA | 100 | AB001076 |
tetB | 99.74 | NC_010937 | ||
MLG0618 | TET, CLI | tetA | 99.84 | AB001076 |
tetB | 99.74 | NC_010937 | ||
lnuP | 99.8 | FJ589781 | ||
MLG0712 | TET, CLI | tetA | 99.84 | AB001076 |
tetB | 99.74 | NC_010937 | ||
MLG2314 | TET, CLI | tetA | 99.18 | AB001076 |
tet(44) | 98.75 | NZ_ABDU01000081 | ||
lnuP | 99.8 | FJ589781 | ||
ant(6)-Ib | 100 | FN594949 | ||
MLG2919 | TET, CLI | tetA | 100 | AB001076 |
tetB | 99.67 | NC_010937 | ||
MLG3406 | TET, CLI | tetA | 100 | AB001076 |
tetB | 99.74 | NC_010937 | ||
MLG7309 | TET, CLI | tetA | 99.84 | AB001076 |
tetB | 99.74 | NC_010937 | ||
MLG3111 | TET, ERY | tetA | 99.84 | AB001076 |
tetB | 99.74 | NC_010937 | ||
lnuP | 99.8 | FJ589781 | ||
MLG1108 | TET, CLI, ERY | tetA | 99.84 | AB001076 |
tetB | 99.74 | NC_010937 | ||
erm(T) | 99.86 | AY894138 | ||
MLG7009 | TET, CLI, ERY | tetA | 99.84 | AB001076 |
tetB | 99.74 | NC_010937 | ||
erm(T) | 99.86 | AY894138 | ||
MLG7307 | CLI, AMP b, CTX | No genes detected |
Sequence Types (ST) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Strain | ST | Housekeeping Genes | |||||||
colA | groEL | gyrB | nadA | pgk | plc | sigk | sodA | ||
C. perfringens MLG0712 | 21 | 3 | 1 | 3 | 1 | 1 | 4 | 2 | 3 |
C. perfringens MLG1108 | 21 | 3 | 1 | 3 | 1 | 1 | 4 | 2 | 3 |
C. perfringens MLG7009 | 21 | 3 | 1 | 3 | 1 | 1 | 4 | 2 | 3 |
C. perfringens MLG7309 | 21 | 3 | 1 | 3 | 1 | 1 | 4 | 2 | 3 |
C. perfringens MLG0618 | 73 | 39 | 19 | 3 | 1 | 1 | 4 | 5 | 1 |
C. perfringens MLG3111 | 73 | 39 | 19 | 3 | 1 | 1 | 4 | 5 | 1 |
C. perfringens MLG4201 | 73 | 39 | 19 | 3 | 1 | 1 | 4 | 5 | 1 |
C. perfringens MLG7814 | 73 | 39 | 19 | 3 | 1 | 1 | 4 | 5 | 1 |
C. perfringens MLG2314 | 279 | 77 | 41 | 8 | 1 | 4 | 1 | 19 | 1 |
New or Unknown ST a | |||||||||
Strain | ST b (Nearest ST) | Housekeeping Genes | |||||||
colA | groEL | gyrB | nadA | pgk | plc | sigk | sodA | ||
C. perfringens MLG0418 | NAC (53) | 37 | 22 | 17 | 28 | 1 | 27 | 18 | 19 |
C. perfringens MLG1619 | NAC (629) | 6 | 1 | 3 | 13 | 1 | 4 | 2 | 3 |
C. perfringens MLG1819 | NAC (629) | 6 | 1 | 3 | 13 | 1 | 4 | 2 | 3 |
C. perfringens MLG2203 | New (131) | 41 | 44 | 37 c | 47 c | 18 | 101 c | 25 c | 38 c |
C. perfringens MLG 2919 | New (625) | 6 c | 5 | 24 | 1 | 7 | 33 | 4 | 1 |
C. perfringens MLG3406 | New (340, 613) | 3 | 6 | 1 | 1 | 4 | 43 | 5 | 71 c |
C. perfringens MLG4206 | New (340, 613) | 3 | 6 | 1 | 1 | 4 | 43 | 5 | 71 c |
C. perfringens MLG5719 | New (340, 613) | 3 | 6 | 1 | 1 | 4 | 43 | 5 | 71 c |
C. perfringens MLG5806 | New | 3 c | 56 c | 29 c | 49 | 8 | 88 c | 5 | 79 c |
C. perfringens MLG6907 | unknown (200) | 4 | 1 | 3 | 13 | 1 | 109 | 80 d | 20 |
C. perfringens MLG7307 | Unknown | No hit e | 121 | 83 | 135 | 63 | 163 | 87 | 125 |
C. perfringens Isolate | Secondary Metabolites |
---|---|
MLG0418 | Sactipeptides |
MLG0618 | Sactipeptides |
MLG0712 | Sactipeptides |
MLG1108 | Sactipeptides |
MLG1619 | Sactipeptides |
MLG1819 | Sactipeptides |
MLG2203 | Sactipeptides |
MLG2314 | Sactipeptides |
MLG2919 | Sactipeptides, lasso-peptides, bacteriocin BCN5 |
MLG3111 | Sactipeptides, RiPP-like |
MLG3406 | Sactipeptides, RiPP-like, bacteriocin BCN5 |
MLG4201 | Sactipeptides, NRPS-like |
MLG4206 | Sactipeptides, bacteriocin-like, bacteriocin BCN5 |
MLG5719 | Sactipeptides, bacteriocin BCN5, NRPS-like |
MLG5806 | Sactipeptides, NRPS-like |
MLG 6907 | Sactipeptides, lasso-peptides |
MLG7009 | Sactipeptides |
MLG7307 | Sactipeptides, lasso-peptides, bacteriocin BCN5 |
MLG 7309 | Sactipeptides |
MLG7814 | Sactipeptides |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Vela, S.; Martínez-Sancho, A.; Said, L.B.; Torres, C.; Fliss, I. Pathogenicity and Antibiotic Resistance Diversity in Clostridium perfringens Isolates from Poultry Affected by Necrotic Enteritis in Canada. Pathogens 2023, 12, 905. https://doi.org/10.3390/pathogens12070905
García-Vela S, Martínez-Sancho A, Said LB, Torres C, Fliss I. Pathogenicity and Antibiotic Resistance Diversity in Clostridium perfringens Isolates from Poultry Affected by Necrotic Enteritis in Canada. Pathogens. 2023; 12(7):905. https://doi.org/10.3390/pathogens12070905
Chicago/Turabian StyleGarcía-Vela, Sara, Agustí Martínez-Sancho, Laila Ben Said, Carmen Torres, and Ismail Fliss. 2023. "Pathogenicity and Antibiotic Resistance Diversity in Clostridium perfringens Isolates from Poultry Affected by Necrotic Enteritis in Canada" Pathogens 12, no. 7: 905. https://doi.org/10.3390/pathogens12070905
APA StyleGarcía-Vela, S., Martínez-Sancho, A., Said, L. B., Torres, C., & Fliss, I. (2023). Pathogenicity and Antibiotic Resistance Diversity in Clostridium perfringens Isolates from Poultry Affected by Necrotic Enteritis in Canada. Pathogens, 12(7), 905. https://doi.org/10.3390/pathogens12070905