Genomic Characterization of Fecal Escherichia coli Isolates with Reduced Susceptibility to Beta-Lactam Antimicrobials from Wild Hogs and Coyotes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisman, D.N.; Laupland, K.B. The ‘One Health’paradigm: Time for infectious diseases clinicians to take note? Can. J. Infect. Dis. Med. Microbiol. 2010, 21, 111–114. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Global Strategy for Containment of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Smith, S.; Wang, J.; Fanning, S.; McMahon, B.J. Antimicrobial resistant bacteria in wild mammals and birds: A coincidence or cause for concern? Ir. Vet. J. 2014, 67, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.N.; Nizet, V. Bacterial evasion of host antimicrobial peptide defenses. Virulence Mech. Bact. Pathog. 2016, 4, 413–443. [Google Scholar] [CrossRef] [Green Version]
- Matuszewska, M.; Murray, G.G.; Ba, X.; Wood, R.; Holmes, M.A.; Weinert, L.A. Stable antibiotic resistance and rapid human adaptation in livestock-associated MRSA. Elife 2022, 11, e74819. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Silva, V.; Dapkevicius, M.L.E.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef]
- Havelaar, A.; Van Duynhoven, Y.; Nauta, M.; Bouwknegt, M.; Heuvelink, A.; De Wit, G.; Nieuwenhuizen, M. Disease burden in The Netherlands due to infections with Shiga toxin-producing Escherichia coli O157. Epidemiol. Infect. 2004, 132, 467–484. [Google Scholar] [CrossRef]
- Boyer, O.; Niaudet, P. Hemolytic uremic syndrome: New developments in pathogenesis and treatment. Int. J. Nephrol. 2011, 2011, 908407. [Google Scholar] [CrossRef] [Green Version]
- Robins-Browne, R.M.; Hartland, E.L. Escherichia coli as a cause of diarrhea. J. Gastroenterol. Hepatol. 2002, 17, 467–475. [Google Scholar] [CrossRef]
- Ronald, A. The etiology of urinary tract infection: Traditional and emerging pathogens. Dis. Mon. 2003, 49, 71–82. [Google Scholar] [CrossRef]
- Nyirabahizi, E.; Tyson, G.H.; Dessai, U.; Zhao, S.; Kabera, C.; Crarey, E.; Womack, N.; Crews, M.K.; Strain, E.; Tate, H. Evaluation of Escherichia coli as an indicator for antimicrobial resistance in Salmonella recovered from the same food or animal ceca samples. Food Control 2020, 115, 107280. [Google Scholar] [CrossRef]
- Bajaj, P.; Singh, N.S.; Virdi, J.S. Escherichia coli β-lactamases: What really matters. Front. Microbiol. 2016, 7, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimondi, S.; Righini, L.; Candeliere, F.; Musmeci, E.; Bonvicini, F.; Gentilomi, G.; Starčič Erjavec, M.; Amaretti, A.; Rossi, M. Antibiotic Resistance, Virulence Factors, Phenotyping, and Genotyping of E. coli Isolated from the Feces of Healthy Subjects. Microorganisms 2019, 7, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwaber, M.J.; Carmeli, Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2007, 60, 913–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peirano, G.; Pitout, J.D. Extended-spectrum β-lactamase-producing Enterobacteriaceae: Update on molecular epidemiology and treatment options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef]
- Rupp, M.E.; Fey, P.D. Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: Considerations for diagnosis, prevention and drug treatment. Drugs 2003, 63, 353–365. [Google Scholar] [CrossRef]
- McInnes, R.S.; McCallum, G.E.; Lamberte, L.E.; van Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 2020, 53, 35–43. [Google Scholar] [CrossRef]
- Shapiro, J. Mobile Genetic Elements; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sheykhsaran, E.; Baghi, H.B.; Soroush, M.H.; Ghotaslou, R. An overview of tetracyclines and related resistance mechanisms. Rev. Med. Microbiol. 2019, 30, 69–75. [Google Scholar] [CrossRef]
- Perreten, V.; Boerlin, P. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob. Agents Chemother. 2003, 47, 1169–1172. [Google Scholar] [CrossRef] [Green Version]
- Sunde, M.; Norström, M. The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. J. Antimicrob. Chemother. 2005, 56, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Fan, P.; Liu, T.; Yang, A.; Boughton, R.K.; Pepin, K.M.; Miller, R.S.; Jeong, K.C. Transmission of antibiotic resistance at the wildlife-livestock interface. Commun. Biol. 2022, 5, 585. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Wang, J.; Fanning, S.; McMahon, B.J. Antimicrobial resistance in wildlife: Implications for public health. Zoonoses Public Health 2015, 62, 534–542. [Google Scholar] [CrossRef]
- Lagerstrom, K.M.; Hadly, E.A. The under-investigated wild side of Escherichia coli: Genetic diversity, pathogenicity and antimicrobial resistance in wild animals. Proc. R. Soc. B 2021, 288, 20210399. [Google Scholar] [CrossRef] [PubMed]
- Awosile, B.; Crasto, C.; Rahman, M.K.; Daniel, I.; Boggan, S.; Steuer, A.; Fritzler, J. Fecal Microbial Diversity of Coyotes and Wild Hogs in Texas Panhandle, USA. Microorganisms 2023, 11, 1137. [Google Scholar] [CrossRef]
- Lupindu, A.M. Isolation and characterization of Escherichia coli from animals, humans, and environment. In Escherichia coli-Recent Advances on Physiology, Pathogenesis and Biotechnological Applications; IntechOpen Limited: London, UK, 2017; pp. 187–206. [Google Scholar]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Ingle, D.J.; Valcanis, M.; Kuzevski, A.; Tauschek, M.; Inouye, M.; Stinear, T.; Levine, M.M.; Robins-Browne, R.M.; Holt, K.E. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb. Genom. 2016, 2, e000064. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmeira, J.D.; Cunha, M.V.; Carvalho, J.; Ferreira, H.; Fonseca, C.; Torres, R.T. Emergence and spread of cephalosporinases in wildlife: A review. Animals 2021, 11, 1765. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.S.; Wester, A.L.; Ahrenfeldt, J.; Mo, S.S.; Slettemeås, J.S.; Steinbakk, M.; Samuelsen, Ø.; Grude, N.; Simonsen, G.S.; Løhr, I.H.; et al. Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/bla(CMY-2) resistance plasmids. Clin. Microbiol. Infect. 2017, 23, 407.e409–407.e415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtmann, A.R.; Meemken, D.; Müller, A.; Seinige, D.; Büttner, K.; Failing, K.; Kehrenberg, C. Wild Boars Carry Extended-Spectrum ß-Lactamase-and AmpC-Producing Escherichia coli. Microorganisms 2021, 9, 367. [Google Scholar] [CrossRef]
- Wasyl, D.; Zając, M.; Lalak, A.; Skarżyńska, M.; Samcik, I.; Kwit, R.; Jabłoński, A.; Bocian, Ł.; Woźniakowski, G.; Hoszowski, A. Antimicrobial resistance in Escherichia coli isolated from wild animals in Poland. Microb. Drug Resist. 2018, 24, 807–815. [Google Scholar] [CrossRef]
- Darwich, L.; Seminati, C.; López-Olvera, J.R.; Vidal, A.; Aguirre, L.; Cerdá, M.; Garcias, B.; Valldeperes, M.; Castillo-Contreras, R.; Migura-Garcia, L. Detection of beta-lactam-resistant Escherichia coli and toxigenic Clostridioides Difficile strains in wild boars foraging in an Anthropization gradient. Animals 2021, 11, 1585. [Google Scholar] [CrossRef]
- Literak, I.; Dolejska, M.; Radimersky, T.; Klimes, J.; Friedman, M.; Aarestrup, F.M.; Hasman, H.; Cizek, A. Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: Multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J. Appl. Microbiol. 2010, 108, 1702–1711. [Google Scholar] [CrossRef]
- Massella, E.; Reid, C.J.; Cummins, M.L.; Anantanawat, K.; Zingali, T.; Serraino, A.; Piva, S.; Giacometti, F.; Djordjevic, S.P. Snapshot study of whole genome sequences of Escherichia coli from healthy companion animals, livestock, wildlife, humans and food in Italy. Antibiotics 2020, 9, 782. [Google Scholar] [CrossRef]
- López-Islas, J.; Méndez-Olvera, E.; Reyes, T.; Martínez-Gómez, D. Identification of antimicrobial resistance genes in intestinal content from Coyote (Canis latrans). Pol. J. Vet. Sci. 2023, 26, 143–149. [Google Scholar] [PubMed]
- Worsley-Tonks, K.E.L.; Miller, E.A.; Gehrt, S.D.; McKenzie, S.C.; Travis, D.A.; Johnson, T.J.; Craft, M.E. Characterization of antimicrobial resistance genes in Enterobacteriaceae carried by suburban mesocarnivores and locally owned and stray dogs. Zoonoses Public Health 2020, 67, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Bibi, E. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol. 1997, 179, 2274–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trongjit, S.; Chuanchuen, R. Whole genome sequencing and characteristics of Escherichia coli with co-existence of ESBL and mcr genes from pigs. PLoS ONE 2021, 16, e0260011. [Google Scholar] [CrossRef]
- Cufaoglu, G.; Cengiz, G.; Onaran Acar, B.; Yesilkaya, B.; Ayaz, N.D.; Levent, G.; Goncuoglu, M. Antibiotic, heavy metal, and disinfectant resistance in chicken, cattle, and sheep origin E. coli and whole-genome sequencing analysis of a multidrug-resistant E. coli O100: H25 strain. J. Food Saf. 2022, 42, e12995. [Google Scholar] [CrossRef]
- Carey, A.M.; Capik, S.F.; Giebel, S.; Nickodem, C.; Piñeiro, J.M.; Scott, H.M.; Vinasco, J.; Norman, K.N. Prevalence and Profiles of Antibiotic Resistance Genes mph (A) and qnrB in Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Dairy Calf Feces. Microorganisms 2022, 10, 411. [Google Scholar] [CrossRef]
- Ma, L.; Xia, Y.; Li, B.; Yang, Y.; Li, L.-G.; Tiedje, J.M.; Zhang, T. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environ. Sci. Technol. 2016, 50, 420–427. [Google Scholar] [CrossRef]
- Literak, I.; Dolejska, M.; Rybarikova, J.; Cizek, A.; Strejckova, P.; Vyskocilova, M.; Friedman, M.; Klimes, J. Highly variable patterns of antimicrobial resistance in commensal Escherichia coli isolates from pigs, sympatric rodents, and flies. Microb. Drug Resist. 2009, 15, 229–237. [Google Scholar] [CrossRef]
- Srinivasan, V.; Nam, H.-M.; Sawant, A.A.; Headrick, S.I.; Nguyen, L.T.; Oliver, S.P. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils. Microb. Ecol. 2008, 55, 184–193. [Google Scholar] [CrossRef]
- Lewis, J.; Moore, P.; Arnold, D.L.; Lawrance, L. Chromosomal ampC mutations in cefpodoxime-resistant, ESBL-negative uropathogenic Escherichia coli. Br. J. Biomed. Sci. 2015, 72, 7–11. [Google Scholar] [CrossRef]
- Asai, T.; Usui, M.; Sugiyama, M.; Andoh, M. A survey of antimicrobial-resistant Escherichia coli prevalence in wild mammals in Japan using antimicrobial-containing media. J. Vet. Med. Sci. 2022, 84, 1645–1652. [Google Scholar] [CrossRef]
- Noll, L.W.; Worley, J.N.; Yang, X.; Shridhar, P.B.; Ludwig, J.B.; Shi, X.; Bai, J.; Caragea, D.; Meng, J.; Nagaraja, T. Comparative genomics reveals differences in mobile virulence genes of Escherichia coli O103 pathotypes of bovine fecal origin. PLoS ONE 2018, 13, e0191362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Von Wintersdorff, C.J.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [Green Version]
- Mollenkopf, D.F.; Weeman, M.F.; Daniels, J.B.; Abley, M.J.; Mathews, J.L.; Gebreyes, W.A.; Wittum, T.E. Variable within-and between-herd diversity of CTX-M cephalosporinase-bearing Escherichia coli isolates from dairy cattle. Appl. Environ. Microbiol. 2012, 78, 4552–4560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afema, J.A.; Ahmed, S.; Besser, T.E.; Jones, L.P.; Sischo, W.M.; Davis, M.A. Molecular epidemiology of dairy cattle-associated Escherichia coli carrying bla CTX-M genes in Washington State. Appl. Environ. Microbiol. 2018, 84, e02430-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.W.; Griffin, D.; Kuehn, L.A.; Brichta-Harhay, D.M. Influence of therapeutic ceftiofur treatments of feedlot cattle on fecal and hide prevalences of commensal Escherichia coli resistant to expanded-spectrum cephalosporins, and molecular characterization of resistant isolates. Appl. Environ. Microbiol. 2013, 79, 2273–2283. [Google Scholar] [CrossRef] [Green Version]
- Hayer, S.S.; Lim, S.; Hong, S.; Elnekave, E.; Johnson, T.; Rovira, A.; Vannucci, F.; Clayton, J.B.; Perez, A.; Alvarez, J. Genetic determinants of resistance to extended-spectrum cephalosporin and fluoroquinolone in Escherichia coli isolated from diseased pigs in the United States. Msphere 2020, 5, e00990. [Google Scholar] [CrossRef]
- Douarre, P.-E.; Mallet, L.; Radomski, N.; Felten, A.; Mistou, M.-Y. Analysis of COMPASS, a new comprehensive plasmid database revealed prevalence of multireplicon and extensive diversity of IncF plasmids. Front. Microbiol. 2020, 11, 483. [Google Scholar] [CrossRef] [Green Version]
- Villa, L.; García-Fernández, A.; Fortini, D.; Carattoli, A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J. Antimicrob. Chemother. 2010, 65, 2518–2529. [Google Scholar] [CrossRef] [Green Version]
- Day, M.J.; Rodríguez, I.; van Essen-Zandbergen, A.; Dierikx, C.; Kadlec, K.; Schink, A.-K.; Wu, G.; Chattaway, M.A.; DoNascimento, V.; Wain, J. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J. Antimicrob. Chemother. 2016, 71, 1178–1182. [Google Scholar] [CrossRef] [Green Version]
- Valentin, L.; Sharp, H.; Hille, K.; Seibt, U.; Fischer, J.; Pfeifer, Y.; Michael, G.B.; Nickel, S.; Schmiedel, J.; Falgenhauer, L. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs. Int. J. Med. Microbiol. 2014, 304, 805–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenza, G.; Nickel, S.; Pfeifer, Y.; Eller, C.; Krupa, E.; Lehner-Reindl, V.; Höller, C. Extended-spectrum-β-lactamase-producing Escherichia coli as intestinal colonizers in the German community. Antimicrob. Agents Chemother. 2014, 58, 1228–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Johnston, B.; Clabots, C.; Kuskowski, M.A.; Castanheira, M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin. Infect. Dis. 2010, 51, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.B.; Yoon, M.Y.; Ha, J.S.; Seo, K.W.; Noh, E.B.; Son, S.H.; Lee, Y.J. Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. Poult. Sci. 2020, 99, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Rosario, C.C.; López, A.C.; Téllez, I.G.; Navarro, O.A.; Anderson, R.C.; Eslava, C.C. Serotyping and virulence genes detection in Escherichia coli isolated from fertile and infertile eggs, dead-in-shell embryos, and chickens with yolk sac infection. Avian Dis. 2004, 48, 791–802. [Google Scholar] [CrossRef]
- Johnson, T.J.; Wannemuehler, Y.M.; Nolan, L.K. Evolution of the iss Gene in Escherichia coli. Appl. Environ. Microbiol. 2008, 74, 2360–2369. [Google Scholar] [CrossRef] [Green Version]
- Rezatofighi, S.E.; Najafifar, A.; Askari Badouei, M.; Peighambari, S.M.; Soltani, M. An Integrated Perspective on Virulence-Associated Genes (VAGs), Antimicrobial Resistance (AMR), and Phylogenetic Clusters of Pathogenic and Non-pathogenic Avian Escherichia coli. Front. Vet. Sci. 2021, 8, 758124. [Google Scholar] [CrossRef]
- Santos, A.C.D.M.; Silva, R.M.; Valiatti, T.B.; Santos, F.F.D.; Santos-Neto, J.F.; Cayô, R.; Streling, A.P.; Nodari, C.S.; Gales, A.C.; Nishiyama-Junior, M.Y.; et al. Virulence potential of a multidrug-resistant Escherichia coli strain belonging to the emerging clonal group ST101-B1 isolated from bloodstream infection. bioRxiv 2020, 18, 797928. [Google Scholar] [CrossRef]
- Delannoy, S.; Beutin, L.; Mariani-Kurkdjian, P.; Fleiss, A.; Bonacorsi, S.; Fach, P. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters. Front. Cell. Infect. Microbiol. 2017, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef]
- Werber, D.; Beutin, L.; Pichner, R.; Stark, K.; Fruth, A. Shiga toxin-producing Escherichia coli serogroups in food and patients, Germany. Emerg. Infect. Dis. 2008, 14, 1803–1806. [Google Scholar] [CrossRef] [PubMed]
- Vu Khac, H.; Holoda, E.; Pilipcinec, E.; Blanco, M.; Blanco, J.E.; Mora, A.; Dahbi, G.; López, C.; González, E.A.; Blanco, J. Serotypes, virulence genes, and PFGE profiles of Escherichia coli isolated from pigs with postweaning diarrhoea in Slovakia. BMC Vet. Res. 2006, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, S.; Meyer, K.P.; Sadowsky, M.J. Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources. Appl. Environ. Microbiol. 2007, 73, 5703–5710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, D.; Caetano, T.; Torres, R.; Fonseca, C.; Mendo, S. Shiga toxin-producing Escherichia coli in wild ungulates. Sci. Total Environ. 2019, 651, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Beutin, L. Characteristics of Shiga toxin-producing Escherichia coli from meat and milk products of different origins and association with food producing animals as main contamination sources. Int. J. Food Microbiol. 2011, 146, 99–104. [Google Scholar] [CrossRef]
Host | Serotype | Sequence Type | Antibiotic Resistance Genes | Chromosomal Mutations | Plasmids | Insertion Sequences | Virulence Genes |
---|---|---|---|---|---|---|---|
Coyote | O53:H51 | 5768 | none | ampC-promoter:g.-28G>A, ampC-promoter:p.R25H cgc -> cac | IncFIB(AP001918) | IS3, ISEc41, ISEc81, ISSfl7, MITEEc1 | air, AslA, chuA, csgA, eilA, eltIIAB-c3, fdeC, fimH, hlyE, iss, nlpI, ompT, terC, traT, yehA, yehB, yehC, yehD |
O1:H27 | 56 | mdf(A) | ampC-promoter:g.-18G>A | ColRNAI, IncFII(pCoo) | IS100kyp, IS1H, IS30, ISCfr6, ISCro1, ISEc49, ISEsa1, ISSfl8, ISSso4, MITEEc1 | afaA, afaB, astA, csgA, F17A, F17C, F17D, F17G, fdeC, fimH, fyuA, hha, hlyE, hra, irp2, iss, lpfA, nlpI, ompT, shiA, shiB, terC, tia, yehA, yehB, yehC, yehD | |
O8:H7 | 196 | mdf(A) | ampC-promoter:g.-18G>A, ampC-promoter:g.-1C>T | IS1H, IS3, ISEc1, ISEsa1, MITEEc1 | csgA, fdeC, fimH, gad, hlyE, lpfA, nlpI, terC, yehA, yehB, yehC, yehD | ||
O100:H9 | 48 | mdf(A) | No mutation in AmpC | IncFIB(AP001918) | IS150, IS186B, IS30, IS30H, ISEc1, ISEc75, ISPrst2, MITEEc1 | AslA, cdt-IIIB, csgA, espY2, F17A, F17G, fdeC, fimH, gad, hlyE, iss, nlpI, ompT, terC, traT, yehA, yehB, yehC, yehD | |
O3:H19 | 155 | aph(3″)-Ib, aph(6)-Id, dfrA1, floR, mdf(A), sul2 | ampC-promoter:g.-18G>A, ampC-promoter:g.-1C>T, gyrA:p.S83L-tcg -> ttg | ColRNAI, IncB/O/K/Z, IncFIB(AP001918), IncX1 | IS100kyp, IS1H, ISCfr6, ISEc38, ISEc8, ISEc83, ISEsa1, ISKpn60, MITEEc1 | cdt-IIIB, cnf2, csgA, eltIIAB-c4, F17A, F17C, F17D, F17G, fdeC, fimH, hha, hlyE, iucC, iutA, lpfA, nlpI, ompT, terC, traT, yehA, yehB, yehC, yehD | |
O114:H23 | 224 | aadA5, aph(3″)-Ib, aph(6)-Id, blaCTX-M-55, dfrA17, floR, mdf(A), sul2, tet(A) | ampC-promoter:g.-18G>A, ampC-promoter:g.-1C>T, gyrA:p.S83L-tcg -> ttg, parC:p.S80I- agc -> atc, parE:p.S458A- tcg -> gcg, gyrA:p.D87N- gac -> aac | IncX1, p0111 | IS100kyp, IS150, IS2, ISEc1, ISEc22, ISEc23, ISEc38, ISSen1, MITEEc1 | csgA, fdeC, fimH, hlyE, lpfA, nlpI, terC, yehA, yehB, yehC, yehD | |
O118:H12 | 10 | aac(3)-IId, ant(3″)-Ia, aph(3′)-Ia, blaCTX-M-55, floR, lnu(F), mdf(A), sul3, tet(A) | ampC without mutation | IncFII, IncHI2, IncHI2A, IncI1, IncN | IS186B, IS1F, IS3, IS679, ISEc1, ISEc11, ISEc38, ISEc52, ISEc78, ISKpn18, ISKpn26, MITEEc1 | anr, AslA, astA, csgA, fdeC, fimH, fyuA, gad, hlyE, irp2, iss, nlpI, shiB, terC, tibC, traJ, traT, yehA, yehB, yehC | |
O10:H42 | 1642 | aac(3)-IId, aadA5, blaCTX-M-27, dfrA17, erm(B), floR, mdf(A), mph(A), sul1, sul2, tet(B) | gyrA:p.S83L-tcg -> ttg, parC:p.S80I- agc -> atc, gyrA:p.D87N- gac -> aac, ampC-promoter:g.-18G>A, ampC-promoter:g.-1C>T, gyrA:p.S83L-tcg -> ttg | IncFIA, IncFIB(AP001918), IncY | IS100kyp, IS1H, ISCro1, ISEc1, ISEc12, ISEc23, ISEc38, ISEc78, ISEc8, ISSen1, ISSfl8, MITEEc1 | anr, csgA, F17A, F17C, F17D, F17G, fdeC, fimH, fyuA, hha, hlyE, hra, irp2, lpfA, nlpI, shiA, sitA, terC, yehA, yehB, yehC, yehD | |
O154:H10 | 1122 | aph(3′)-Ia, blaCMY-2, mdf(A) | ampC without mutation | IncFIB(AP001918) | IS150, IS186B, IS1F, IS1X4, IS3, IS609, IS679, IS911, ISEc14, ISEc23, ISEc38, ISEc39, ISEc83, ISEsa1, ISKpn26, MITEEc1 | astA, fdeC, fimH, hlyE, iss, nlpI, shiA, terC, tia, traT, yehA, yehB, yehC, yehD | |
Wild hog | O188:H20 | unknown | mdf(A) | ampC no mutation | ColpVC, IncFIB(AP001918) | IS100kyp, ISEc1, ISEc38, MITEEc1 | air, AslA, astA, chuA, csgA, eilA, espY2, fdeC, fimH, gad, hlyE, iss, nlpI, ompT, pic, terC, traJ, traT, yehB, yehC, yehD |
O88:H25 | 58 | mdf(A) | ampC-promoter:g.-28G>A, ampC-promoter:g.-1C>T | IncFIB(AP001918), IncFIC(FII) | IS100kyp, IS1F, IS1H, IS2, IS30, ISCro1, ISEc11, ISEc38, ISEc8, MITEEc1 | anr, astA, cdt-IIIB, csgA, eltIIAB-c6, fdeC, fimH, hlyE, hra, lpfA, nlpI, papC, terC, traJ, traT, yehA, yehB, yehC, yehD | |
O103:H21 | 446 | mdf(A), tet(C) | ampC-promoter:g.-18G>A, ampC-promoter:g.-1C>T | IncFIB(AP001918), IncI1 | IS100kyp, IS1H, IS629, IS91, ISEc12, ISEc38, ISEc83, ISEsa1, ISKpn60, ISSfl8, ISSso6, MITEEc1 | cdt-IIIB, cnf2, csgA, F17A, F17C, F17D, F17G, faeC, faeD, faeF, faeH, faeI, faeJ, fdeC, fimH, fyuA, gad, hha, hlyE, hra, irp2, iss, iucC, iutA, lpfA, nlpI, ompT, terC, traT, yehA, yehB, yehC, yehD | |
O98:H41 | 1087 | mdf(A) | ampC-promoter:g.-18G>A, ampC-promoter:g.-1C>T | none | IS100kyp, IS1H, IS609, IS629, ISEc17, ISEc26, ISEc46, ISEc66, ISEc83, ISKpn54, ISKpn60, MITEEc1 | air, AslA, cdt-IIIB, chuA, cnf2, csgA, eilA, eltIIAB-c1, espY2, F17A, F17C, F17D, F17G, fdeC, fimH, hlyE, iss, iucC, iutA, nlpI, ompT, terC, traT, yehB | |
O84:14 | unknown | mdf(A) | ampC-promoter:g.-18G>A, ampC-promoter:g.-1C>T | IncFII, IncY | IS1H, IS21, IS30, IS3F, MITEEc1 | csgA, cvaC, F17A, F17D, fdeC, fimH, gad, hlyE, iss, lpfA, nlpI, ompT, terC, traT, yehA, yehB, yehC, yehD | |
O8:H28 | 4496 | blaCMY-2, mdf(A) | No mutation in ampC | IncFIB(AP001918), IncX4 | IS1H, IS1X4, IS3, IS609, ISCfr6, ISEc84, MITEEc1 | csgA, ehxA, eltIIAB-a, fdeC, fimH, gad, hlyE, lpfA, nlpI, stx2, stx2a-O8-BMH-17-0027, terC, traT, yehA, yehB, yehC, yehD | |
O19: H4 | 216 | mdf(A) | ampC without mutation | Col440I, IncFIB(AP001918) | IS150, IS186B, IS2, IS5708, ISCfr26, ISEc68, ISEc78, ISEsa1, ISPpu21, ISSen4, MITEEc1 | anr, clpK1, csgA, fimH, hlyE, nlpI, terC, yehA, yehB, yehC, yehD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awosile, B.; Fritzler, J.; Levent, G.; Rahman, M.K.; Ajulo, S.; Daniel, I.; Tasnim, Y.; Sarkar, S. Genomic Characterization of Fecal Escherichia coli Isolates with Reduced Susceptibility to Beta-Lactam Antimicrobials from Wild Hogs and Coyotes. Pathogens 2023, 12, 929. https://doi.org/10.3390/pathogens12070929
Awosile B, Fritzler J, Levent G, Rahman MK, Ajulo S, Daniel I, Tasnim Y, Sarkar S. Genomic Characterization of Fecal Escherichia coli Isolates with Reduced Susceptibility to Beta-Lactam Antimicrobials from Wild Hogs and Coyotes. Pathogens. 2023; 12(7):929. https://doi.org/10.3390/pathogens12070929
Chicago/Turabian StyleAwosile, Babafela, Jason Fritzler, Gizem Levent, Md. Kaisar Rahman, Samuel Ajulo, Ian Daniel, Yamima Tasnim, and Sumon Sarkar. 2023. "Genomic Characterization of Fecal Escherichia coli Isolates with Reduced Susceptibility to Beta-Lactam Antimicrobials from Wild Hogs and Coyotes" Pathogens 12, no. 7: 929. https://doi.org/10.3390/pathogens12070929
APA StyleAwosile, B., Fritzler, J., Levent, G., Rahman, M. K., Ajulo, S., Daniel, I., Tasnim, Y., & Sarkar, S. (2023). Genomic Characterization of Fecal Escherichia coli Isolates with Reduced Susceptibility to Beta-Lactam Antimicrobials from Wild Hogs and Coyotes. Pathogens, 12(7), 929. https://doi.org/10.3390/pathogens12070929