A Review of Circumpolar Arctic Marine Mammal Health—A Call to Action in a Time of Rapid Environmental Change
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bacteria
3.1.1. Brucella
3.1.2. Leptospira
3.1.3. Coxiella burnetii
3.1.4. Vibrio parahaemolyticus (Vp)
3.1.5. Streptococcus
3.1.6. Erysipelothrix rhusiopathiae
3.1.7. Pasteurella
3.1.8. Mycobacteria
3.1.9. Nocardia
3.2. Fungi
3.3. Parasites
3.3.1. Trichinella
3.3.2. Trematodes
3.3.3. Cestodes
3.3.4. Acanthocephalans
3.3.5. Nematodes
3.3.6. Parasitic Arthropods
3.4. Protozoan Parasites
3.4.1. Toxoplasma gondii
3.4.2. Neospora caninum
3.4.3. Sarcocystis
3.4.4. Giardia
3.4.5. Cryptosporidium
3.4.6. Eimeria
3.5. Viruses
3.5.1. Paramyxoviruses (including Morbillivirus)
3.5.2. Influenza A Virus
3.5.3. Coronavirus
3.5.4. Calicivirus
3.5.5. Adenovirus
3.5.6. Herpesvirus
3.5.7. Papillomavirus
3.5.8. Poxvirus
3.5.9. Rabies Viruse
3.6. Other Climate-Change-Related Health Stressors
3.6.1. Interspecific and Intraspecific Trauma
3.6.2. Freshwater Lesions
3.6.3. Ice Entrapments
3.6.4. Malnutrition
3.6.5. Alopecia
3.6.6. Neoplasia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meredith, M.; Sommerkorn, M.; Cassota, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.M.C. Polar regions. In IPCC Special Report on the Ocean & Cryosphere in a Changing Climate; Chapter 3; IPCC: Geneva, Switzerland, 2019; pp. 1–173. Available online: https://repository.library.noaa.gov/view/noaa/27411/noaa_27411_DS1.pdf (accessed on 22 September 2022).
- Kovacs, K.M.; Lydersen, C. Climate change impacts on seals and whales in the North Atlantic Arctic and adjacent shelf seas. Sci. Prog. 2008, 91, 117–150. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, P.; Duarte, C.M.; Agusti, S.; Sejr, M.K. Footprints of climate change in the Arctic marine ecosystem. Glob. Chang. Biol. 2011, 17, 1235–1249. [Google Scholar] [CrossRef]
- Box, J.E.; Colgan, W.T.; Christensen, T.R.; Schmidt, N.M.; Lund, M.; Parmentier, F.-J.W.; Brown, R.; Bhatt, U.S.; Euskirchen, E.S.; Romanovsky, V.E.; et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019, 14, 045010. [Google Scholar] [CrossRef]
- VanWormer, E.; Mazet, J.A.K.; Hall, A.; Gill, V.A.; Boveng, P.L.; London, J.M.; Gelatt, T.; Fadely, B.S.; Lander, M.E.; Sterling, J.; et al. Viral emergence in marine mammals in the North Pacific may be linked to Arctic sea ice reduction. Sci. Rep. 2019, 9, 15569. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Schweiger, A.; L’Heureux, M.; Battisti, D.S.; Po-Chedley, S.; Johnson, N.C.; Blanchard-Wrigglesworth, E.; Harnos, K.; Zhang, Q.; Eastman, R. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Chang. 2017, 7, 289–295. [Google Scholar] [CrossRef]
- Moore, S.E.; Huntington, H.P. Arctic marine mammals and climate change: Impacts and resilience. Ecol. Appl. 2008, 18, S157–S165. [Google Scholar] [CrossRef] [Green Version]
- Laidre, K.L.; Stern, H.; Kovacs, K.M.; Lowry, L.; Moore, S.E.; Regehr, E.V.; Ferguson, S.H.; Wiig, Ø.; Boveng, P.; Angliss, R.P.; et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. 2015, 29, 724–737. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.D.; Lydersen, C.; Ims, R.A.; Kovacs, K.M. Predictions replaced by facts: A keystone species’ behavioural responses to declining arctic sea-ice. Biol. Lett. 2015, 11, 20150803. [Google Scholar] [CrossRef] [Green Version]
- Silber, G.K.; Lettrich, M.D.; Thomas, P.O.; Baker, J.D.; Baumgartner, M.; Becker, E.A.; Boveng, P.; Dick, D.M.; Fiechter, J.; Forcada, J.; et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 2017, 4, 413. [Google Scholar] [CrossRef]
- Kovacs, K.M.; Lydersen, C.; Overland, J.E.; Moore, S.E. Impacts of changing sea-ice conditions on Arctic marine mammals. Mar. Biodiv. 2011, 41, 181–194. [Google Scholar] [CrossRef]
- Ferguson, S.H.; Higdon, J.W. How seals divide up the world: Environment, life history, and conservation. Oecologia 2006, 150, 318–329. [Google Scholar] [CrossRef]
- Ferguson, S.H.; Higdon, J.W. Grouping world cetaceans according to life-history characteristics indicates two divergent strategies. Can. Wildl. Biol. Manag. 2013, 2, 51–66. Available online: https://cwbm.ca/wp-content/uploads/2016/04/2-Vol-2-Issue-2-Ferguson-and-Higdon.pdf (accessed on 18 September 2022).
- Harvell, C.D.; Kim, K.; Burkholder, J.M.; Colwell, R.R.; Epstein, P.R.; Grimes, D.J.; Hofmann, E.E.; Lipp, E.K.; Osterhaus, A.; Overstreet, R.M.; et al. Emerging marine diseases—Climate links and anthropogenic factors. Science 1999, 285, 1505–1510. [Google Scholar] [CrossRef] [Green Version]
- Harvell, D.; Altizer, S.; Cattadori, I.M.; Harrington, L.; Weil, E. Climate change and wildlife diseases: When does the host matter the most? Ecology 2009, 90, 912–920. [Google Scholar] [CrossRef]
- Gulland, F.M.D.; Hall, A.J. Is marine mammal health deteriorating? Trends in the global reporting of marine mammal disease. EcoHealth 2007, 4, 135–150. [Google Scholar] [CrossRef]
- Desforges, J.-P.W.; Sonne, C.; Levin, M.; Siebert, U.; De Guise, S.; Dietz, R. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 2016, 86, 126–139. [Google Scholar] [CrossRef]
- Jenssen, B.M.; Villanger, G.D.; Gabrielsen, K.M.; Bytingsvik, J.; Bechshoft, T.; Ciesielski, T.M.; Sonne, C.; Dietz, R. Anthropogenic flank attack on polar bears: Interacting consequences of climate warming and pollutant exposure. Front. Ecol. Evol. 2015, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Burek, K.A.; Gulland, F.M.D.; O’Hara, T.M. Effects of climate change on Arctic marine mammal health. Ecol. Appl. 2008, 18, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Venn-Watson, S. Opportunistic Pathogens of Marine Mammals. In The Rasputin Effect: When Commensals & Symbionts Become Parasitic; Hurst, C.J., Ed.; Springer: Cham, Switzerland, 2016; Volume 3, pp. 127–143. [Google Scholar]
- Acevedo-Whitehouse, K.; Gulland, F.; Greig, D.; Amos, W. Disease susceptibility in California sea lions. Nature 2003, 422, 35. [Google Scholar] [CrossRef]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D. Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tryland, M.; Brun, E. Serum chemistry of the minke whale from the northeastern Atlantic. J. Wildl. Dis. 2001, 37, 332–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tryland, M.; Brun, E.; Derocher, A.E.; Arnemo, J.M.; Kierulf, P.; Ølberg, R.-A.; Wiig, Ø. Plasma biochemical values from apparently healthy free-ranging polar bears from Svalbard. J. Wildl. Dis. 2002, 38, 566–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tryland, M.; Krafft, B.A.; Lydersen, C.; Kovacs, K.M.; Thoresen, S.I. Serum chemistry values for free-ranging ringed seals (Pusa hispida) in Svalbard. Vet. Clin. Pathol. 2006, 35, 405–412. [Google Scholar] [CrossRef]
- Tryland, M.; Lydersen, C.; Kovacs, K.M.; Rafter, E.; Thoresen, S.I. Serum biochemistry and haematology in wild and captive bearded seals (Erignathus barbatus) from Svalbard, Norway. Acta Vet. Scand. 2021, 63, 33. [Google Scholar] [CrossRef] [PubMed]
- Tryland, M.; Lydersen, C.; Kovacs, K.M.; Thoresen, S.I. Serum chemistry reference values in free-ranging North Atlantic male walruses (Odobenus rosmarus rosmarus) from the Svalbard archipelago. Vet. Clin. Pathol. 2009, 38, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Tryland, M.; Nymo, I.H.; Nielsen, O.; Nordøy, E.S.; Kovacs, K.M.; Krafft, B.A.; Thoresen, S.I.; Åsbakk, K.; Osterrieder, K.; Roth, S.J.; et al. Serum chemistry and antibodies against pathogens in antarctic fur seals, Weddell seals, crabeater seals, and Ross seals. J. Wildl. Dis. 2012, 48, 632–645. [Google Scholar] [CrossRef]
- Tryland, M.; Thoresen, S.I.; Kovacs, K.M.; Lydersen, C. Serum chemistry of free-ranging white whales (Delphinapterus leucas) in Svalbard. Vet. Clin. Pathol. 2006, 35, 199–203. [Google Scholar] [CrossRef]
- Watt, C.A.; Simonee, J.; L’Herault, V.; Zhou, R.; Ferguson, S.H.; Marcoux, M.; Black, S. Cortisol levels in narwhal (Monodon monoceros) blubber from 2000 to 2019. Arctic Sci. 2021, 7, 690–698. [Google Scholar] [CrossRef]
- Krafft, B.A.; Lydersen, C.; Kovacs, K.M. Serum haptoglobin concentrations in ringed seals (Pusa hispida) from Svalbard, Norway. J. Wildl. Dis. 2006, 42, 442–446. [Google Scholar] [CrossRef] [Green Version]
- Kucheravy, C.E.; Trana, M.R.; Watt, C.A.; Roth, J.D.; Tomy, G.T.; Anderson, W.G.; Ferguson, S.H. Blubber cortisol in four Canadian beluga whale populations is unrelated to diet. Mar. Ecol. Prog. Ser. 2022, 698, 171–189. [Google Scholar] [CrossRef]
- Patyk, K.A.; Duncan, C.; Nol, P.; Sonne, C.; Laidre, K.; Obbard, M.; Wiig, Ø.; Aars, J.; Regehr, E.; Gustafson, L.L. Establishing a definition of polar bear (Ursus maritimus) health: A guide to research and management activities. Sci. Total Environ. 2015, 514, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleeman, J.M. Has the time come for big science in wildlife health? EcoHealth 2013, 10, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, S. The conceptualisation of health and disease in veterinary medicine. Acta Vet. Scand. 2006, 48, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barratclough, A.; Wells, R.S.; Schwacke, L.H.; Rowles, T.K.; Gomez, F.M.; Fauquier, D.A.; Sweeney, J.C.; Townsend, F.I.; Hansen, L.J.; Zolman, E.S.; et al. Health Assessments of Common Bottlenose Dolphins (Tursiops truncatus): Past, Present, and Potential Conservation Applications. Front. Vet. Sci. 2019, 6, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stimmelmayr, R. Health Assessment of Subsistence Harvested Bering-Chukchi-Beaufort Seas Bowhead Whales (Balaena Mysticetus): An Overview. Paper SC/66a/E/8, Presented to the Scientific Committee the Int. Whaling Commission. Department Wildlife Management; North Slope Borough, Barrow, AK, USA, 2015. 8p. Available online: https://www.north-slope.org/wp-content/uploads/2022/03/SC-66a-E08.stimmelmayr.pdf (accessed on 5 September 2022).
- Gulland, F. Review of the marine mammal unusual mortality event response program of the National Marine Fisheries Service. In NOAA Technical Memorandum NMFS-OPR-33; NOAA: Washington, DC, USA, 2006. Available online: https://repository.library.noaa.gov/view/noaa/14913 (accessed on 5 September 2022).
- Moore, M.J.; Mitchell, G.H.; Rowles, T.K.; Early, G. Dead cetacean? Beach, bloat, float, sink. Front. Mar. Sci. 2020, 7, 333. [Google Scholar] [CrossRef]
- NOAA. Request to Close the Pacific Walrus Portion of the 2011 Alaska Pinniped UME. In NOAA Fisheries May 2014. Available online: https://media.fisheries.noaa.gov/dam-migration/ume-factsheet0514-akr.pdf (accessed on 5 September 2022).
- Burek-Huntington, K.A.; Stimmelmayr, R.; Herreman, J.; Sheffield, G.; Garlich-Miller, J.; Firth, C.; Lipkin, I.; Saliki, J.; Nielsen, O.; Mascarelli, P.; et al. Histopathological and Ancillary Diagnostic Findings from 2011 Northern Pinnipeds UME in the Arctic and Bering Strait Regions of Alaska, USA. In Proceedings of the 2012 International Association for Aquatic Animal Medicine, Atlanta, GA, USA, 12–16 May 2012. [Google Scholar]
- Ferguson, S.H.; Young, B.G.; Yurkowski, D.J.; Anderson, R.; Willing, C.; Nielsen, O. Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability. PeerJ 2017, 5, e2957. [Google Scholar] [CrossRef] [Green Version]
- Siddon, E.C.; Zador, S.G.; Hunt, G.L., Jr. Ecological responses to climate perturbations and minimal sea ice in the northern Bering Sea. Deep Sea Res. II Top. Stud. Oceanogr. 2020, 181, 104914. [Google Scholar] [CrossRef]
- Ferguson, S.H.; Young, B.G.; Thiemann, G.W.; Higdon, J.W.; Raverty, S.; Houde, M. Unusual Mortality of Bowhead whales of the Eastern Canada-West Greenland population in Nunavut Canada in Autumn 2020; Paper SC/68D/E/03 submitted to the IWC Scientific Committee (unpublished); International Whaling Commission Secretariat: Cambridge, UK, 2022. [Google Scholar]
- Christiansen, F.; Rodríguez-González, F.; Martínez-Aguilar, S.; Urbán, J.; Swartz, S.; Warick, H.; Vivier, F.; Bejder, L. Poor body condition associated with an unusual mortality event in gray whales. Mar. Ecol. Prog. Ser. 2021, 658, 237–252. [Google Scholar] [CrossRef]
- Tynan, C.T.; DeMaster, D.P. Observations and predictions of Arctic climatic change: Potential effects on marine mammals. Arctic 1997, 50, 308–322. Available online: https://www.jstor.org/stable/40512109 (accessed on 12 August 2022). [CrossRef]
- Prestrud, P.; Gjertz, I. The most northerly harbor seal, Phoca vitulina, at Prins Karls Forland, Svalbard. Mar. Mamm. Sci. 1990, 6, 215–220. [Google Scholar] [CrossRef]
- Rosing-Asvid, A.; Teilmann, J.; Dietz, R.; Olsen, M.T. First confirmed record of grey seals in Greenland. Arctic 2010, 63, 471–473. [Google Scholar] [CrossRef] [Green Version]
- Storrie, L.; Lydersen, C.; Andersen, M.; Wynn, R.B.; Kovacs, K.M. Determining the species assemblage and habitat use of cetaceans in the Svalbard Archipelago, based on observations from 2002 to 2014. Polar Res. 2018, 37, 1463065. [Google Scholar] [CrossRef]
- Bengtsson, O.; Lydersen, C.; Kovacs, K.M. Cetacean spatial trends from 2005 to 2019 in Svalbard, Norway. Polar Res. 2022, 41, 1–15. [Google Scholar] [CrossRef]
- Bengtsson, O.; Hamilton, C.D.; Lydersen, C.; Andersen, M.; Kovacs, K.M. Distribution and habitat characteristics of pinnipeds and polar bears in the Svalbard Archipelago, 2005–2018. Polar Res. 2021, 40, 1–20. [Google Scholar] [CrossRef]
- Higdon, J.W.; Ferguson, S.H. Reports of humpback and minke whales in the Hudson Bay region, eastern Canadian Arctic. Northeast. Nat. 2011, 18, 370–377. Available online: https://www.jstor.org/stable/41315968 (accessed on 12 August 2022). [CrossRef]
- Higdon, J.W.; Ferguson, S.H. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century. Ecol. Appl. 2009, 19, 1365–1375. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, C.D. Global climate change, range changes and potential implications for the conservation of marine cetaceans: A review and synthesis. Endanger. Spec. Res. 2009, 7, 125–136. [Google Scholar] [CrossRef]
- Moore, S.E.; Haug, T.; Víkingsson, G.A.; Stenson, G.B. Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Pro. Oceanogr. 2019, 176, 102118. [Google Scholar] [CrossRef]
- Tsujii, K.; Otsuki, M.; Akamatsu, T.; Matsuo, I.; Amakasu, K.; Kitamura, M.; Kikuchi, T.; Miyashita, K.; Mitani, Y. The migration of fin whales into the southern Chukchi Sea as monitored with passive acoustics. ICES J. Mar. Sci. 2016, 73, 2085–2092. [Google Scholar] [CrossRef] [Green Version]
- Lefort, K.J.; Hussey, N.E.; Jones, J.M.; Johnson, K.F.; Ferguson, S.H. Satellite-tracked sperm whale migrates from the Canadian Arctic to the subtropical western North Atlantic. Mar. Mammal Sci. 2022, 38, 1242–1248. [Google Scholar] [CrossRef]
- MacLeod, C.D.; Bannon, S.M.; Pierce, G.J.; Schweder, C.; Learmonth, J.A.; Herman, J.S.; Reid, R.J. Climate change and the cetacean community of north-west Scotland. Biol. Conserv. 2005, 124, 477–483. [Google Scholar] [CrossRef]
- Alstrup, A.K.O.; Jensen, L.F.; Hansen, M.S.; Kinze, C.C.; Jensen, T.H. Necropsy findings of 11 white-beaked dolphins (Lagenorhynchus albirostris) stranded in Denmark during 2008–2014. Aquat. Mamm. 2016, 42, 292–299. [Google Scholar] [CrossRef]
- Hamilton, C.D.; Lydersen, C.; Aars, J.; Acquarone, M.; Atwood, T.; Baylis, A.; Biuw, M.; Boltunov, A.N.; Born, E.W.; Boveng, P. Marine mammal hotspots across the circumpolar Arctic. Divers. Distrib. 2022, 28, 2729–2753. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Int. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesage, V. The challenges of a small population exposed to multiple anthropogenic stressors and a changing climate: The St. Lawrence Estuary beluga. Polar Res. 2021, 40, 5523. [Google Scholar] [CrossRef]
- Hobbs, R.C.; Reeves, R.R.; Prewitt, J.S.; Desportes, G.; Breton-Honeyman, K.; Christensen, T.; Citta, J.J.; Ferguson, S.H.; Frost, K.J.; Garde, E. Global review of the conservation status of monodontid stocks. Mar. Fish. Rev. 2019, 81, 1–53. Available online: http://spo.nmfs.noaa.gov/mcontent.htm (accessed on 12 August 2022).
- Martin, M.J.; Halliday, W.D.; Storrie, L.; Citta, J.J.; Dawson, J.; Hussey, N.E.; Juanes, F.; Loseto, L.L.; MacPhee, S.A.; Moore, L.; et al. Exposure and behavioral responses of tagged beluga whales (Delphinapterus leucas) to ships in the Pacific Arctic. Mar. Mammal Sci. 2023, 39, 387–421. [Google Scholar] [CrossRef]
- Hendrix, A.M.; Lefebvre, K.A.; Quakenbush, L.; Bryan, A.; Stimmelmayr, R.; Sheffield, G.; Wisswaesser, G.; Willis, M.L.; Bowers, E.K.; Kendrick, P.; et al. Ice seals as sentinels for algal toxin presence in the Pacific Arctic and subarctic marine ecosystems. Mar. Mammal Sci. 2021, 37, 1292–1308. [Google Scholar] [CrossRef]
- Hauser, D.D.W.; Laidre, K.L.; Stern, H.L. Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proc. Natl. Acad. Sci. USA 2018, 115, 7617–7622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliday, W.D.; Pine, M.K.; Insley, S.J. Underwater noise and Arctic marine mammals: Review and policy recommendations. Environ. Rev. 2020, 28, 438–448. [Google Scholar] [CrossRef]
- Reeves, R.; Rosa, C.; George, J.C.; Sheffield, G.; Moore, M. Implications of Arctic industrial growth and strategies to mitigate future vessel and fishing gear impacts on bowhead whales. Mar. Policy 2012, 36, 454–462. [Google Scholar] [CrossRef]
- Miller, W.G.; Adams, L.G.; Ficht, T.A.; Cheville, N.F.; Payeur, J.P.; Harley, D.R.; House, C.; Ridgway, S.H. Brucella-induced abortions and infection in bottlenose dolphins (Tursiops truncatus). J. Zoo Wildl. Med. 1999, 30, 100–110. Available online: https://www.jstor.org/stable/20095828 (accessed on 12 August 2022). [PubMed]
- Samartino, L.E.; Enright, F.M. Pathogenesis of abortion of bovine brucellosis. Comp. Immunol. Microbiol. Infect. Dis. 1993, 16, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mora, G.; Palacios-Alfaro, J.D.; González-Barrientos, R. Wildlife reservoirs of brucellosis: Brucella in aquatic environments. Rev. Sci. Tech. (Int. Off. Epizoot.) 2013, 32, 89–103. [Google Scholar] [CrossRef]
- Jepson, P.D.; Brew, S.; MacMillan, A.P.; Baker, J.R.; Barnett, J.; Kirkwood, J.K.; Kuiken, T.; Robinson, I.R.; Simpson, V.R. Antibodies to Brucella in marine mammals around the coast of England and Wales. Vet. Rec. 1997, 141, 513–515. [Google Scholar] [CrossRef]
- Bricker, B.J.; Ewalt, D.R.; MacMillan, A.P.; Foster, G.; Brew, S. Molecular characterization of Brucella strains isolated from marine mammals. J. Clin. Microbiol. 2000, 38, 1258–1262. [Google Scholar] [CrossRef] [Green Version]
- Tryland, M.; Sørensen, K.K.; Godfroid, J. Prevalence of Brucella pinnipediae in healthy hooded seals (Cystophora cristata) from the North Atlantic Ocean and ringed seals (Phoca hispida) from Svalbard. Vet. Microbiol. 2005, 105, 103–111. [Google Scholar] [CrossRef]
- Foster, G.; Nymo, I.H.; Kovacs, K.M.; Beckmen, K.B.; Brownlow, A.C.; Baily, J.L.; Dagleish, M.P.; Muchowski, J.; Perrett, L.L.; Tryland, M.; et al. First isolation of Brucella pinnipedialis and detection of Brucella antibodies from bearded seals Erignathus barbatus. Dis. Aquat. Org. 2018, 128, 13–20. [Google Scholar] [CrossRef]
- Nymo, I.H.; Tryland, M.; Godfroid, J. A review of Brucella infection in marine mammals, with special emphasis on Brucella pinnipedialis in the hooded seal (Cystophora cristata). Vet. Res. 2011, 42, 93. [Google Scholar] [CrossRef] [Green Version]
- Corbel, M.J. Brucellosis in Humans and Animals; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Garner, M.M.; Lambourn, D.M.; Jeffries, S.J.; Hall, P.B.; Rhyan, J.C.; Ewalt, D.R.; Polzin, L.M.; Cheville, N.F. Evidence of Brucella infection in Parafilaroides lungworms in a Pacific harbor seal (Phoca vitulina richardsi). J. Vet. Diag. Investig. 1997, 9, 298–303. [Google Scholar] [CrossRef]
- Perrett, L.L.; Dawson, C.E.; Davison, N.; Quinney, S. Brucella infection of lungworms from a harbour porpoise. Vet. Rec. 2004, 154, 800. [Google Scholar] [PubMed]
- Rhyan, J.; Garner, M.; Spraker, T.; Lambourn, D.; Cheville, N. Brucella pinnipedialis in lungworms Parafilaroides sp. and Pacific harbor seals Phoca vitulina richardsi: Proposed pathogenesis. Dis. Aquat. Org. 2018, 131, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Mora, G.; González-Barrientos, R.; Morales, J.-A.; Chaves-Olarte, E.; Guzmán-Verri, C.; Baquero-Calvo, E.; De-Miguel, M.-J.; Marín, C.-M.; Blasco, J.-M.; Moreno, E. Neurobrucellosis in stranded dolphins, Costa Rica. Emerg. Infect. Dis. 2008, 14, 1430. [Google Scholar] [CrossRef] [PubMed]
- Ross, H.M.; Jahans, K.L.; MacMillan, A.P.; Reid, R.J.; Thompson, P.M.; Foster, G. Brucella species infection in North Sea seal and cetacean populations. Vet. Rec. 1996, 138, 647–648. [Google Scholar] [CrossRef]
- Foster, G.; MacMillan, A.P.; Godfroid, J.; Howie, F.; Ross, H.M.; Cloeckaert, A.; Reid, R.J.; Brew, S.; Patterson, I.A.P. A review of Brucella sp. infection of sea mammals with particular emphasis on isolates from Scotland. Vet. Microbiol. 2002, 90, 563–580. [Google Scholar] [CrossRef]
- Kershaw, J.L.; Stubberfield, E.J.; Foster, G.; Brownlow, A.; Hall, A.J.; Perrett, L.L. Exposure of harbour seals Phoca vitulina to Brucella in declining populations across Scotland. Dis. Aquat. Org. 2017, 126, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Nymo, I.H.; Godfroid, J.; Åsbakk, K.; Larsen, A.K.; das Neves, C.G.; Rødven, R.; Tryland, M. A protein A/G indirect enzyme-linked immunosorbent assay for the detection of anti-Brucella antibodies in Arctic wildlife. J. Vet. Diag. Investig. 2013, 25, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Tryland, M.; Derocher, A.E.; Wiig, Ø.; Godfroid, J. Brucella sp. antibodies in polar bears from Svalbard and the Barents Sea. J. Wildl. Dis. 2001, 37, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Rah, H.; Chomel, B.B.; Kasten, R.W.; Hew, C.H.; Farver, T.B.; Follmann, E.H.; Garner, G.W.; Amstrup, S.C. Serosurvey of selected zoonotic agents in polar bears (Ursus maritimus). Vet. Rec. 2005, 156, 7–13. [Google Scholar] [CrossRef]
- O’Hara, T.M.; Holcomb, D.; Elzer, P.; Estepp, J.; Perry, Q.; Hagius, S.; Kirk, C. Brucella species survey in polar bears (Ursus maritimus) of northern Alaska. J. Wildl. Dis. 2010, 46, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Atwood, T.C.; Duncan, C.; Patyk, K.A.; Nol, P.; Rhyan, J.; McCollum, M.; McKinney, M.A.; Ramey, A.M.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; et al. Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Sci. Rep. 2017, 7, 13193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tryland, M.; Kleivane, L.; Alfredsson, A.; Kjeld, M.; Arnason, A.; Stuen, S.; Godfroid, J. Evidence of Brucella infection in marine mammals in the North Atlantic Ocean. Vet. Rec. 1999, 144, 588–592. [Google Scholar] [CrossRef]
- Zarnke, R.L.; Saliki, J.T.; Macmillan, A.P.; Brew, S.D.; Dawson, C.E.; Ver Hoef, J.M.; Frost, K.J.; Small, R.J. Serologic survey for Brucella spp., phocid herpesvirus-1, phocid herpesvirus-2, and phocine distemper virus in harbor seals from Alaska, 1976–1999. J. Wildl. Dis. 2006, 42, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Forbes, L.B.; Nielsen, O.; Measures, L.; Ewalt, D.R. Brucellosis in ringed seals and harp seals from Canada. J. Wildl. Dis. 2000, 36, 595–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nymo, I.H.; Rødven, R.; Beckmen, K.; Larsen, A.K.; Tryland, M.; Quakenbush, L.; Godfroid, J. Brucella antibodies in Alaskan true seals and eared seals—Two different stories. Front. Vet. Sci. 2018, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goertz, C.E.C.; Reichmuth, C.; Thometz, N.M.; Ziel, H.; Boveng, P. Comparative health assessments of Alaskan ice seals. Front. Vet. Sci. 2019, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Sonne, C.; Andersen-Ranberg, E.; Rajala, E.L.; Agerholm, J.S.; Bonefeld-Jørgensen, E.; Desforges, J.-P.; Eulaers, I.; Jenssen, B.M.; Koch, A.; Rosing-Asvid, A.; et al. Seroprevalence for Brucella spp. in Baltic ringed seals (Phoca hispida) and East Greenland harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals. Vet. Immunol. Immunopathol. 2018, 198, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, O.; Nielsen, K.; Stewart, R.E.A. Serologic evidence of Bruceila spp. exposure in Atlantic walruses (Odobenus rosmarus rosmarus) and ringed seals (Phoca hispida) of Arctic Canada. Arctic 1996, 49, 383–386. Available online: https://www.jstor.org/stable/40512024 (accessed on 10 September 2022). [CrossRef] [Green Version]
- Ohishi, K.; Abe, E.; Amano, M.; Miyazaki, N.; Boltunov, A.; Katsumata, E.; Maruyama, T. Detection of serum antibodies to Brucella in Russian aquatic mammals. J. Vet. Med. Sci. 2018, 80, 1696–1701. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.A.; Goertz, C.E.C.; Quakenbush, L.T.; Burek Huntington, K.; Suydam, R.S.; Stimmelmayr, R.; Romano, T.A. Serological Detection of Marine Origin Brucella Exposure in Two Alaska Beluga Stocks. Animals 2022, 12, 1932. [Google Scholar] [CrossRef]
- Sidor, I.F.; Dunn, J.L.; Tsongalis, G.J.; Carlson, J.; Frasca, S., Jr. A multiplex real-time polymerase chain reaction assay with two internal controls for the detection of Brucella species in tissues, blood, and feces from marine mammals. J. Vet. Diag. Investig. 2013, 25, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, O.; Cobb, D.; Stewart, R.E.A.; Ryan, A.; Dunn, B.; Raverty, S.; Nielsen, K.; Harwood, L. Results of a community based disease monitoring program of marine mammals in arctic Canada. In Proceedings of the Oceans ′04 MTS/IEEE Techno-Ocean ′04, Kobe, Japan, 9–12 November 2004; pp. 492–498. [Google Scholar]
- Foster, G.; Jahans, K.L.; Reid, R.J.; Ross, H.M. Isolation of Brucella species from cetaceans, seals and an otter. Vet. Rec. 1996, 138, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Isidoro-Ayza, M.; Ruiz-Villalobos, N.; Pérez, L.; Guzmán-Verri, C.; Muñoz, P.M.; Alegre, F.; Barberán, M.; Chacón-Díaz, C.; Chaves-Olarte, E.; González-Barrientos, R.; et al. Brucella ceti infection in dolphins from the Western Mediterranean sea. BMC Vet. Res. 2014, 10, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, P.M.; García-Castrillo, G.; López-García, P.; González-Cueli, J.C.; De Miguel, M.J.; Marín, C.M.; Barberán, M.; Blasco, J.M. Isolation of Brucella species from a live-stranded striped dolphin (Stenella coeruleoalba) in Spain. Vet. Rec. 2006, 158, 450. [Google Scholar] [CrossRef]
- Ohishi, K.; Bando, T.; Abe, E.; Kawai, Y.; Fujise, Y.; Maruyama, T. Long-term and large-scale epidemiology of Brucella infection in baleen whales and sperm whales in the western North Pacific and Antarctic Oceans. J. Vet. Med. Sci. 2016, 78, 1457–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calle, P.P.; Seagars, D.J.; McClave, C.; Senne, D.; House, C.; House, J.A. Viral and bacterial serology of free-ranging Pacific walrus. J. Wildl. Dis. 2002, 38, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.W.; Brown, R.J.; Skilling, D.E.; Bray, H.L.; Keyes, M.C. Naturally-occurring leptospirosis in northern fur seals (Callorhinus ursinus). J. Wildl. Dis. 1977, 13, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Dierauf, L.A.; Vandenbroek, D.J.; Roletto, J.; Koski, M.; Amaya, L.; Gage, L.J. An epizootic of leptospirosis in California sea lions. JAVMA 1985, 187, 1145–1148. Available online: https://pubmed.ncbi.nlm.nih.gov/4077625/ (accessed on 22 August 2022).
- Cameron, C.E.; Zuerner, R.L.; Raverty, S.; Colegrove, K.M.; Norman, S.A.; Lambourn, D.M.; Jeffries, S.J.; Gulland, F.M. Detection of pathogenic Leptospira bacteria in pinniped populations via PCR and identification of a source of transmission for zoonotic leptospirosis in the marine environment. J. Clin. Microbiol. 2008, 46, 1728–1733. [Google Scholar] [CrossRef] [Green Version]
- Colegrove, K.M.; Lowenstine, L.J.; Gulland, F.M.D. Leptospirosis in northern elephant seals (Mirounga angustirostris) stranded along the California coast. J. Wildl. Dis. 2005, 41, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Gulland, F.M.D.; Koski, M.; Lowenstine, L.J.; Colagross, A.; Morgan, L.; Spraker, T. Leptospirosis in California sea lions (Zalophus californianus) stranded along the central California coast, 1981–1994. J. Wildl. Dis. 1996, 32, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.W.; Skilling, D.E.; Benirschke, K.; Albert, T.F.; Barlough, J.E. Serology and virology of the bowhead whale (Balaena mysticetus L.). J. Wildl. Dis. 1987, 23, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.A.; Wilson, M.A.; Beran, G.W. Relationships between prevalence of Leptospira interrogans in cattle, and regional, climatic, and seasonal factors. Am. J. Vet. Res. 1991, 52, 1766–1768. [Google Scholar] [PubMed]
- Zakharova, O.I.; Korennoy, F.I.; Iashin, I.V.; Toropova, N.N.; Gogin, A.E.; Kolbasov, D.V.; Surkova, G.V.; Malkhazova, S.M.; Blokhin, A.A. Ecological and socio-economic determinants of livestock animal leptospirosis in the Russian Arctic. Front. Vet. Sci. 2021, 8, 658675. [Google Scholar] [CrossRef]
- Zarnke, R.L. Serologic survey for selected microbial pathogens in Alaskan wildlife. J. Wildl. Dis. 1983, 19, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Calle, P.; Seagars, D.J.; McClave, C.; Senne, D.; House, C.; House, J.A. Viral and bacterial serology of six free-ranging bearded seals Erignathus barbatus. Dis. Aquat. Org. 2008, 81, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Eldin, C.; Mélenotte, C.; Mediannikov, O.; Ghigo, E.; Million, M.; Edouard, S.; Mege, J.-L.; Maurin, M.; Raoult, D. From Q fever to Coxiella burnetii infection: A paradigm change. Clin. Microbiol. Rev. 2017, 30, 115–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, C.; Kersh, G.J.; Spraker, T.; Patyk, K.A.; Fitzpatrick, K.A.; Massung, R.F.; Gelatt, T. Coxiella burnetii in northern fur seal (Callorhinus ursinus) placentas from St. Paul Island, Alaska. Vector-Borne Zoonotic Dis. 2012, 12, 192–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kersh, G.J.; Lambourn, D.M.; Raverty, S.A.; Fitzpatrick, K.A.; Self, J.S.; Akmajian, A.M.; Jeffries, S.J.; Huggins, J.; Drew, C.P.; Zaki, S.R.; et al. Coxiella burnetii infection of marine mammals in the Pacific Northwest, 1997–2010. J. Wildl. Dis. 2012, 48, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Minor, C.; Kersh, G.J.; Gelatt, T.; Kondas, A.V.; Pabilonia, K.L.; Weller, C.B.; Dickerson, B.R.; Duncan, C.G. Coxiella burnetii in Northern Fur Seals and Steller Sea Lions of Alaska. J. Wildl. Dis. 2013, 49, 441–446. [Google Scholar] [CrossRef]
- Rosales, S.M.; Vega Thurber, R. Brain meta-transcriptomics from harbor seals to infer the role of the microbiome and virome in a stranding event. PLoS ONE 2015, 10, e0143944. [Google Scholar] [CrossRef]
- Duncan, C.; Gill, V.A.; Worman, K.; Burek-Huntington, K.; Pabilonia, K.L.; Johnson, S.; Fitzpatrick, K.A.; Weller, C.; Kersh, G.J. Coxiella burnetii exposure in northern sea otters Enhydra lutris kenyoni. Dis. Aquat. Org. 2015, 114, 83–87. [Google Scholar] [CrossRef]
- Koch, A.; Svendsen, C.B.; Christensen, J.J.; Bundgaard, H.; Vindfeld, L.; Christiansen, C.B.; Kemp, M.; Villumsen, S. Q fever in Greenland. Emerg. Infect. Dis. 2010, 16, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Destouni, G.; Kalantari, Z.; Omazic, A.; Evengård, B.; Berggren, C.; Thierfelder, T. Linking climate and infectious disease trends in the Northern/Arctic Region. Sci. Rep. 2021, 11, 20678. [Google Scholar] [CrossRef]
- Su, Y.-C.; Liu, C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 2007, 24, 549–558. [Google Scholar] [CrossRef]
- Goertz, C.E.C.; Walton, R.; Rouse, N.; Belovarac, J.; Burek-Huntington, K.; Gill, V.; Hobbs, R.; Xavier, C.; Garrett, N.; Tuomi, P. Vibrio parahaemolyticus, a climate change indicator in Alaska marine mammals. In Proceedings of the Responses of Arctic Marine Ecosystems to Climate Change, Anchorage, AK, USA, 26–29 March 2013; pp. 41–52. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. infections. Nat. Rev. Dis. Prim. 2018, 4, 1–19. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Trinanes, J.A.; Taylor, N.G.H.; Hartnell, R.; Siitonen, A.; Martinez-Urtaza, J. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Chang. 2013, 3, 73–77. [Google Scholar] [CrossRef]
- Hughes, S.N.; Greig, D.J.; Miller, W.A.; Byrne, B.A.; Gulland, F.; Harvey, J.T. Dynamics of Vibrio with virulence genes detected in Pacific harbor seals (Phoca vitulina richardii) off California: Implications for marine mammal health. Microb. Ecol. 2013, 65, 982–994. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, A.J.; Evengård, B. Climate change, its impact on human health in the Arctic and the public health response to threats of emerging infectious diseases. Glob. Health Action 2009, 2, 2075. [Google Scholar] [CrossRef]
- Numberger, D.; Siebert, U.; Fulde, M.; Valentin-Weigand, P. Streptococcal infections in marine mammals. Microorganisms 2021, 9, 350. [Google Scholar] [CrossRef]
- Taurisano, N.D.; Butler, B.P.; Stone, D.; Hariharan, H.; Fields, P.J.; Ferguson, H.W.; Haulena, M.; Cotrell, P.; Nielsen, O.; Raverty, S. Streptococcus phocae in marine mammals of northeastern Pacific and Arctic Canada: A retrospective analysis of 85 postmortem investigations. J. Wildl. Dis. 2018, 54, 101–111. [Google Scholar] [CrossRef]
- Hueffer, K.; Lieske, C.L.; McGilvary, L.M.; Hare, R.F.; Miller, D.L.; O’Hara, T.M. Streptococcus phocae isolated from a spotted seal (Phoca largha) with pyometra in Alaska. J. Zoo Wildl. Med. 2011, 42, 108. [Google Scholar] [CrossRef] [Green Version]
- Rouse, N.M.; Counihan, K.L.; Boege Tobin, D.D.; Goertz, C.E.C.; Duddleston, K.N. Habitat associations between Streptococcus bovis/equinus complex and Streptococcus phocae, the causative agents of strep syndrome in sea otters, and the marine environment. Mar. Ecol. 2022, 43, e12689. [Google Scholar] [CrossRef]
- Burek Huntington, K.A.; Gill, V.A.; Berrian, A.M.; Goldstein, T.; Tuomi, P.; Byrne, B.A.; Worman, K.; Mazet, J. Causes of mortality of northern sea otters (Enhydra lutris kenyoni) in Alaska from 2002 to 2012. Front. Mar. Sci. 2021, 8, 630582. [Google Scholar] [CrossRef]
- Goldstein, T.; Mazet, J.A.K.; Gill, V.A.; Doroff, A.M.; Burek, K.A.; Hammond, J.A. Phocine distemper virus in northern sea otters in the Pacific Ocean, Alaska, USA. Emerg. Infect. Dis. 2009, 15, 925. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.L. Bacterial and Mycotic Diseases of Cetaceans and Pinnipeds; CRC Press LLC: Boca Raton, FL, USA, 1990; pp. 73–96. [Google Scholar]
- Geraci, J.R.; Sauer, R.M.; Medway, W. Erysipelas in dolphins. Am. J. Vet. Res. 1966, 27, 597–606. [Google Scholar] [PubMed]
- Kutz, S.; Bollinger, T.; Branigan, M.; Checkley, S.; Davison, T.; Dumond, M.; Elkin, B.; Forde, T.; Hutchins, W.; Niptanatiak, A.; et al. Erysipelothrix rhusiopathiae associated with recent widespread muskox mortalities in the Canadian Arctic. Can. Vet. J. 2015, 56, 560. [Google Scholar]
- Ceccolini, M.E.; Wessels, M.; Macgregor, S.K.; Deaville, R.; Perkins, M.; Jepson, P.D.; John, S.K.; Guthrie, A. Systemic Erysipelothrix rhusiopathiae in seven free-ranging delphinids stranded in England and Wales. Dis. Aquat. Org. 2021, 145, 173–184. [Google Scholar] [CrossRef]
- Ijsseldijk, L.L.; Begeman, L.; Duim, B.; Gröne, A.; Kik, M.J.L.; Klijnstra, M.D.; Lakemeyer, J.; Leopold, M.F.; Munnink, B.B.O.; Ten Doeschate, M. Harbor Porpoise Deaths Associated with Erysipelothrix rhusiopathiae, the Netherlands, 2021. Emerg. Infect. Dis. 2023, 29, 835. [Google Scholar] [CrossRef]
- Snyder, E.; Credille, B. Mannheimia haemolytica and Pasteurella multocida in bovine respiratory disease: How are they changing in response to efforts to control them? Vet. Clin. Food Anim. Pract. 2020, 36, 253–268. [Google Scholar] [CrossRef]
- Portis, E.; Lindeman, C.; Johansen, L.; Stoltman, G. A ten-year (2000–2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex—Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni—In the United States and Canada. J. Vet. Diagn. Investig. 2012, 24, 932–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.J.; Bertelsen, M.F.; Christensen, H.; Bisgaard, M.; Bojesen, A.M. Occurrence of Pasteurellaceae bacteria in the oral cavity of selected marine mammal species. J. Zoo Wildl. Med. 2012, 43, 828–835. Available online: http://www.jstor.org/stable/23361379 (accessed on 10 August 2022). [CrossRef] [PubMed]
- Sweeney, J.C.; Ridgway, S.H. Procedures for the clinical management of small cetaceans. J. Am. Vet. Med. Assoc. 1975, 167, 540–545. [Google Scholar]
- Higgins, R. Bacteria and fungi of marine mammals: A review. Can. Vet. J. 2000, 41, 105. [Google Scholar] [PubMed]
- Dziva, F.; Muhairwa, A.P.; Bisgaard, M.; Christensen, H. Diagnostic and typing options for investigating diseases associated with Pasteurella multocida. Vet. Microbiol. 2008, 128, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Lyashchenko, K.P. Mycobacterial Infections in Other Zoo Animals; CABI: Wallingford, UK, 2015; Volume 15, p. 277. [Google Scholar]
- Roe, W.D.; Lenting, B.; Kokosinska, A.; Hunter, S.; Duignan, P.J.; Gartrell, B.; Rogers, L.; Collins, D.M.; de Lisle, G.W.; Gedye, K.; et al. Pathology and molecular epidemiology of Mycobacterium pinnipedii tuberculosis in native New Zealand marine mammals. PLoS ONE 2019, 14, e0212363. [Google Scholar] [CrossRef] [Green Version]
- Clayton, L.A.; Stamper, M.A.; Whitaker, B.R.; Hadfield, C.A.; Simons, B.; Mankowski, J.L. Mycobacterium abscessus pneumonia in an Atlantic bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 2012, 43, 961–965. [Google Scholar] [CrossRef] [Green Version]
- Cousins, D.V.; Bastida, R.; Cataldi, A.; Quse, V.; Redrobe, S.; Dow, S.; Duignan, P.; Murray, A.; Dupont, C.; Ahmed, N.; et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Beck, B.M.; Rice, C.D. Serum antibody levels against select bacterial pathogens in Atlantic bottlenose dolphins, Tursiops truncatus, from Beaufort NC USA and Charleston Harbor, Charleston, SC, USA. Mar. Environ. Res. 2003, 55, 161–179. [Google Scholar] [CrossRef]
- Leger, J.A.S.; Begeman, L.; Fleetwood, M.; Frasca, S., Jr.; Garner, M.M.; Lair, S.; Trembley, S.; Linn, M.J.; Terio, K.A. Comparative pathology of nocardiosis in marine mammals. Vet. Pathol. 2009, 46, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Pier, A.C.; Takayama, A.K.; Miyahara, A.Y. Cetacean nocardiosis. J. Wild. Dis. 1970, 6, 112–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migaki, G.; Jones, S.R. Mycotic diseases in marine mammals. In Pathobiology of Selected Marine Mammal Diseases; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–27. [Google Scholar]
- Degollada, E.; Domingo, M.; Alonso, J.M.; Alegre, F.; Tello, M.; Lopez, A.L.D. Nocardiosis in a striped dolphin (Stenella coeruleoalba). In Proceedings of the Third ECS Workshop on Cetacean Pathology: Lung Pathology, Lisboa, Portugal, 14 March 1996; pp. 16–18. [Google Scholar]
- Sweeney, J.C.; Migaki, G.; Vainik, P.M.; Conklin, R.H. Systemic mycoses in marine mammals. J. Am. Vet. Med. Assoc. 1976, 169, 946–948. [Google Scholar]
- Davis, G.B.; Stevenson, B.J.; Kyle, R.J.; Price, M.C. Isolation of an actinomycete from a sea leopard (Hydrurga leptonyx). N. Z. Vet. J. 1977, 25, 274. [Google Scholar] [CrossRef]
- Tryland, M.; Larsen, A.K.; Nymo, I.H. Bacterial infections and diseases. In CRC Handbook Marine Mammal Medicine; Dierauf, L., Gulland, F.M.D., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 367–388. [Google Scholar]
- Macneill, A.C.; Gornall, T.A.; Giddens, W.E.; Boyce, J. Evidence of Nocardia sp. in a captive-born beluga whale. Aquat. Mamm. 1978, 6, 50–53. Available online: https://aquaticmammalsjournal.org/share/AquaticMammalsIssueArchives/1978/Aquatic_Mammals_6_2/Mcneill.pdf (accessed on 10 September 2022).
- Martineau, D.; Lagace, A.; Beland, P.; Higgins, R.; Armstrong, D.; Shugart, L.R. Pathology of stranded beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary, Quebec, Canada. J. Comp. Pathol. 1988, 98, 287–310. [Google Scholar] [CrossRef]
- Beaman, B.L.; Beaman, L. Nocardia species: Host-parasite relationships. Clin. Microbiol. Rev. 1994, 7, 213–264. [Google Scholar] [CrossRef] [PubMed]
- Perini, L.; Mogrovejo, D.C.; Tomazin, R.; Gostinčar, C.; Brill, F.H.H.; Gunde-Cimerman, N. Phenotypes associated with pathogenicity: Their expression in arctic fungal isolates. Microorganisms 2019, 7, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reidarson, T.H.; García-Párraga, D.; Wiederhold, N.P. Marine mammal mycoses. In CRC Handbook Marine Mammal Medicine; Dierauf, L., Gulland, F.M.D., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 389–424. [Google Scholar]
- Pearce, D.A.; Bridge, P.D.; Hughes, K.A.; Sattler, B.; Psenner, R.; Russell, N.J. Microorganisms in the atmosphere over Antarctica. FEMS Microbiol. Ecol. 2009, 69, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Dagleish, M.P.; Foster, G.; Howie, F.E.; Reid, R.J.; Barley, J. Fatal mycotic encephalitis caused by Aspergillus fumigatus in a northern bottlenose whale (Hyperoodon ampullatus) caused by Aspergillus fumigatus. Vet. Rec. 2008, 163, 602–604. [Google Scholar] [CrossRef]
- Reidarson, T.H.; Harrell, J.H.; Rinaldi, M.G.; McBain, J. Bronchoscopic and serologic diagnosis of Aspergillus fumigatus pulmonary infection in a bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 1998, 29, 451–455. Available online: https://www.jstor.org/stable/20095799 (accessed on 5 August 2022).
- Domingo, M.; Visa, J.; Pumarola, M.; Marco, A.J.; Ferrer, L.; Rabanal, R.; Kennedy, S. Pathologic and immunocytochemical studies of morbillivirus infection in striped dolphins (Stenella coeruleoalba). Vet. Pathol. 1992, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dagleish, M.P.; Patterson, I.A.P.; Foster, G.; Reid, R.J.; Linton, C.; Buxton, D. Intracranial granuloma caused by asporogenic Aspergillus fumigatus in a harbour porpoise (Phocoena phocoena). Vet. Rec. 2006, 159, 458. [Google Scholar] [CrossRef] [PubMed]
- Geraci, J.R.; Aubin, D.J.S. Effects of parasites on marine mammals. Int. J. Parasitol. 1987, 17, 407–414. [Google Scholar] [CrossRef]
- Kutz, S.J.; Hoberg, E.P.; Polley, L.; Jenkins, E.J. Global warming is changing the dynamics of Arctic host–parasite systems. Proc. Roy. Soc. Biol. Sci. 2005, 272, 2571–2576. [Google Scholar] [CrossRef]
- Bradley, M.J.; Kutz, S.J.; Jenkins, E.; O’hara, T.M. The potential impact of climate change on infectious diseases of Arctic fauna. Int. J. Circumpolar Health 2005, 64, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Viallet, J.; MacLean, J.D.; Goresky, C.A.; Staudt, M.; Routhier, G.; Law, C. Arctic trichinosis presenting as prolonged diarrhea. Gastroenterology 1986, 91, 938–946. [Google Scholar] [CrossRef]
- Tryland, M.; Nesbakken, T.; Robertson, L.; Grahek-Ogden, D.; Lunestad, B.T. Human pathogens in marine mammal meat—A northern perspective. Zoonoses Public Health 2014, 61, 377–394. [Google Scholar] [CrossRef]
- Jean-François, P.; MacLean, J.D.; Theresa, W.G.; Daniel, L.; Anne-Katrin, R.; Bouchra, S.; Lorry, F.; Alvin, A.G. Novel prevention program for trichinellosis in Inuit communities. Clin. Infect. Dis. 2002, 34, 1508–1514. [Google Scholar] [CrossRef] [Green Version]
- Møller, L.N.; Petersen, E.; Kapel, C.M.O.; Melbye, M.; Koch, A. Outbreak of trichinellosis associated with consumption of game meat in West Greenland. Vet. Parasitol. 2005, 132, 131–136. [Google Scholar] [CrossRef]
- Forbes, L.B. The occurrence and ecology of Trichinella in marine mammals. Vet. Parasitol. 2000, 93, 321–334. [Google Scholar] [CrossRef]
- Born, E.W. Trichinella spiralis in walruses from the Thule district, North Greenland, and possible routes of transmission. AGRIS 1982, 47, 246–251. [Google Scholar]
- Connell, F.H. Trichinosis in the Arctic: A review. Arctic 1949, 2, 98–107. Available online: https://www.jstor.org/stable/40506354 (accessed on 5 December 2022). [CrossRef] [Green Version]
- Thorshaug, K.; Rosted, A.F. Researches into the prevalence of trichinosis in animals in Arctic and Antarctic waters. Nord. Vet. 1956, 8, 115–129. [Google Scholar]
- Canadian-Government-Report. Trichinella Alert for Pond Inlet. gov.nu.ca. 2022. Available online: https://gov.nu.ca/health/news/trichinella-alert-pond-inlet (accessed on 5 December 2022).
- Larsen, T.; Kjos-Hanssen, B. Trichinella sp. in polar bears from Svalbard, in relation to hide length and age. Polar Res. 1983, 1, 89–96. [Google Scholar] [CrossRef]
- Åsbakk, K.; Aars, J.; Derocher, A.E.; Wiig, Ø.; Oksanen, A.; Born, E.W.; Dietz, R.; Sonne, C.; Godfroid, J.; Kapel, C.M.O. Serosurvey for Trichinella in polar bears (Ursus maritimus) from Svalbard and the Barents Sea. Vet. Parasitol. 2010, 172, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Kurnosova, O.P.; Khrustalev, A.V.; Illarionova, N.A.; Odoevskaya, I.M. A survey of helminths of polar bears in the Russian Arctic. Czech Polar Rep. 2017, 7, 164–168. [Google Scholar] [CrossRef]
- Martinez-Levasseur, L.M.; Simard, M.; Furgal, C.M.; Burness, G.; Bertrand, P.; Suppa, S.; Avard, E.; Lemire, M. Towards a better understanding of the benefits and risks of country food consumption using the case of walruses in Nunavik (Northern Quebec, Canada). Sci. Total Environ. 2020, 719, 137307. [Google Scholar] [CrossRef]
- Andersen-Ranberg, E.; Lehnert, K.; Leifsson, P.S.; Dietz, R.; Andersen, S.; Siebert, U.; Sonne, C. Morphometric, molecular and histopathologic description of hepatic infection by Orthosplanchnus arcticus (Trematoda: Digenea: Brachycladiidae) in ringed seals (Pusa hispida) from Northwest Greenland. Polar Biol. 2018, 41, 1019–1025. [Google Scholar] [CrossRef]
- Bishop, L. Parasite-related lesions in a bearded seal, Erignathus barbatus. J. Wildl. Dis. 1979, 15, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Fauquier, D.; Gulland, F.; Haulena, M.; Dailey, M.; Rietcheck, R.L.; Lipscomb, T.P. Meningoencephalitis in two stranded California sea lions (Zalophus californianus) caused by aberrant trematode migration. J. Wildl. Dis. 2004, 40, 816–819. [Google Scholar] [CrossRef] [Green Version]
- Ridgway, S.H.; Dailey, M.D. Cerebral and cerebellar involvement of trematode parasites in dolphins and their possible role in stranding. J. Wildl. Dis. 1972, 8, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlasman, K.L.; Campbell, G.D. Field guide: Diseases and parasites of marine mammals of the Eastern Arctic. In Canadian Cooperative Wildlife Health Centre: Newsletters & Publications; University of Nebraska: Lincoln, NE, USA, 2004; Volume 22, Available online: https://digitalcommons.unl.edu/icwdmccwhcnews/22 (accessed on 5 December 2022).
- Scholz, T.; Kuchta, R. Fish-borne, zoonotic cestodes (Diphyllobothrium and relatives) in cold climates: A never-ending story of neglected and (re)-emergent parasites. Food Waterborne Parasit. 2016, 4, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Lurakhno, M.V.; Mal’tsev, V.N. Diphyllobothrium skriabini sp. n. (Cestoda: Diphyllobothriidae)—A parasite of the bearded seal (Erignathus barbatus Erx.). Parazitologiia 1993, 27, 84–89. [Google Scholar]
- Aznar, F.J.; Agustí, C.; Littlewood, D.T.J.; Raga, J.A.; Olson, P.D. Insight into the role of cetaceans in the life cycle of the tetraphyllideans (Platyhelminthes: Cestoda). Int. J. Parasitol. 2007, 37, 243–255. [Google Scholar] [CrossRef]
- Measures, L.N.; Béland, P.; Martineau, D.; Guise, S.D. Helminths of an endangered population of belugas, Delphinapterus leucas, in the St. Lawrence estuary, Canada. Can. J. Zool. 1995, 73, 1402–1409. [Google Scholar] [CrossRef]
- Santoro, M.; Palomba, M.; Gili, C.; Marcer, F.; Marchiori, E.; Mattiucci, S. Molecular and morphological characterization of Bolbosoma balaenae (Acanthocephala: Polymorphidae), a neglected intestinal parasite of the fin whale Balaenoptera physalus. Parasitology 2021, 148, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Kuzmina, T.A.; Lisitsyna, O.I.; Lyons, E.T.; Spraker, T.R.; Tolliver, S.C. Acanthocephalans in northern fur seals (Callorhinus ursinus) and a harbor seal (Phoca vitulina) on St. Paul Island, Alaska: Species, prevalence, and biodiversity in four fur seal subpopulations. Parasitol. Res. 2012, 111, 1049–1058. [Google Scholar] [CrossRef]
- Amin, O.; Heckmann, R.; Halajian, A.; El-Naggar, A. The morphology of an unique population of Corynosoma strumosum (Acanthocephala, Polymorphidae) from the Caspian seal, Pusa caspica, in the land-locked Caspian Sea using SEM, with special notes on histopathology. Acta Parasitol. 2011, 56, 438–445. [Google Scholar] [CrossRef]
- Dailey, M.D.; Gulland, F.M.D.; Lowenstine, L.J.; Silvagni, P.; Howard, D. Prey, parasites and pathology associated with the mortality of a juvenile gray whale (Eschrichtius robustus) stranded along the northern California coast. Dis. Aquat. Org. 2000, 42, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Derocher, A.E. Polar Bears: A Complete Guide to Their Biology and Behavior; The Johns Hopkins University Press: Baltimore, MD, USA, 2012. [Google Scholar]
- Derocher, A.E.; Lunn, N.J.; Stirling, I. Polar bears in a Warming Climate. Integr. Comp. Biol. 2004, 44, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Onderka, D.K. Prevalence and pathology of nematode infections in the lungs of ringed seals (Phoca hispida) of the western arctic of Canada. J. Wildl. Dis. 1989, 25, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdages, M.P.T.; Provencher, J.F.; Sudlovenick, E.; Ferguson, S.H.; Young, B.G.; Pelletier, N.; Murphy, M.J.J.; D’Addario, A.; Vermaire, J.C. No plastics detected in seal (Phocidae) stomachs harvested in the eastern Canadian Arctic. Mar. Pollut. Bull. 2020, 150, 110772. [Google Scholar] [CrossRef] [PubMed]
- Walden, H.S.; Bryan, A.L.; McIntosh, A.; Tuomi, P.; Hoover-Miller, A.; Stimmelmayr, R.; Quakenbush, L. Helminth fauna of ice seals in the Alaskan Bering and Chukchi seas, 2006–2015. J. Wildl. Dis. 2020, 56, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Karpiej, K.; Simard, M.; Pufall, E.; Rokicki, J. Anisakids (Nematoda: Anisakidae) from ringed seal, Pusa hispida, and bearded seal, Erignathus barbatus (Mammalia: Pinnipedia) from Nunavut region. J. Mar. Biol. Assoc. UK 2014, 94, 1237–1241. [Google Scholar] [CrossRef]
- Johansen, C.E.; Lydersen, C.; Aspholm, P.E.; Haug, T.; Kovacs, K.M. Helminth parasites in ringed seals (Pusa hispida) from Svalbard, Norway with special emphasis on nematodes: Variation with age, sex, diet, and location of host. J. Parasitol. 2010, 96, 946–953. [Google Scholar] [CrossRef]
- Hoberg, E.P.; Measures, L.N. Anophryocephalus inuitorum sp. nov. and A. arcticensis sp. nov.(Eucestoda: Tetrabothriidae) in ringed seals (Phoca hispida hispida) and harp seals (Phoca groenlandica) from high-latitude seas of eastern Canada and the Arctic basin. Can. J. Zool. 1995, 73, 34–44. [Google Scholar] [CrossRef]
- Shults, L.M. Helminths of the spotted seal, Phoca largha, from the Bering Sea. J. Wildl. Dis. 1982, 18, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Soltysiak, Z.; Simard, M.; Rokicki, J. Pathological changes of stomach in ringed seal (Pusa hispida) from Arviat (North Canada) caused by anisakid nematodes. Pol. J. Vet. Sci. 2013, 16, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Pufall, E.L.; Jones-Bitton, A.; McEwen, S.A.; Brown, T.M.; Edge, V.L.; Rokicki, J.; Karpiej, K.; Peregrine, A.S.; Simard, M. Prevalence of zoonotic anisakid nematodes in Inuit-harvested fish and mammals from the eastern Canadian Arctic. Foodborne Path. Dis. 2012, 9, 1002–1009. [Google Scholar] [CrossRef]
- Delyamure, S.L. Helminthofauna of Marine Mammals (Ecology and Phylogeny); Israel Program for Scientific Translations: Jerusalem, Israel, 1969; Volume 10. [Google Scholar]
- Popov, V.N. New data on the helminth fauna of the ribbon seal from the southern part of the Sea of Okhotsk. Parazitologiia 1975, 9, 403–407. [Google Scholar]
- Macneill, A.C. Halocercus monoceris sp. n. (Nematoda: Metastrongyloidea) from the Narwhal, Monodon monoceros. Proc. Helminth. Soc. 1973, 40, 255–258. Available online: https://bionames.org/bionames-archive/issn/0018-0130/40/255.pdf (accessed on 12 August 2022).
- Leonardi, M.S.; Crespo, J.E.; Soto, F.; Lazzari, C.R. How Did Seal Lice Turn into the Only Truly Marine Insects? Insects 2021, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Leidenberger, S.; Harding, K.; Härkönen, T. Phocid seals, seal lice and heartworms: A terrestrial host–parasite system conveyed to the marine environment. Dis. Aquat. Org. 2007, 77, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Geraci, J.R.; Fortin, J.F.; Aubin, D.J.S.; Hicks, B.D. The seal louse, Echinophthirius horridus: An intermediate host of the seal heartworm, Dipetalonema spirocauda (Nematoda). Can. J. Zool. 1981, 59, 1457–1459. [Google Scholar] [CrossRef]
- Leonardi, M.S.; Palma, R.L. Review of the systematics, biology and ecology of lice from pinnipeds and river otters (Insecta: Phthiraptera: Anoplura: Echinophthiriidae). Zootaxa 2013, 3630, 445–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulcahy, D.M.; Fravel, V. Walrus medicine. In CRC Handbook Marine Mammal Medicine; Dierauf, L., Gulland, F.M.D., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 935–948. [Google Scholar]
- Fay, F.H.; Furman, D.P. Nasal mites (Acari: Halarachnidae) in the spotted seal, Phoca largha Pallas, and other pinnipeds of Alaskan waters. J. Wildl. Dis. 1982, 18, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Fravel, V.; Procter, D. Successful diagnosis and treatment of Orthohalarachne attenuata nasal mites utilising voluntary rhinoscopy in three Pacific walrus (Odobenus rosmarus divergens). Vet. Rec. Case Rep. 2016, 4, e000258. [Google Scholar] [CrossRef]
- Hirzmann, J.; Ebmer, D.; Sánchez-Contreras, G.J.; Rubio-García, A.; Magdowski, G.; Gärtner, U.; Taubert, A.; Hermosilla, C. The seal louse (Echinophthirius horridus) in the Dutch Wadden Sea: Investigation of vector-borne pathogens. Parasites Vectors 2021, 14, 96. [Google Scholar] [CrossRef]
- Pfeiffer, C.J. Whale lice. In Encyclopedia Marine Mammals; Academic Press: San Diego, CA, USA, 2009; pp. 1220–1223. [Google Scholar]
- Von Duyke, A.L.; Stimmelmayr, R.; Sheffield, G.; Sformo, T.; Suydam, R.; Givens, G.H.; George, J.C. Prevalence and abundance of cyamid “whale lice” (Cyamus ceti) on subsistence harvested bowhead whales (Balaena mysticetus). Arctic 2016, 69, 331–340. Available online: https://www.jstor.org/stable/24878031 (accessed on 4 November 2022). [CrossRef]
- Schell, D.M.; Rowntree, V.J.; Pfeiffer, C.J. Stable-isotope and electron-microscopic evidence that cyamids (Crustacea: Amphipoda) feed on whale skin. Can. J. Zool. 2000, 78, 721–727. [Google Scholar] [CrossRef]
- Maggi, R.G.; Raverty, S.A.; Lester, S.J.; Huff, D.G.; Haulena, M.; Ford, S.L.; Nielsen, O.; Robinson, J.H.; Breitschwerdt, E.B. Bartonella henselae in captive and hunter-harvested beluga (Delphinapterus leucas). J. Wildl. Dis. 2008, 44, 871–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wick, M.; Hashem, B. Treatment of sarcoptic mange in an American black bear (Ursus americanus) with a single oral dose of fluralaner. J. Wildl. Dis. 2019, 55, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Niedringhaus, K.D.; Brown, J.D.; Sweeley, K.M.; Yabsley, M.J. A review of sarcoptic mange in North American Wildlife. Int. J. Parasitol. Parasites Wildl. 2019, 9, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.M.; Van Hemert, C.; Atwood, T.C.; Sinnett, D.R.; Hupp, J.W.; Meixell, B.W.; Gustine, D.D.; Adams, L.G.; Ramey, A.M. A Serologic Survey of Francisella Tularensis Exposure in Wildlife on The Arctic Coastal Plain of Alaska. J. Wildl. Dis. 2022, 58, 746–755. [Google Scholar] [CrossRef]
- Measures, L.N.; Dubey, J.P.; Labelle, P.; Martineau, D. Seroprevalence of Toxoplasma gondii in Canadian pinnipeds. J. Wildl. Dis. 2004, 40, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.K.; Aars, J.; Lydersen, C.; Kovacs, K.M.; Åsbakk, K. The prevalence of Toxoplasma gondii in polar bears and their marine mammal prey: Evidence for a marine transmission pathway? Polar Biol. 2010, 33, 599–606. [Google Scholar] [CrossRef]
- Kirk, C.M.; Amstrup, S.; Swor, R.; Holcomb, D.; O’Hara, T.M. Morbillivirus and Toxoplasma exposure and association with hematological parameters for southern Beaufort Sea polar bears: Potential response to infectious agents in a sentinel species. EcoHealth 2010, 7, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Loseto, L.L.; Ostertag, S.K.; Tomaselli, M.; Bredtmann, C.M.; Crill, C.; Rodríguez-Pinacho, C.; Schultz, D.; Jung, D.; Shrestha, K. Qualitative risk assessment of impact of Toxoplasma gondii on health of beluga whales, Delphinapterus leucas, from the Eastern Beaufort Sea, Northwest Territories. Arctic Sci. 2018, 4, 321–337. [Google Scholar] [CrossRef] [Green Version]
- Reiling, S.J.; Measures, L.; Feng, S.; Boone, R.; Merks, H.; Dixon, B.R. Toxoplasma gondii, Sarcocystis sp. and Neospora caninum-like parasites in seals from northern and eastern Canada: Potential risk to consumers. Food Waterborne Parasitol. 2019, 17, e00067. [Google Scholar] [CrossRef]
- Dubey, J.P.; Zarnke, R.; Thomas, N.J.; Wong, S.K.; Van Bonn, W.; Briggs, M.; Davis, J.W.; Ewing, R.; Mense, M.; Kwok, O.C.H. Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Vet. Parasitol. 2003, 116, 275–296. [Google Scholar] [CrossRef]
- Simon, A.; Chambellant, M.; Ward, B.J.; Simard, M.; Proulx, J.-F.; Lévesque, B.; Bigras-Poulin, M.; Rousseau, A.N.; Ogden, N.H. Spatio-temporal variations and age effect on Toxoplasma gondii seroprevalence in seals from the Canadian Arctic. Parasitology 2011, 138, 1362–1368. [Google Scholar] [CrossRef] [Green Version]
- Prestrud, K.W.; Åsbakk, K.; Fuglei, E.; Mørk, T.; Stien, A.; Ropstad, E.; Tryland, M.; Gabrielsen, G.W.; Lydersen, C.; Kovacs, K.M.; et al. Serosurvey for Toxoplasma gondii in arctic foxes and possible sources of infection in the high Arctic of Svalbard. Vet. Parasitol. 2007, 150, 6–12. [Google Scholar] [CrossRef]
- Simon, A.; Rousseau, A.N.; Savary, S.; Bigras-Poulin, M.; Ogden, N.H. Hydrological modelling of Toxoplasma gondii oocysts transport to investigate contaminated snowmelt runoff as a potential source of infection for marine mammals in the Canadian Arctic. J. Environ. Manag. 2013, 127, 150–161. [Google Scholar] [CrossRef]
- Pilfold, N.W.; Richardson, E.S.; Ellis, J.; Jenkins, E.; Scandrett, W.B.; Hernández-Ortiz, A.; Buhler, K.; McGeachy, D.; Al-Adhami, B.; Konecsni, K.; et al. Long-term increases in pathogen seroprevalence in polar bears (Ursus maritimus) influenced by climate change. Glob. Chang. Biol. 2021, 27, 4481–4497. [Google Scholar] [CrossRef]
- Nymo, I.H.; Siebert, U.; Baechlein, C.; Postel, A.; Breines, E.M.; Lydersen, C.; Kovacs, K.M.; Tryland, M. Pathogen Exposure in White Whales (Delphinapterus leucas) in Svalbard, Norway. Pathogens 2022, 12, 58. [Google Scholar] [CrossRef]
- Alekseev, A.Y.; Reguzova, A.Y.; Rozanova, E.I.; Abramov, A.V.; Tumanov, Y.V.; Kuvshinova, I.N.; Shestopalov, A.M. Detection of specific antibodies to morbilliviruses, Brucella and Toxoplasma in the Black Sea dolphin Tursiops truncatus ponticus and the beluga whale Delphinapterus leucas from the Sea of Okhotsk in 2002–2007. Russ. J. Mar. Biol. 2009, 35, 494–497. [Google Scholar] [CrossRef]
- Blanchet, M.-A.; Godfroid, J.; Breines, E.M.; Heide-Jørgensen, M.-P.; Nielsen, N.H.; Hasselmeier, I.; Iversen, M.; Jensen, S.-K.; Åsbakk, K. West Greenland harbour porpoises assayed for antibodies against Toxoplasma gondii: False positives with the direct agglutination method. Dis. Aquat. Org. 2014, 108, 181–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, C.E.; Staudt, M.; Adamowski, R.; Lussier, M.; Bertrand, S.; Prichard, R.K. Seroepidemiological study for five different zoonotic parasites in northern Quebec. Can. J. Public Health 1987, 78, 262–266. [Google Scholar]
- Curtis, M.A.; Rau, M.E.; Tanner, C.E.; Prichard, R.K.; Faubert, G.M.; Olpinski, S.; Trudeau, C. Parasitic zoonoses in relation to fish and wildlife harvesting by Inuit communities in northern Quebec, Canada. Arctic Med. Res. 1988, 47, 693–696. Available online: https://europepmc.org/article/med/3272717 (accessed on 5 November 2022). [PubMed]
- McDonald, J.C.; Gyorkos, T.W.; Alberton, B.; MacLean, J.D.; Richer, G.; Juranek, D. An outbreak of toxoplasmosis in pregnant women in northern Quebec. J. Infect. Dis. 1990, 161, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Reiling, S.J.; Dixon, B.R. Zoonotic diseases: Toxoplasma gondii: How an Amazonian parasite became an Inuit health issue. Can. Commun. Dis. Rep. 2019, 45, 183. [Google Scholar] [CrossRef] [PubMed]
- Gondim, L.F.P.; Gao, L.; McAllister, M.M. Improved production of Neospora caninum oocysts, cyclical oral transmission between dogs and cattle, and in vitro isolation from oocysts. J. Parasitol. 2002, 88, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Gondim, L.F.P. Neospora caninum in wildlife. Trends Parasitol. 2006, 22, 247–252. [Google Scholar] [CrossRef]
- Donahoe, S.L.; Lindsay, S.A.; Krockenberger, M.; Phalen, D.; Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 2015, 4, 216–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedlák, K.; Bártová, E. Seroprevalences of antibodies to Neospora caninum and Toxoplasma gondii in zoo animals. Vet. Parasitol. 2006, 136, 223–231. [Google Scholar] [CrossRef]
- Mylniczenko, N.D.; Kearns, K.S.; Melli, A.C. Diagnosis and treatment of Sarcocystis neurona in a captive harbor seal (Phoca vitulina). J. Zoo Wildl. Med. 2008, 39, 228–235. [Google Scholar] [CrossRef]
- Fravel, V.A. Sarcocystis neurona Infection in a Pacific Walrus (Odobendus rosmarus divergens) and a Bottlenose Dolphin (Tursiops truncatus) under Human Care: Case Comparison. IAAAM Conf. Proc. 2017. Available online: https://www.vin.com/doc/?id=7977727 (accessed on 5 November 2022).
- Dubey, J.P.; Lindsay, D.S.; Saville, W.J.A.; Reed, S.M.; Granstrom, D.E.; Speer, C.A. A review of Sarcocystis neurona and equine protozoal myeloencephalitis (EPM). Vet. Parasitol. 2001, 95, 89–131. [Google Scholar] [CrossRef]
- Burgess, T.L.; Tinker, M.T.; Miller, M.A.; Smith, W.A.; Bodkin, J.L.; Murray, M.J.; Nichol, L.M.; Saarinen, J.A.; Larson, S.; Tomoleoni, J.A.; et al. Spatial epidemiological patterns suggest mechanisms of land-sea transmission for Sarcocystis neurona in a coastal marine mammal. Sci. Rep. 2020, 10, 3683. [Google Scholar] [CrossRef] [Green Version]
- O’Byrne, A.M.; Lambourn, D.M.; Rejmanek, D.; Haman, K.; O’Byrne, M.; VanWormer, E.; Shapiro, K. Sarcocystis neurona Transmission from Opossums to Marine Mammals in the Pacific Northwest. EcoHealth 2021, 18, 84–94. [Google Scholar] [CrossRef]
- Barbosa, L.; Johnson, C.K.; Lambourn, D.M.; Gibson, A.K.; Haman, K.H.; Huggins, J.L.; Sweeny, A.R.; Sundar, N.; Raverty, S.A.; Grigg, M.E. A novel Sarcocystis neurona genotype XIII is associated with severe encephalitis in an unexpectedly broad range of marine mammals from the northeastern Pacific Ocean. Int. J. Parasitol. 2015, 45, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Carlson-Bremer, D.P.; Gulland, F.M.D.; Johnson, C.K.; Colegrove, K.M.; Van Bonn, W.G. Diagnosis and treatment of Sarcocystis neurona–induced myositis in a free-ranging California sea lion. JAVMA 2012, 240, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Britton, A.P.; Bidulka, J.; Scouras, A.; Schwantje, H.; Joseph, T. Fatal hepatic sarcocystosis in a free-ranging grizzly bear cub associated with Sarcocystis canis–like infection. J. Vet. Diagn. Investig. 2019, 31, 303–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, H.M.; Barr, B.C.; Packham, A.E.; Marsh, A.E.; Ka, B.H.; Wilson, R.K.; Dubney, J.P. Fatal hepatic sarcocystosis in two polar bears (Ursus maritimus). J. Parasitol. 1997, 83, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Sykes, J.E.; Shelton, G.D.; Sharp, N.; Verma, S.K.; Calero-Bernal, R.; Viviano, J.; Sundar, N.; Khan, A.; Grigg, M.E. Sarcocystis caninum and Sarcocystis svanai n. spp.(Apicomplexa: Sarcocystidae) associated with severe myositis and hepatitis in the domestic dog (Canis familiaris). J. Eukaryotic Microbiol. 2015, 62, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Hughes-Hanks, J.M.; Rickard, L.G.; Panuska, C.; Saucier, J.R.; O’Hara, T.M.; Dehn, L.; Rolland, R.M. Prevalence of Cryptosporidium spp. and Giardia spp. in five marine mammal species. J. Parasitol. 2005, 91, 1225–1228. [Google Scholar] [CrossRef]
- Olson, M.E.; Roach, P.D.; Stabler, M.; Chan, W. Giardiasis in ringed seals from the western Arctic. J. Wildl. Dis. 1997, 33, 646–648. [Google Scholar] [CrossRef] [Green Version]
- Hueffer, K.; Parkinson, A.J.; Gerlach, R.; Berner, J. Zoonotic infections in Alaska: Disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control. Int. J. Circumpolar Health 2013, 72, 19562. [Google Scholar] [CrossRef]
- Dixon, B.R.; Parrington, L.J.; Parenteau, M.; Leclair, D.; Santín, M.; Fayer, R. Giardia duodenalis and Cryptosporidium spp. in the intestinal contents of ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus) in Nunavik, Quebec, Canada. J. Parasitol. 2008, 94, 1161–1163. [Google Scholar] [CrossRef] [PubMed]
- Santín, M.; Dixon, B.R.; Fayer, R. Genetic characterization of Cryptosporidium isolates from ringed seals (Phoca hispida) in Northern Quebec, Canada. J. Parasitol. 2005, 91, 712–716. [Google Scholar] [CrossRef]
- Appelbee, A.J.; Thompson, R.C.A.; Olson, M.E. Giardia and Cryptosporidium in mammalian wildlife–current status and future needs. Trends Parasitol. 2005, 21, 370–376. [Google Scholar] [CrossRef]
- Raga, J.A.; Fernández, M.; Balbuena, J.A.; Aznar, F.J. Parasites. In Encyclopedia Marine Mammals; Wursig, B., Perrin, W.F., Thewissen, J.G.M., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 821–830. [Google Scholar]
- McClelland, G. Eimeria phocae (Apicomplexa: Eimeriidae) in harbour seals Phoca vitulina from Sable Island, Canada. Dis. Aquat. Org. 1993, 17, 1–8. Available online: https://www.int-res.com/articles/dao/17/d017p001.pdf (accessed on 10 September 2022). [CrossRef]
- Lydersen, C.; Vaquie-Garcia, J.; Lydersen, E.; Christensen, G.N.; Kovacs, K.M. Novel terrestrial haul-out behaviour by ringed seals (Pusa hispida) in Svalbard, in association with harbour seals (Phoca vitulina). Polar Res. 2017, 36, 1374124. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.D.; Kovacs, K.M.; Ims, R.A.; Aars, J.; Lydersen, C. An Arctic predator–prey system in flux: Climate change impacts on coastal space use by polar bears and ringed seals. J. Anim. Ecol. 2017, 86, 1054–1064. [Google Scholar] [CrossRef] [Green Version]
- Müller, G.; Kaim, U.; Haas, L.; Greiser-Wilke, I.; Wohlsein, P.; Siebert, U.; Baumgärtner, W. Phocine distemper virus: Characterization of the morbillivirus causing the seal epizootic in northwestern Europe in 2002. Arch. Virol. 2008, 153, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.E.; Zelner, J.L.; Fauquier, D.A.; Rowles, T.K.; Rosel, P.E.; Gulland, F.; Grenfell, B.T. Partially observed epidemics in wildlife hosts: Modelling an outbreak of dolphin morbillivirus in the northwestern Atlantic, June 2013–2014. J. Roy. Soc. Interface 2015, 12, 20150676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duignan, P.J.; Nielsen, O.; House, C.; Kovacs, K.M.; Duffy, N.; Early, G.; Sadove, S.; Aubin, D.J.S.; Rima, B.K.; Geraci, J.R. Epizootiology of morbillivirus infection in harp, hooded, and ringed seals from the Canadian Arctic and western Atlantic. J. Wildl. Dis. 1997, 33, 7–19. [Google Scholar] [CrossRef]
- Hall, A.J. Morbilliviruses in marine mammals. Trends Microbiol. 1995, 3, 4–9. [Google Scholar] [CrossRef]
- Harwood, J.; Hall, A. Mass mortality in marine mammals: Its implications for population dynamics and genetics. Trends Ecol. Evol. 1990, 5, 254–257. [Google Scholar] [CrossRef]
- Härkönen, T.; Dietz, R.; Reijnders, P.; Teilmann, J.; Harding, K.; Hall, A.; Brasseur, S.; Siebert, U.; Goodman, S.J.; Jepson, P.D.; et al. The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis. Aquat. Org. 2006, 68, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.J.; Jepson, P.D.; Goodman, S.J.; Härkönen, T. Phocine distemper virus in the North and European Seas–Data and models, nature and nurture. Biol. Conserv. 2006, 131, 221–229. [Google Scholar] [CrossRef]
- Laws, R.M.; Taylor, R.J.F. A mass dying of crabeater seals, Lobodon carcinophagus (Gray). Proc. Zool. Soc. Lond. 1957, 129, 315–324. [Google Scholar] [CrossRef]
- Swinton, J.; Harwood, J.; Grenfell, B.T.; Gilligan, C.A. Persistence thresholds for phocine distemper virus infection in harbour seal Phoca vitulina metapopulations. J. Anim. Ecol. 1998, 67, 54–68. [Google Scholar] [CrossRef]
- Lavigne, D.M.; Schmitz, O.J. Global warming and increasing population densities: A prescription for seal plagues. Mar. Pollut. Bull. 1990, 21, 280–284. [Google Scholar] [CrossRef]
- Boveng, P.L.; Bengtson, J.L.; Buckley, T.W.; Cameron, M.F.; Dahle, S.P.; Kelly, B.P.; Megrey, B.A.; Overland, J.E.; Williamson, N.J. Status review of the spotted seal (Phoca largha). In NOAA Technical Memorandum NMFS-AFSC-200; NOAA: Washington, DC, USA, 2009; p. 169. Available online: https://repository.library.noaa.gov/view/noaa/3671/noaa_3671_DS1.pdf (accessed on 18 August 2022).
- Quakenbush, L.; Citta, J.; Crawford, J. Biology of the Spotted Seal (Phoca largha) in Alaska from 1962 to 2008. Final Report to National Marine Fishes Service. 2009. Available online: https://adfg.alaska.gov/static/research/programs/marinemammals/pdfs/biology_spotted_seal.pdf (accessed on 4 November 2022).
- Siebert, U.; Gulland, F.; Harder, T.; Jauniaux, T.; Seibel, H.; Wohlsein, P.; Baumgärtner, W. Epizootics in harbour seals (Phoca vitulina): Clinical aspects. NAMMCO Sci. Publ. 2010, 8, 265–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duignan, P.J.; Van Bressem, M.-F.; Baker, J.D.; Barbieri, M.; Colegrove, K.M.; De Guise, S.; De Swart, R.L.; Di Guardo, G.; Dobson, A.; Duprex, W.P.; et al. Phocine distemper virus: Current knowledge and future directions. Viruses 2014, 6, 5093–5134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuen, S.; Have, P.; Osterhaus, A.; Arnemo, J.M.; Moustgaard, A. Serological investigation of virus infections in harp seals (Phoca groenlandica) and hooded seals (Cystophora cristata). Vet. Rec. 1994, 134, 502. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, O.; Stewart, R.E.A.; Measures, L.; Duignan, P.; House, C. A morbillivirus antibody survey of Atlantic walrus, narwhal and beluga in Canada. J. Wildl. Dis. 2000, 36, 508–517. [Google Scholar] [CrossRef]
- Duignan, P.J.; Saliki, J.T.; St. Aubin, D.J.; Early, G.; Sadove, S.; House, J.A.; Kovacs, K.; Geraci, J.R. Epizootiology of morbillivirus infection in North American harbor seals (Phoca vitulina) and gray seals (Halichoerus grypus). J. Wildl. Dis. 1995, 31, 491–501. [Google Scholar] [CrossRef]
- Duignan, P.J. Morbillivirus Infections of Marine Mammals; Saunders: Rhodes, Australia; University of California: Los Angeles, CA, USA, 1999; Volume 4, p. 747. [Google Scholar]
- Van Bressem, M.-F.; Duignan, P.J.; Banyard, A.; Barbieri, M.; Colegrove, K.M.; De Guise, S.; Di Guardo, G.; Dobson, A.; Domingo, M.; Fauquier, D.; et al. Cetacean morbillivirus: Current knowledge and future directions. Viruses 2014, 6, 5145–5181. [Google Scholar] [CrossRef] [Green Version]
- Schulman, F.Y.; Lipscomb, T.P.; Moffett, D.; Krafft, A.E.; Lichy, J.H.; Tsai, M.M.; Taubenberger, J.K.; Kennedy, S. Histologic, immunohistochemical, and polymerase chain reaction studies of bottlenose dolphins from the 1987-1988 United States Atlantic coast epizootic. Vet. Pathol. 1997, 34, 288–295. [Google Scholar] [CrossRef]
- Kennedy, S. Morbillivirus infections in aquatic mammals. J. Comp. Pathol. 1998, 119, 201–225. [Google Scholar] [CrossRef] [PubMed]
- Beffagna, G.; Centelleghe, C.; Franzo, G.; Di Guardo, G.; Mazzariol, S. Genomic and structural investigation on dolphin morbillivirus (DMV) in Mediterranean fin whales (Balaenoptera physalus). Sci. Rep. 2017, 7, 41554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stimmelmayr, R.; Rotstein, D.; Sheffield, G.; Brower, H.K.; George, J.C. Diseases and parasites. In The Bowhead Whale; Academic Press: San Diego, CA, USA, 2021; pp. 471–498. [Google Scholar]
- Fereidouni, S.; Munoz, O.; Von Dobschuetz, S.; De Nardi, M. Influenza virus infection of marine mammals. EcoHealth 2016, 13, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.; Clavijo, A.; Boughen, J.A. Serologic evidence of influenza A infection in marine mammals of Arctic Canada. J. Wildl. Dis. 2001, 37, 820–825. [Google Scholar] [CrossRef]
- Gass, J.D., Jr.; Kellogg, H.K.; Hill, N.J.; Puryear, W.B.; Nutter, F.B.; Runstadler, J.A. Epidemiology and Ecology of Influenza A Viruses among Wildlife in the Arctic. Viruses 2022, 14, 1531. [Google Scholar] [CrossRef]
- Zohari, S.; Neimanis, A.; Härkönen, T.; Moraeus, C.; Valarcher, J.-F. Avian influenza A (H10N7) virus involvement in mass mortality of harbour seals (Phoca vitulina) in Sweden, March through October 2014. Eurosurveillance 2014, 19, 20967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthony, S.J.; St. Leger, J.A.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; et al. Emergence of fatal avian influenza in New England harbor seals. MBio 2012, 3, e00166-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postel, A.; King, J.; Kaiser, F.K.; Kennedy, J.; Lombardo, M.S.; Reineking, W.; de le Roi, M.; Harder, T.; Pohlmann, A.; Gerlach, T. Infections with highly pathogenic avian influenza A virus (HPAIV) H5N8 in harbor seals at the German North Sea coast, 2021. Emerg. Microbes Infect. 2022, 11, 725–729. [Google Scholar] [CrossRef]
- Ohishi, K.; Ninomiya, A.; Kida, H.; Park, C.H.; Maruyama, T.; Arai, T.; Katsumata, E.; Tobayama, T.; Boltunov, A.N.; Khuraskin, L.S. Serological evidence of transmission of human influenza A and B viruses to Caspian seals (Phoca caspica). Microbiol. Immunol. 2002, 46, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Leguia, M.; Garcia-Glaessner, A.; Munoz-Saavedra, B.; Juarez, D.; Barrera, P.; Calvo-Mac, C.; Jara, J.; Silva, W.; Ploog, K.; Amaro, L. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. bioRxiv 2023. [Google Scholar] [CrossRef]
- Puryear, W.; Sawatzki, K.; Hill, N.; Foss, A.; Stone, J.J.; Doughty, L.; Walk, D.; Gilbert, K.; Murray, M.; Cox, E. Highly Pathogenic Avian Influenza A (H5N1) Virus Outbreak in New England Seals, United States. Emerg. Infect. Dis. 2023, 29, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Puryear, W.B.; Keogh, M.; Hill, N.; Moxley, J.; Josephson, E.; Davis, K.R.; Bandoro, C.; Lidgard, D.; Bogomolni, A.; Levin, M. Prevalence of influenza A virus in live-captured North Atlantic gray seals: A possible wild reservoir. Emerg. Microbes Infect. 2016, 5, e81. [Google Scholar] [CrossRef] [Green Version]
- Gass, J.D., Jr.; Dusek, R.J.; Hall, J.S.; Hallgrimsson, G.T.; Halldórsson, H.P.; Vignisson, S.R.; Ragnarsdottir, S.B.; Jónsson, J.E.; Krauss, S.; Wong, S.S. Global dissemination of Influenza A virus is driven by wild bird migration through arctic and subarctic zones. Mol. Ecol. 2023, 32, 198–213. [Google Scholar] [CrossRef]
- Kubny, H. Bird Flu Detected in the High Arctic for the First Time. Polar Journal. 2022. Available online: https://polarjournal.ch/en/2022/06/27/bird-flu-detected-in-the-arctic-for-the-first-time/ (accessed on 10 September 2022).
- USDA. USDA Online. 2023. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian/avian-influenza/hpai-2022/2022-hpai-mammals (accessed on 5 February 2023).
- Wang, L.; Maddox, C.; Terio, K.; Lanka, S.; Fredrickson, R.; Novick, B.; Parry, C.; McClain, A.; Ross, K. Detection and characterization of new coronavirus in bottlenose dolphin, United States, 2019. Emerg. Infect. Dis. 2020, 26, 1610. [Google Scholar] [CrossRef] [PubMed]
- Nollens, H.H.; Wellehan, J.F.X.; Archer, L.; Lowenstine, L.J.; Gulland, F.M.D. Detection of a respiratory coronavirus from tissues archived during a pneumonia epizootic in free-ranging Pacific harbor seals Phoca vitulina richardsii. Dis. Aquat. Org. 2010, 90, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathavarajah, S.; Stoddart, A.K.; Gagnon, G.A.; Dellaire, G. Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater. Sci. Tota. Environ. 2021, 760, 143346. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.W.; Skilling, D.E.; Ridgway, S. Calicivirus-induced vesicular disease in cetaceans and probable interspecies transmission. JAVMA 1983, 183, 1223–1225. [Google Scholar]
- O’Hara, T.M.; House, C.; House, J.A.; Suydam, R.S.; George, J.C. Viral serologic survey of bowhead whales in Alaska. J. Wildl. Dis. 1998, 34, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.W.; Ritter, D.G.; Ray, G.C.; Skilling, D.E.; Wartzok, D. New calicivirus isolates from feces of walrus (Odobenus rosmarus). J. Wildl. Dis. 1983, 19, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Barlough, J.E.; Berry, E.S.; Skilling, D.E.; Smith, A.W.; Fay, F.H. Antibodies to marine caliciviruses in the Pacific walrus (Odobenus rosmarus divergens Illiger). J. Wildl. Dis. 1986, 22, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, T.; Colegrove, K.M.; Hanson, M.; Gulland, F.M.D. Isolation of a novel adenovirus from California sea lions Zalophus californianus. Dis. Aquat. Org. 2011, 94, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Maness, H.T.D.; Nollens, H.H.; Jensen, E.D.; Goldstein, T.; LaMere, S.; Childress, A.; Sykes, J.; Leger, J.S.; Lacave, G.; Latson, F.E.; et al. Phylogenetic analysis of marine mammal herpesviruses. Vet. Microbiol. 2011, 149, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Zarnke, R.L.; Harder, T.C.; Vos, H.W.; Ver Hoef, J.M.; Osterhaus, A.D.M.E. Serologic survey for phocid herpesvirus-1 and-2 in marine mammals from Alaska and Russia. J. Wildl. Dis. 1997, 33, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Deming, A.C.; Wellehan, J.F.X.; Colegrove, K.M.; Hall, A.; Luff, J.; Lowenstine, L.; Duignan, P.; Cortés-Hinojosa, G.; Gulland, F.M.D. Unlocking the role of a genital herpesvirus, otarine herpesvirus 1, in california sea lion cervical cancer. Animals 2021, 11, 491. [Google Scholar] [CrossRef]
- Kennedy, S.; Lindstedt, I.J.; McAliskey, M.M.; McConnell, S.A.; McCullough, S.J. Herpesviral encephalitis in a harbor porpoise (Phocoena phocoena). J. Zoo Wildl. Med. 1992, 23, 374–379. Available online: https://www.jstor.org/stable/20095242 (accessed on 1 September 2022).
- van Elk, C.E.; van de Bildt, M.W.G.; de Jong, A.A.W.; Osterhaus, A.D.M.E.; Kuiken, T. Genital herpesvirus in bottlenose dolphins (Tursiops truncatus): Cultivation, epidemiology, and associated pathology. J. Wildl. Dis. 2009, 45, 895–906. [Google Scholar] [CrossRef] [Green Version]
- Roth, S.J.; Tischer, B.K.; Kovacs, K.M.; Lydersen, C.; Osterrieder, N.; Tryland, M. Phocine herpesvirus 1 (PhHV-1) in harbor seals from Svalbard, Norway. Vet. Microbiol. 2013, 164, 286–292. [Google Scholar] [CrossRef]
- Bellehumeur, C.; Nielsen, O.; Measures, L.; Harwood, L.; Goldstein, T.; Boyle, B.; Gagnon, C.A. Herpesviruses including novel gammaherpesviruses are widespread among phocid seal species in Canada. J. Wildl. Dis. 2016, 52, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Bossart, G.D.; Cray, C.; Solorzano, J.L.; Decker, S.J.; Cornell, L.H.; Altman, N.H. Cutaneous papillomaviral-like papillomatosis in a killer whale (Orcinus orca). Mar. Mammal Sci. 1996, 12, 274–281. [Google Scholar] [CrossRef]
- De Guise, S.; Lagacé, A.; Béland, P. Gastric papillomas in eight St. Lawrence beluga whales (Delphinapterus leucas). J. Vet. Diag. Investig. 1994, 6, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.; Mergl, J.; Gehring, E.; Paulus, W.; Martineau, D.; Hasselblatt, M. Choroid plexus papilloma in a beluga whale (Delphinapterus leucas). J. Vet. Diag. Investig. 2016, 28, 461–463. [Google Scholar] [CrossRef]
- Newman, S.J.; Smith, S.A. Marine mammal neoplasia: A review. Vet. Pathol. 2006, 43, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Geraci, J.R.; Palmer, N.C.; St. Aubin, D.J. Tumors in cetaceans: Analysis and new findings. Can. J. Fish. Aquat. Sci. 1987, 44, 1289–1300. [Google Scholar] [CrossRef]
- Tryland, M. Parapoxvirus Infections in Northern Species and Populations. In Arctic One Health; Tryland, M., Ed.; Springer: Cham, Switzerland, 2022; pp. 427–436. [Google Scholar]
- Tryland, M. Zoonoses of Arctic Marine Mammals. Rev. Infect. Dis. 2000, 2, 55–64. [Google Scholar]
- Heide-Jørgensen, M.P.; Härkönen, T.; Dietz, R.; Thompson, P.M. Retrospective of the 1988 European seal epizootic. Dis. Aquat. Org. 1992, 13, 37–62. [Google Scholar] [CrossRef]
- Odegaard, O.A.; Krogsrud, J. Rabies in Svalbard: Infection diagnosed in arctic fox, reindeer and seal. Vet. Rec. 1981, 109, 141–142. [Google Scholar] [CrossRef]
- Prestrud, P.; Krogsrud, J.; Gjertz, I. The occurrence of rabies in the Svalbard Islands of Norway. J. Wildl. Dis. 1992, 28, 57–63. [Google Scholar] [CrossRef]
- Mørk, T.; Prestrud, P. Arctic rabies—A review. Acta Vet. Scand. 2004, 45, 1. [Google Scholar] [CrossRef]
- Taylor, M.; Elkin, B.; Maier, N.; Bradley, M. Observation of a polar bear with rabies. J. Wildl. Dis. 1991, 27, 337–339. [Google Scholar] [CrossRef] [Green Version]
- Huntington, H.P. A preliminary assessment of threats to arctic marine mammals and their conservation in the coming decades. Mar. Policy 2009, 33, 77–82. [Google Scholar] [CrossRef]
- Moore, S.E.; Reeves, R.R.; Southall, B.L.; Ragen, T.J.; Suydam, R.S.; Clark, C.W. A new framework for assessing the effects of anthropogenic sound on marine mammals in a rapidly changing Arctic. Bioscience 2012, 62, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Hunt, K.E.; Stimmelmayr, R.; George, C.; Hanns, C.; Suydam, R.; Brower, H.; Rolland, R.M. Baleen hormones: A novel tool for retrospective assessment of stress and reproduction in bowhead whales (Balaena mysticetus). Conserv. Physiol. 2014, 2, cou030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Rubly, C. The emergence of Arctic shipping: Issues, threats, costs, and risk-mitigating strategies of the Polar Code. Aust. J. Marit. Ocean. Aff. 2015, 7, 171–182. [Google Scholar] [CrossRef]
- Halliday, W.D.; Insley, S.J.; Hilliard, R.C.; de Jong, T.; Pine, M.K. Potential impacts of shipping noise on marine mammals in the western Canadian Arctic. Mar. Pollut. Bull. 2017, 123, 73–82. [Google Scholar] [CrossRef]
- Rolland, R.M.; Graham, K.M.; Stimmelmayr, R.; Suydam, R.S.; George, J.C. Chronic stress from fishing gear entanglement is recorded in baleen from a bowhead whale (Balaena mysticetus). Mar. Mammal Sci. 2019, 35, 1625–1642. [Google Scholar] [CrossRef] [Green Version]
- George, J.C.; Sheffield, G.; Reed, D.J.; Tudor, B.; Stimmelmayr, R.; Person, B.T.; Sformo, T.; Suydam, R. Frequency of injuries from line entanglements, killer whales, and ship strikes on Bering-Chukchi-Beaufort Seas bowhead whales. Arctic 2017, 70, 37–46. Available online: http://www.jstor.org/stable/26379722 (accessed on 3 October 2022). [CrossRef]
- Heide-Jørgensen, M.P.; Laidre, K.L.; Quakenbush, L.T.; Citta, J.J. The Northwest Passage opens for bowhead whales. Biol. Lett. 2012, 8, 270–273. [Google Scholar] [CrossRef]
- Fortune, S.M.E.; Ferguson, S.H.; Trites, A.W.; LeBlanc, B.; LeMay, V.; Hudson, J.M.; Baumgartner, M.F. Seasonal diving and foraging behaviour of Eastern Canada-West Greenland bowhead whales. Mar. Ecol. Prog. Ser. 2020, 643, 197–217. [Google Scholar] [CrossRef]
- van Weelden, C.; Towers, J.R.; Bosker, T. Impacts of climate change on cetacean distribution, habitat and migration. Clim. Chang. Ecol. 2021, 1, 100009. [Google Scholar] [CrossRef]
- George, J.C.; Suydam, R. Observations of killer whale (Orcinus orca) predation in the northeastern Chukchi and western Beaufort Seas. Mar. Mammal Sci. 1998, 14, 330–332. [Google Scholar] [CrossRef]
- Ferguson, S.H.; Higdon, J.W.; Chmelnitsky, E.G. The rise of killer whales as a major Arctic predator. In A Little Less Arctic; Springer: Dordrecht, The Netherlands, 2010; pp. 117–136. [Google Scholar]
- Matthews, C.J.D.; Breed, G.A.; LeBlanc, B.; Ferguson, S.H. Killer whale presence drives bowhead whale selection for sea ice in Arctic seascapes of fear. Proc. Natl. Acad. Sci. USA 2020, 117, 6590–6598. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, N.R.; Ferguson, S.H.; Koski, W.R.; Higdon, J.W.; LeBlanc, B.; Tervo, O.; Jepson, P.D. Occurrence of killer whale Orcinus orca rake marks on Eastern Canada-West Greenland bowhead whales Balaena mysticetus. Polar Biol. 2013, 36, 1133–1146. [Google Scholar] [CrossRef]
- Stafford, K.M. Increasing detections of killer whales (Orcinus orca), in the Pacific Arctic. Mar. Mammal Sci. 2019, 35, 696–706. [Google Scholar] [CrossRef]
- Willoughby, A.L.; Ferguson, M.C.; Stimmelmayr, R.; Clarke, J.T.; Brower, A.A. Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the US Pacific Arctic, 2009–2018: Evidence from bowhead whale carcasses. Polar Biol. 2020, 43, 1669–1679. [Google Scholar] [CrossRef]
- Breed, G.A.; Matthews, C.J.D.; Marcoux, M.; Higdon, J.W.; LeBlanc, B.; Petersen, S.D.; Orr, J.; Reinhart, N.R.; Ferguson, S.H. Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. Proc. Natl. Acad. Sci. USA 2017, 114, 2628–2633. [Google Scholar] [CrossRef]
- Laidre, K.L.; Heide-Jørgensen, M.P.; Logdson, M.L.; Hobbs, R.C.; Heagerty, P.; Dietz, R.; Jørgensen, O.A.; Treble, M.A. Seasonal narwhal habitat associations in the high Arctic. Mar. Biol. 2004, 145, 821–831. [Google Scholar] [CrossRef]
- Lefort, K.J.; Garroway, C.J.; Ferguson, S.H. Killer whale abundance and predicted narwhal consumption in the Canadian Arctic. Glob. Chang. Biol. 2020, 26, 4276–4283. [Google Scholar] [CrossRef]
- Watt, C.A.; Heide-Jørgensen, M.P.; Ferguson, S.H. How adaptable are narwhal? A comparison of foraging patterns among the world’s three narwhal populations. Ecosphere 2013, 4, 1–15. [Google Scholar] [CrossRef]
- Learmonth, J.A.; MacLeod, C.D.; Santos, M.B.; Pierce, G.J.; Crick, H.; Robinson, R. Potential effects of climate change on marine mammals. Oceanogr. Mar. Biol. 2006, 44, 431. [Google Scholar] [CrossRef]
- Berger, J.; Hartway, C.; Gruzdev, A.; Johnson, M. Climate degradation and extreme icing events constrain life in cold-adapted mammals. Sci. Rep. 2018, 8, 1156. [Google Scholar] [CrossRef] [Green Version]
- Duignan, P.J.; Stephens, N.S.; Robb, K. Fresh water skin disease in dolphins: A case definition based on pathology and environmental factors in Australia. Sci. Rep. 2020, 10, 21979. [Google Scholar] [CrossRef]
- McClain, A.M.; Daniels, R.; Gomez, F.M.; Ridgway, S.H.; Takeshita, R.; Jensen, E.D.; Smith, C.R. Physiological effects of low salinity exposure on bottlenose dolphins (Tursiops truncatus). J. Zool. Botan. Gard. 2020, 1, 61–75. [Google Scholar] [CrossRef]
- Trana, M.R.; Roth, J.D.; Tomy, G.T.; Anderson, W.G.; Ferguson, S.H. Increased blubber cortisol in ice-entrapped beluga whales (Delphinapterus leucas). Polar Biol. 2016, 39, 1563–1569. [Google Scholar] [CrossRef]
- Laidre, K.L.; Heide-Jørgensen, M.P. Arctic sea ice trends and narwhal vulnerability. Biol. Conserv. 2005, 121, 509–517. [Google Scholar] [CrossRef]
- Matthews, C.J.D.; Raverty, S.A.; Noren, D.P.; Arragutainaq, L.; Ferguson, S.H. Ice entrapment mortality may slow expanding presence of Arctic killer whales. Polar Biol. 2019, 42, 639–644. [Google Scholar] [CrossRef]
- Westdal, K.H.; Higdon, J.W.; Ferguson, S.H. Review of killer whale (Orcinus orca) ice entrapments and ice-related mortality events in the Northern Hemisphere. Polar Biol. 2017, 40, 1467–1473. [Google Scholar] [CrossRef]
- Pagano, A.M.; Williams, T.M. Physiological consequences of Arctic sea ice loss on large marine carnivores: Unique responses by polar bears and narwhals. J. Exp. Biol. 2021, 224, jeb228049. [Google Scholar] [CrossRef]
- Smith, T.G.; Lydersen, C. Availability of suitable land-fast ice and predation as factors limiting ringed seal populations, Phoca hispida, in Svalbard. Polar Res. 1991, 10, 585–594. [Google Scholar] [CrossRef]
- Laidre, K.; Heide-Jørgensen, M.P.; Stern, H.; Richard, P. Unusual narwhal sea ice entrapments and delayed autumn freeze-up trends. Polar Biol. 2012, 35, 149–154. [Google Scholar] [CrossRef]
- David, C.; Lange, B.; Krumpen, T.; Schaafsma, F.; van Franeker, J.A.; Flores, H. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 2016, 39, 981–994. [Google Scholar] [CrossRef]
- Fossheim, M.; Primicerio, R.; Johannesen, E.; Ingvaldsen, R.B.; Aschan, M.M.; Dolgov, A.V. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Chang. 2015, 5, 673–677. [Google Scholar] [CrossRef]
- Hop, H.; Gjøsæter, H. Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar. Biol. Res. 2013, 9, 878–894. [Google Scholar] [CrossRef]
- Harwood, L.A.; Smith, T.G.; Melling, H. Variation in reproduction and body condition of the ringed seal (Phoca hispida) in western Prince Albert Sound, NT, Canada, as assessed through a harvest-based sampling program. Arctic 2000, 53, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.H.; Yurkowski, D.J.; Young, B.G.; Fisk, A.T.; Muir, D.C.G.; Zhu, X.; Thiemann, G.W. Comparing temporal patterns in body condition of ringed seals living within their core geographic range with those living at the edge. Ecography 2020, 43, 1521–1535. [Google Scholar] [CrossRef]
- Derous, D.; Ten Doeschate, M.; Brownlow, A.C.; Davison, N.J.; Lusseau, D. Toward new ecologically relevant markers of health for cetaceans. Front. Mar. Sci. 2020, 7, 367. [Google Scholar] [CrossRef]
- Ogloff, W.R.; Anderson, R.A.; Yurkowski, D.J.; Debets, C.D.; Anderson, W.G.; Ferguson, S.H. Spatiotemporal variation of ringed seal blubber cortisol levels in the Canadian Arctic. J. Mammal. 2022, 103, 1208–1220. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, J.L.; Botting, C.H.; Brownlow, A.; Hall, A.J.J.C.p. Not just fat: Investigating the proteome of cetacean blubber tissue. Conser. Physiol. 2018, 6, coy003. [Google Scholar] [CrossRef]
- Burek, K.; Beckmen, K.; Blake, J.; Atkinson, S.; Tuomi, P.; Small, R. Investigation into the Etiology of the “Hairless” (Alopecic) Ringed Seals (Phoca hispida) in the Bering Sea. In Proceedings of the 51st Annual Wildlife Disease Association Conference, Arcata, CA, USA, 28 July–1 August 2002. [Google Scholar]
- Thometz, N.M.; Hermann-Sorensen, H.; Russell, B.; Rosen, D.A.S.; Reichmuth, C. Molting strategies of Arctic seals drive annual patterns in metabolism. Conserv. Physiol. 2021, 9, coaa112. [Google Scholar] [CrossRef] [PubMed]
- Laidre, K.L.; Stirling, I.; Lowry, L.F.; Wiig, Ø.; Heide-Jørgensen, M.P.; Ferguson, S.H. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 2008, 18, S97–S125. [Google Scholar] [CrossRef] [Green Version]
- Seguel, M.; Stimmelmayr, R.; Howerth, E.; Gottdenker, N. Pulmonary mast cell tumor and possible paraganglioma in a free-ranging Pacific walrus (Odobenus rosmarus divergens), Barrow, Alaska, USA. J. Wildl. Dis. 2016, 52, 407–410. [Google Scholar] [CrossRef]
- Ridgway, S.H.; Marino, L.; Lipscomb, T.P. Description of a poorly differentiated carcinoma within the brainstem of a white whale (Delphinapterus leucas) from magnetic resonance images and histological analysis. Anat. Rec. 2002, 268, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Mikaelian, I.; Leclair, D.; Inukpuk, J. Adenocarcinoma of the small intestine in a ringed seal from Hudson Bay. J. Wildl. Dis. 2001, 37, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Gulland, F.M.D.; Trupkiewicz, J.G.; Spraker, T.R.; Lowenstine, L.J. Metastatic carcinoma of probable transitional cell origin in 66 free-living California sea lions (Zalophus californianus), 1979 to 1994. J. Wildl. Dis. 1996, 32, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ylitalo, G.M.; Stein, J.E.; Hom, T.; Johnson, L.L.; Tilbury, K.L.; Hall, A.J.; Rowles, T.; Greig, D.; Lowenstine, L.J.; Gulland, F.M.D. The role of organochlorines in cancer-associated mortality in California sea lions (Zalophus californianus). Mar. Pollut. Bull. 2005, 50, 30–39. [Google Scholar] [CrossRef] [PubMed]
- De Guise, S.; Lagace, A.; Béland, P. Tumors in St. Lawrence beluga whales (Delphinapterus leucas). Vet. Pathol. 1994, 31, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Martineau, D.; Lemberger, K.; Dallaire, A.; Labelle, P.; Lipscomb, T.P.; Michel, P.; Mikaelian, I. Cancer in wildlife, a case study: Beluga from the St. Lawrence estuary, Québec, Canada. Environ. Health Perspect. 2002, 110, 285–292. [Google Scholar] [CrossRef]
- Reeves, R.R.; Ewins, P.J.; Agbayani, S.; Heide-Jørgensen, M.P.; Kovacs, K.M.; Lydersen, C.; Suydam, R.; Elliott, W.; Polet, G.; van Dijk, Y. Distribution of endemic cetaceans in relation to hydrocarbon development and commercial shipping in a warming Arctic. Mar. Policy 2014, 44, 375–389. [Google Scholar] [CrossRef]
- Atkinson, S.; Dierauf, L.A. Stress and marine mammals. In CRC Handbook Marine Mammal Medicine; CRC Press: Boca Raton, FL, USA, 2018; pp. 153–168. [Google Scholar]
- George, J.C.; Druckenmiller, M.L.; Laidre, K.L.; Suydam, R.; Person, B. Bowhead whale body condition and links to summer sea ice and upwelling in the Beaufort Sea. Prog. Oceanogr. 2015, 136, 250–262. [Google Scholar] [CrossRef]
- Gulland, F.M.D.; Baker, J.; Howe, M.; LaBrecque, E.; Leach, L.; Moore, S.E.; Reeves, R.R.; Thomas, P.O. A Review of Climate Change Effects on Marine Mammals in United States Waters: Past Predictions, Observed Impacts, Current Research and Conservation Imperatives. Clim. Chang. Ecol. 2022, 3, 100054. [Google Scholar] [CrossRef]
- NMFS. NMFS-PD 02-204-01 Draft Revisions to the Guidelines for Preparing Stock Assessment Reports (noaa.gov). 2023. Available online: https://www.fisheries.noaa.gov/s3/2023-02/02-204-01-Final%20GAMMS%20IV%20Revisions%20clean_kdr.pdf (accessed on 8 February 2023).
- Roman, J.; Altman, I.; Dunphy-Daly, M.M.; Campbell, C.; Jasny, M.; Read, A.J. The Marine Mammal Protection Act at 40: Status, recovery, and future of US marine mammals. Ann. N. Y. Acad. Sci. 2013, 1286, 29–49. [Google Scholar] [CrossRef]
- Lydersen, C.; Kovacs, K.M. A review of the ecology and status of white whales (Delphinapterus leucas) in Svalbard, Norway. Polar Res. 2021, 40, 1–12. [Google Scholar] [CrossRef]
- Moore, S.E. Marine mammals as Ecosystem Sentinels. J. Mammal. 2008, 89, 534–540. [Google Scholar] [CrossRef]
- Moore, S.E.; Gulland, F.M.D. Linking marine mammal and ocean health in the ‘New Normal’ Arctic. Ocean. Coast. Manag. 2014, 102, 55–57. [Google Scholar] [CrossRef]
- Sanderson, C.E.; Alexander, K.A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 2020, 26, 4284–4301. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Lam, V.W.Y.; Sarmiento, J.L.; Kearney, K.; Watson, R.; Pauly, D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009, 10, 235–251. [Google Scholar] [CrossRef]
- Rode, K.D.; Wilson, R.R.; Regehr, E.V.; St. Martin, M.; Douglas, D.C.; Olson, J. Increased land use by Chukchi Sea polar bears in relation to changing sea ice conditions. PLoS ONE 2015, 10, e0142213. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, J.P.; Harlow, H.J.; Durner, G.M.; Regehr, E.V.; Amstrup, S.C.; Ben-David, M. Heightened immune system function in polar bears using terrestrial habitats. Physiol. Biochem. Zool. 2019, 92, 1–11. [Google Scholar] [CrossRef]
- Wilson, R.R.; Regehr, E.V.; Martin, M.S.; Atwood, T.C.; Peacock, E.; Miller, S.; Divoky, G. Relative influences of climate change and human activity on the onshore distribution of polar bears. Biol. Conserv. 2017, 214, 288–294. [Google Scholar] [CrossRef]
- Watson, S.E.; Hauffe, H.C.; Bull, M.J.; Atwood, T.C.; McKinney, M.A.; Pindo, M.; Perkins, S.E. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. 2019, 13, 2916–2926. [Google Scholar] [CrossRef] [Green Version]
- Philippa, J.D.W.; Martina, B.E.E.; Kuiken, T.; Van de Bildt, M.W.G.; Osterhaus, A.; Leighton, F.A.; Daoust, P.Y.; Nielsen, O.; Pagliarulo, M.; Schwantje, H.; et al. Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada. Vet. Rec. 2004, 155, 135–140. [Google Scholar] [CrossRef]
- Young, B.G.; Koski, W.R.; Kilabuk, R.; Watt, C.A.; Ryan, K.P.; Ferguson, S.H. Collaborative field research using drones for whale photo-identification studies in Cumberland Sound, Nunavut. Drone Syst. Appl. 2022, 10, 256–265. [Google Scholar] [CrossRef]
- Hassell, J.M.; Newbold, T.; Dobson, A.P.; Linton, Y.-M.; Franklinos, L.H.V.; Zimmerman, D.; Pagenkopp Lohan, K.M. Towards an ecosystem model of infectious disease. Nat. Ecol. Evol. 2021, 5, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Stimmelmayr, R.; George, J.C.; Clarke, J.; Ferguson, M.; Willoughby, A.; Brower, A.; Sheffield, G.; Stafford, K.; Givens, G.; Von Duyke, A.; et al. 2018–2019 Health Report for the Bering-Chukchi-Beaufort Seas Bowhead Whales-Preliminary Findings; NOAA: Washington, DC, USA, 2020; SC/68b/ASW. Available online: https://repository.library.noaa.gov/view/noaa/40566 (accessed on 8 August 2022).
- Stimmelmayr, R.; Rotstein, D.; Seguel, M.; Gottdenker, N. Hepatic lipomas and myelolipomas in subsistence-harvested bowhead whales Balaena mysticetus, Alaska (USA): A case review 1980–2016. Dis. Aquat. Org. 2017, 127, 71–74. [Google Scholar] [CrossRef] [Green Version]
- George, J.C.; Suydam, R.; Stimmelmayr, R. A Possible Structure for a Bowhead Whale Health Report; International Whaling Commission: Impington, UK, 2016; Paper SC/66b/BRG/14. [Google Scholar]
- Bengtsson, O.; Lydersen, C.; Kovacs, K.M.; Lindstrøm, U. Ringed seal (Pusa hispida) diet on the west coast of Spitsbergen, Svalbard, Norway: During a time of ecosystem change. Polar Biol. 2020, 43, 773–788. [Google Scholar] [CrossRef]
- Wiig, Ø.; Born, E.W.; Stewart, R.E.A. Management of Atlantic walrus (Odobenus rosmarus rosmarus) in the arctic Atlantic. NAMMCO Sci. Publ. 2014, 9, 315–341. [Google Scholar] [CrossRef] [PubMed]
- Palomino-González, A.; Kovacs, K.M.; Lydersen, C.; Ims, R.A.; Lowther, A.D. Drones and marine mammals in Svalbard, Norway. Mar. Mammal Sci. 2021, 37, 1212–1229. [Google Scholar] [CrossRef]
- Pirotta, V.; Smith, A.; Ostrowski, M.; Russell, D.; Jonsen, I.D.; Grech, A.; Harcourt, R. An economical custom-built drone for assessing whale health. Front. Mar. Sci. 2017, 4, 425. [Google Scholar] [CrossRef]
- Schiffman, R. Drones flying high as new tool for field biologists. Science 2014, 344, 459. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Daniels, R.; Smith, C. Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis. Aquat. Org. 2012, 99, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Hunt, K.E.; Moore, M.J.; Rolland, R.M.; Kellar, N.M.; Hall, A.J.; Kershaw, J.; Raverty, S.A.; Davis, C.E.; Yeates, L.C.; Fauquier, D.A.; et al. Overcoming the challenges of studying conservation physiology in large whales: A review of available methods. Conserv. Physiol. 2013, 1, cot006. [Google Scholar] [CrossRef]
- Pettis, H.M.; Rolland, R.M.; Hamilton, P.K.; Knowlton, A.R.; Burgess, E.A.; Kraus, S.D. Body condition changes arising from natural factors and fishing gear entanglements in North Atlantic right whales Eubalaena glacialis. Endanger. Species Res. 2017, 32, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.D.; Durban, J.W.; Fearnbach, H.; Barrett-Lennard, L.G.; Casler, P.K.; Ward, E.J.; Dapp, D.R. Survival of the fattest: Linking body condition to prey availability and survivorship of killer whales. Ecosphere 2021, 12, e03660. [Google Scholar] [CrossRef]
- Pirotta, E.; Thomas, L.; Costa, D.P.; Hall, A.J.; Harris, C.M.; Harwood, J.; Kraus, S.D.; Miller, P.J.; Moore, M.; Photopoulou, T. Understanding the combined effects of multiple stressors: A new perspective on a longstanding challenge. Sci. Total Environ. 2022, 821, 153322. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.S. The role of immunotoxic environmental contaminants in facilitating the emergence of infectious diseases in marine mammals. Hum. Ecol. Risk Assess. Int. J. 2002, 8, 277–292. [Google Scholar] [CrossRef]
- Routti, H.; Diot, B.; Panti, C.; Duale, N.; Fossi, M.C.; Harju, M.; Kovacs, K.M.; Lydersen, C.; Scotter, S.E.; Villanger, G.D.; et al. Contaminants in Atlantic walruses in Svalbard Part 2: Relationships with endocrine and immune systems. Environ. Pollut. 2019, 246, 658–667. [Google Scholar] [CrossRef] [Green Version]
- Scotter, S.E.; Tryland, M.; Nymo, I.H.; Hanssen, L.; Harju, M.; Lydersen, C.; Kovacs, K.M.; Klein, J.; Fisk, A.T.; Routti, H. Contaminants in Atlantic walruses in Svalbard part 1: Relationships between exposure, diet and pathogen prevalence. Environ. Pollut. 2019, 244, 9–18. [Google Scholar] [CrossRef]
- Bergman, A.; Bergstrand, A.; Bignert, A. Renal lesions in Baltic grey seals (Halichoerus grypus) and ringed seals (Phoca hispida botnica). AMBIO 2001, 30, 397–409. [Google Scholar] [CrossRef]
- Lydersen, C.; Martin, A.R.; Kovacs, K.M.; Gjertz, I. Summer and Autumn movements of white whales Delphinapterus leucas in Svalbard, Norway. Mar. Ecol. Prog. Ser. 2001, 219, 265–274. [Google Scholar] [CrossRef]
- Suydam, R.S.; Lowry, L.F.; Frost, K.J.; O’Corry-Crowe, G.M.; Pikok, D., Jr. Satellite tracking of eastern Chukchi Sea beluga whales into the Arctic Ocean. Arctic 2001, 54, 237–243. Available online: https://www.jstor.org/stable/40512343 (accessed on 8 August 2022). [CrossRef]
- Altizer, S.; Ostfeld, R.S.; Johnson, P.T.J.; Kutz, S.; Harvell, C.D. Climate change and infectious diseases: From evidence to a predictive framework. Science 2013, 341, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Silber, G.K.; Lettrich, M.; Thomas, P.O. Report of a workshop on best approaches and needs for projecting marine mammal distributions in a changing climate. In NOAA Technical Memorandum NMFS-OPR-54; NOAA: Washington, DC, USA, 2016; Available online: https://nora.nerc.ac.uk/id/eprint/513734/1/climate_change_and_marine_mammals_workshop_rept._noaa_tech_memo_opr54.pdf (accessed on 8 August 2022).
- Tryland, M. Zoonoses and public health. In CRC Handbook Marine Mammal Medicine; Dierauf, L., Gulland, F.M.D., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 47–62. [Google Scholar]
- Kebke, A.; Samarra, F.; Derous, D. Climate change and cetacean health: Impacts and future directions. Phil. Trans. Roy. Soc. B 2022, 377, 20210249. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.J.; Stockin, K.A.; Saltré, F. On the rise: Climate change in New Zealand will cause sperm and blue whales to seek higher latitudes. Ecol. Indic. 2022, 142, 109235. [Google Scholar] [CrossRef]
Pathogen | Primary Taxa of Concern | Live Animal Surveillance/Monitoring Method | Post-Mortem Organ/Tissue Collection | Sample Storage | Diagnostic Test |
---|---|---|---|---|---|
Brucella | Serum sample | Brain, lung, lymph node, placenta, testis | Frozen −80° | Serology, PCR, prolonged culture on Farrell’s medium, immunohistochemistry | |
Influenza A virus | Nasal swab/rectal swab | Blood/tissue: lung, brain, lymph node | Frozen −80° | cELISA, agar gel immunodiffusion, virus isolation, PCR with sequencing | |
Leptospira | Serum, urine | Blood, kidney, urine | Cold storage | Serology—M AT culture, direct immunofluorescence. PCR | |
Morbillivirus | Serum | Blowhole swab, nasal swab, brain lung, lymph node | Frozen −80° | cELISA Virus neutralisation test Real-time PCR Virus isolation and sequencing | |
Myco-bacterium | Serum | Lymph nodes, sputum, tubercles, swabs. | Frozen −80° | Ziehl–Neelsen staining, prolonged culture, PCR | |
Rabies viruse | Serum | Whole brain (cerebellum, brain stem, hippocampus) | Fresh mounted tissue, fixed or in paraffin | Antigen fluorescent antibody test RT-PCR | |
Toxoplasma gondii | Faeces/EDTA whole blood/urine | Blood serum Fresh/frozen tissue | Ship cold mounted slides or frozen tissue | Modified agglutination test, serology, PCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barratclough, A.; Ferguson, S.H.; Lydersen, C.; Thomas, P.O.; Kovacs, K.M. A Review of Circumpolar Arctic Marine Mammal Health—A Call to Action in a Time of Rapid Environmental Change. Pathogens 2023, 12, 937. https://doi.org/10.3390/pathogens12070937
Barratclough A, Ferguson SH, Lydersen C, Thomas PO, Kovacs KM. A Review of Circumpolar Arctic Marine Mammal Health—A Call to Action in a Time of Rapid Environmental Change. Pathogens. 2023; 12(7):937. https://doi.org/10.3390/pathogens12070937
Chicago/Turabian StyleBarratclough, Ashley, Steven H. Ferguson, Christian Lydersen, Peter O. Thomas, and Kit M. Kovacs. 2023. "A Review of Circumpolar Arctic Marine Mammal Health—A Call to Action in a Time of Rapid Environmental Change" Pathogens 12, no. 7: 937. https://doi.org/10.3390/pathogens12070937
APA StyleBarratclough, A., Ferguson, S. H., Lydersen, C., Thomas, P. O., & Kovacs, K. M. (2023). A Review of Circumpolar Arctic Marine Mammal Health—A Call to Action in a Time of Rapid Environmental Change. Pathogens, 12(7), 937. https://doi.org/10.3390/pathogens12070937