Pathogenicity of Trichoderma afroharzianum in Cereal Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Cultivation and Inoculum Preparation
2.2. Plant Cultivation and Inoculation Procedure
2.3. Disease Assessment
2.4. Germination Rate in Pots
2.5. Statistical Analysis
3. Results
3.1. Visual Disease Symptoms
3.2. Colonization Rate and Thousand-Kernel Weight
3.3. Germination Rate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agricultural Data; Food and Agriculture Organization of the United Nation: Rome, Italy, 2021. [Google Scholar]
- Juroszek, P.; von Tiedemann, A. Climatic changes and the potential future importance of maize diseases: A short review. J. Plant Dis. Prot. 2013, 120, 49–56. [Google Scholar] [CrossRef]
- Nnadi, N.E.; Carter, D.A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021, 17, e1009503. [Google Scholar] [CrossRef]
- Kubicek, C.P.; Komon-Zelazowska, M.; Druzhinina, I.S. Fungal genus Hypocrea/Trichoderma: From barcodes to biodiversity. J. Zhejiang Univ. Sci. B 2008, 9, 753–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaklitsch, W.M.; Voglmayr, H. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud. Mycol. 2015, 80, 1–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazanfar, M.U.; Raza, M.; Raza, W.; Qamar, M.I. Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Prot. 2018, 2, 109–135. [Google Scholar]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.V.; Musumeci, M.A. Trichoderma as biological control agent: Scope and prospects to improve efficacy. World J. Microbiol. Biotechnol. 2021, 37, 90. [Google Scholar] [CrossRef]
- Bouanaka, H.; Bellil, I.; Harrat, W.; Boussaha, S.; Benbelkacem, A.; Khelifi, D. On the biocontrol by Trichoderma afroharzianum against Fusarium culmorum responsible of fusarium head blight and crown rot of wheat in Algeria. Egypt J. Biol. Pest Control 2021, 31, 68. [Google Scholar] [CrossRef]
- Perelló, A.; Mónaco, C.; Simón, M.; Sisterna, M.; Bello, G. Biocontrol efficacy of Trichoderma isolates for tan spot of wheat in Argentina. Crop Prot. 2003, 22, 1099–1106. [Google Scholar] [CrossRef]
- El-Sharkawy, H.H.A.; Tohamey, S.; Khalil, A.A. Combined effects of Streptomyces viridosporus and Trichoderma harzianum on controlling wheat leaf rust caused by Puccinia triticina. Plant Pathol. J. 2015, 14, 182–188. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, H.H.A.; Rashad, Y.M.; Ibrahim, S.A. Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiol. Mol. Plant Pathol. 2018, 103, 84–91. [Google Scholar] [CrossRef]
- Hýsek, J.; Vach, M.; Brožová, J.; Sychrová, E.; Civínová, M.; Neděelník, J.; Hrubý, J. The influence of the application of mineral fertilizers with the biopreparation supresivit (Trichoderma harzianum) on the health and the yield of different crops. Arch. Phytopathol. Plant Prot. 2002, 35, 115–124. [Google Scholar] [CrossRef]
- Manzar, N.; Singh, Y.; Kashyap, A.S.; Sahu, P.K.; Rajawat, M.V.S.; Bhowmik, A.; Sharma, P.K.; Saxena, A.K. Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (Sorghum bicolour L.) from Tarai and hill regions of India. Biol. Control 2021, 152, 104474. [Google Scholar] [CrossRef]
- Sharma, P.; Nath Patel, A.; Kumar Saini, M.; Deep, S. Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L). J. Agric. Sci. 2012, 4, 65–73. [Google Scholar] [CrossRef]
- Mahato, S.; Bhuju, S.; Shrestha, J. Effect of Trichoderma viride as biofertilizer on growth and yield of wheat. Malays. J. Sustain. Agric. 2018, 2, 1–5. [Google Scholar] [CrossRef]
- Pfordt, A.; Schiwek, S.; Karlovsky, P.; von Tiedemann, A. Trichoderma afroharzianum ear rot—A new disease on maize in Europe. Front. Agron. 2020, 2, 547758. [Google Scholar] [CrossRef]
- Sanna, M.; Pugliese, M.; Gullino, M.L.; Mezzalama, M. First report of Trichoderma afroharzianum causing seed rot on maize in Italy. Plant Disease. 2022, 106, 1982. [Google Scholar] [CrossRef]
- Leonard, K.J.; Bushnell, W.R. (Eds.) Fusarium Head Blight of Wheat and Barley; APS Press: St. Paul, MN, USA, 2003; ISBN 089054302X. [Google Scholar]
- Dill-Macky, R.; Jones, R.K. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis. 2000, 84, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Mesterhazy, A. Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 1995, 114, 377–386. [Google Scholar] [CrossRef]
- Miedaner, T. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed. 1997, 116, 201–220. [Google Scholar] [CrossRef]
- Röhrich, C.R.; Iversen, A.; Jaklitsch, W.M.; Voglmayr, H.; Vilcinskas, A.; Nielsen, K.F.; Thrane, U.; von Döhren, H.; Brückner, H.; Degenkolb, T. Screening the biosphere: The fungicolous fungus Trichoderma phellinicola, a prolific source of hypophellins, new 17-, 18-, 19-, and 20-residue peptaibiotics. Chem. Biodivers. 2013, 10, 787–812. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Sharma, P. (Eds.) Trichoderma: Host Pathogen Interactions and Applications, 1st ed.; Springer: Singapore, 2020; ISBN 978-981-15-3321-1. [Google Scholar]
- Chaverri, P.; Branco-Rocha, F.; Jaklitsch, W.; Gazis, R.; Degenkolb, T.; Samuels, G.J. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015, 107, 558–590. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Bar, M. Plant Immunity, priming, and systemic resistance as mechanisms for Trichoderma spp. biocontrol. In Trichoderma; Sharma, A.K., Sharma, P., Eds.; Springer: Singapore, 2020; pp. 81–110. ISBN 978-981-15-3320-4. [Google Scholar]
- Abdelzaher, H.M.A. Occurrence of damping-off of wheat caused by Pythium diclinum tokunaga in El-Minia, Egypt and its possible control by Gliocladium roseum and Trichoderma harzianum. Arch. Phytopathol. Plant Prot. 2004, 37, 147–159. [Google Scholar] [CrossRef]
- Abo-Elnaga, H.I.G. Biological control of damping off and root rot of wheat and sugar beet with Trichoderma harzianum. Plant Pathol. J. 2012, 11, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Blandino, M.; Pilati, A.; Reyneri, A.; Scudellari, D. Effect of maize crop residue density on Fusarium head blight and on deoxynivalenol contamination of common wheat grains. Cereal Res. Commun. 2010, 38, 550–559. [Google Scholar] [CrossRef]
Species | Isolate | Origin | Host |
---|---|---|---|
T. afroharzianum | CBS 124620 1 | Type strain | |
T. afroharzianum | TriMix | ||
-Tri1 | Croix de Pardie | Maize | |
-Tri2 | Künzing | Maize | |
-Tri3 | Pocking | Maize |
Crop | Method | Treatment | Colonization Rate (%) | TKW (g) |
---|---|---|---|---|
Barley | Spray | TriMix | 36.4 a | 43.0 a |
Control | 4.8 b | 47.9 b | ||
Point | TriMix | 30.2 a | 44.7 a | |
Control | 1.8 b | 45.3 a | ||
Wheat | Spray | TriMix | 59.5 a | 33.1 a |
Control | 4.0 b | 33.7 a | ||
Point | TriMix | 38.4 a | 33.4 a | |
Control | 7.7 b | 34.8 a | ||
Sorghum | Spray | TriMix | 2.8 a | 22.3 a |
Control | 0.5 a | 24.0 a | ||
Point | TriMix | 3.0 a | 25.5 a | |
Control | 0.3 a | 25.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfordt, A.; Gaumann, P.; von Tiedemann, A. Pathogenicity of Trichoderma afroharzianum in Cereal Crops. Pathogens 2023, 12, 936. https://doi.org/10.3390/pathogens12070936
Pfordt A, Gaumann P, von Tiedemann A. Pathogenicity of Trichoderma afroharzianum in Cereal Crops. Pathogens. 2023; 12(7):936. https://doi.org/10.3390/pathogens12070936
Chicago/Turabian StylePfordt, Annette, Peet Gaumann, and Andreas von Tiedemann. 2023. "Pathogenicity of Trichoderma afroharzianum in Cereal Crops" Pathogens 12, no. 7: 936. https://doi.org/10.3390/pathogens12070936
APA StylePfordt, A., Gaumann, P., & von Tiedemann, A. (2023). Pathogenicity of Trichoderma afroharzianum in Cereal Crops. Pathogens, 12(7), 936. https://doi.org/10.3390/pathogens12070936