Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Criteria
2.2. Data Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Data Synthesis and Analysis
3. Results and Discussion
3.1. Scope of the Publications
3.2. Assessed Combinations of Biocontrol Agents in Laboratory Experiments
3.3. Reported Compatibility of Biocontrol Agents Assessed in Laboratory Experiments
3.4. Parasitoid Life History and Susceptibility to Entomopathogens
3.5. Investigated Combinations and Reported Compatibility of Biocontrol Agents in Field, Semi-Field and Greenhouse Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Collatz, J.; Hinz, H.L.; Kaser, J.M.; Freimoser, F.M. Benefits and risks of biological control. In Biological Control: Global Impacts, Challenges and Future Directions of Pest Management; Mason, P.G., Ed.; CSIRO: Canberra, Australia, 2021; pp. 142–165. [Google Scholar]
- Qu, M.; Merzendorfer, H.; Moussian, B.; Yang, Q. Bioinsecticides as future mainstream pest control agents: Opportunities and challenges. Front. Agric. Sci. Eng. 2022, 9, 82. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Eggleton, P.; Belshaw, R. Insect parasitoids: An evolutionary overview. Philos. Trans. R. Soc. Lond. B 1992, 337, 79. [Google Scholar] [CrossRef]
- Smith, S.M. Biological control with Trichogramma: Advances, successes, and potential of their use. Annu. Rev. Entomol. 1996, 41, 375–406. [Google Scholar] [CrossRef]
- Cherif, A.; Mansour, R.; Grissa-Lebdi, K. The egg parasitoids Trichogramma: From laboratory mass rearing to biological control of lepidopteran pests. Biocontrol Sci. Technol. 2021, 31, 661–693. [Google Scholar] [CrossRef]
- Benelli, G.; Messing, R.H.; Wright, M.G.; Giunti, G.; Kavallieratos, N.G.; Canale, A. Cues triggering mating and host-seeking behavior in the aphid parasitoid Aphidius colemani (Hymenoptera: Braconidae: Aphidiinae): Implications for biological control. J. Econ. Entomol. 2014, 107, 2005–2022. [Google Scholar] [CrossRef]
- Sabbahi, R.; Hock, V.; Azzaoui, K.; Saoiabi, S.; Hammouti, B. A global perspective of entomopathogens as microbial biocontrol agents of insect pests. J. Agric. Food. Res. 2022, 10, 100376. [Google Scholar] [CrossRef]
- Gillespie, M.A.; Gurr, G.M.; Wratten, S.D. Beyond nectar provision: The other resource requirements of parasitoid biological control agents. Entomol. Exp. Appl. 2016, 159, 207–221. [Google Scholar] [CrossRef]
- Roy, H.E.; Pell, J.K. Interactions between entomopathogenic fungi and other natural enemies: Implications for biological control. Biocontrol Sci. Technol. 2000, 10, 737–752. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Garrido-Jurado, I.; Yousef-Yousef, M.; González-Mas, N. Multitrophic interactions of entomopathogenic fungi in biocontrol. BioControl 2022, 67, 457–472. [Google Scholar] [CrossRef]
- Cossentine, J.E. The parasitoid factor in the virulence and spread of lepidopteran baculoviruses. Virol. Sin. 2009, 24, 305–314. [Google Scholar] [CrossRef]
- De Bortoli, S.A.; Vacari, A.M.; Polanczyk, R.A.; Pires Veiga, A.C.; Marchi Goulart, R. Effect of Bacillus thuringiensis on parasitoids and predators. In Bacillus Thuringiensis and Lysinibacillus Sphaericus: Characterization and Use in the Field of Biocontrol; Fiuza, L.M., Polanczyk, R.A., Crickmore, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 67–77. ISBN 978-3-319-56677-1. [Google Scholar]
- Barratt, B.I.P.; Moran, V.C.; Bigler, F.; van Lenteren, J.C. The status of biological control and recommendations for improving uptake for the future. BioControl 2018, 63, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Elnahal, A.S.M.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.-S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Aguila, L.C.R.; Akutse, K.S.; Ashraf, H.J.; Bamisile, B.S.; Lin, J.; Dai, J.; Wang, H.; Wang, L. The survival and parasitism rate of Tamarixia radiata (Hymenoptera: Eulophidae) on its host exposed to Beauveria bassiana (Ascomycota: Hypocreales). Agronomy 2021, 11, 1496. [Google Scholar] [CrossRef]
- Akbari, S.; Mirfakhraie, S.; Aramideh, S.; Safaralizadeh, M.H. Effect of fungal isolates and imidacloprid on cabbage aphid Brevicoryne brassicae and its parasitoid Diaeretiella rapae. Zemdirbyste-Agriculture 2020, 107, 255–262. [Google Scholar] [CrossRef]
- Allahyari, R.; Aramideh, S.; Michaud, J.P.; Safaralizadeh, M.H.; Rezapanah, M.R. Behavioral and developmental responses of Habrobracon hebetor (Hymenoptera: Braconidae) to larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) inoculated with various concentrations of Bacillus thuringiensis var. kurstaki (Bacillales: Bacillacae). J. Insect Sci. 2020, 20, 129. [Google Scholar] [CrossRef]
- Allahyari, R.; Aramideh, S.; Michaud, J.P.; Safaralizadeh, M.H.; Rezapanah, M.R. Negative life history impacts for Habrobracon hebetor (Hymneoptera: Braconidae) that develop in bollworm larvae inoculated with Helicoverpa armigera nucleopolyhedrovirus. J. Econ. Entomol. 2020, 113, 1648–1655. [Google Scholar] [CrossRef]
- Allahyari, R.; Aramideh, S.; Safaralizadeh, M.H.; Rezapanah, M.; Michaud, J.P. Synergy between parasitoids and pathogens for biological control of Helicoverpa armigera in chickpea. Entomol. Exp. Appl. 2020, 168, 70–75. [Google Scholar] [CrossRef]
- Amichot, M.; Curty, C.; Benguettat-Magliano, O.; Gallet, A.; Wajnberg, E. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis. Environ. Sci. Pollut. Res. 2016, 23, 3097–3103. [Google Scholar] [CrossRef]
- Aqueel, M.A.; Leather, S.R. Virulence of Verticillium lecanii (Z.) against cereal aphids; does timing of infection affect the performance of parasitoids and predators? Pest Manag. Sci. 2013, 69, 493–498. [Google Scholar] [CrossRef]
- Araujo, E.S.; Poltronieri, A.S.; Poitevin, C.G.; Mirás-Avalos, J.M.; Zawadneak, M.A.C.; Pimentel, I.C. Compatibility between entomopathogenic fungi and egg parasitoids (Trichogrammatidae): A laboratory study for their combined use to control Duponchelia fovealis. Insects 2020, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Fan, J.; Sun, S.; Wang, F.; Yang, K.; Li, G.; Pang, Y. Interspecific interaction between Spodoptera exigua multiple nucleopolyhedrovirus and Microplitis bicoloratus (Hymenoptera: Braconidae: Microgastrina) in Spodoptera exigua (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 2012, 105, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Dean, K.M.; Vandenberg, J.D.; Griggs, M.H.; Bauer, L.S.; Fierke, M.K. Susceptibility of two hymenopteran parasitoids of Agrilus planipennis (Coleoptera: Buprestidae) to the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales). J. Invertebr. Pathol. 2012, 109, 303–306. [Google Scholar] [CrossRef]
- Escribano, A.; Williams, T.; Goulson, D.; Cave, R.D.; Chapman, J.W.; Caballero, P. Consequences of interspecific competition on the virulence and genetic composition of a nucleopolyhedrovirus in Spodoptera frugiperda larvae parasitized by Chelonus insularis. Biocontrol Sci. Technol. 2001, 11, 649–662. [Google Scholar] [CrossRef]
- Escribano, A.; Williams, T.; Goulson, D.; Cave, R.D.; Caballero, P. Parasitoid–pathogen–pest interactions of Chelonus insularis, Campoletis sonorensis, and a nucleopolyhedrovirus in Spodoptera frugiperda larvae. Biol. Control 2000, 19, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Fazeli-Dinan, M.; Talaei-Hassanloui, R.; Goettel, M. Virulence of the entomopathogenic fungus Lecanicillium longisporum against the greenhouse whitefly, Trialeurodes vaporariorum and its parasitoid Encarsia formosa. Int. J. Pest Manag. 2016, 62, 251–260. [Google Scholar] [CrossRef]
- Fernández-Grandon, G.M.; Harte, S.J.; Ewany, J.; Bray, D.; Stevenson, P.C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 2020, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Contreras, E.; Niemeyer, H.M. Effect of wheat resistance, the parasitoid Aphidius rhopalosiphi, and the entomopathogenic fungus Pandora neoaphidis, on population dynamics of the cereal aphid Sitobion avenae. Entomol. Exp. Appl. 2000, 97, 109–114. [Google Scholar] [CrossRef]
- González-Mas, N.; Cuenca-Medina, M.; Gutiérrez-Sánchez, F.; Quesada-Moraga, E. Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J. Pest Sci. 2019, 92, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.S.; Steenberg, T. Combining larval parasitoids and an entomopathogenic fungus for biological control of Sitophilus granarius (Coleoptera: Curculionidae) in stored grain. Biol. Control 2007, 40, 237–242. [Google Scholar] [CrossRef]
- Ibarra-Cortés, K.H.; González-Hernández, H.; Guzmán-Franco, A.W.; Ortega-Arenas, L.D.; Villanueva-Jiménez, J.A.; Robles-Bermúdez, A. Interactions between entomopathogenic fungi and Tamarixia radiata (Hymenoptera: Eulophidae) in Diaphorina citri (Hemiptera: Liviidae) populations under laboratory conditions. J. Pest Sci. 2018, 91, 373–384. [Google Scholar] [CrossRef]
- Jaber, L.R.; Araj, S.-E. Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol. Control 2018, 116, 53–61. [Google Scholar] [CrossRef]
- Jarrahi, A.; Safavi, S.A. Effects of pupal treatment with Proteus® and Metarhizium anisopliae sensu lato on functional response of Habrobracon hebetor parasitising Helicoverpa armigera in an enclosed experiment system. Biocontrol Sci. Technol. 2016, 26, 206–216. [Google Scholar] [CrossRef]
- Jarrahi, A.; Safavi, S.A. Temperature-dependent functional response and host preference of Habrobracon hebetor between fungus-infected and uninfected Ephestia kuehniella larvae. J. Stored Prod. Res. 2016, 67, 41–48. [Google Scholar] [CrossRef]
- Jazzar, C.; Hammad, E.A.-F. Efficacy of multiple biocontrol agents against the sweet potato whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on tomato. J. Appl. Entomol. 2004, 128, 188–194. [Google Scholar] [CrossRef]
- Jiang, J.; Zeng, A.; Ji, X.; Wan, N.; Chen, X. Combined effect of nucleopolyhedrovirus and Microplitis pallidipes for the control of the beet armyworm, Spodoptera exigua. Pest Manag. Sci. 2011, 67, 705–713. [Google Scholar] [CrossRef]
- Labbé, R.M.; Gillespie, D.R.; Cloutier, C.; Brodeur, J. Compatibility of an entomopathogenic fungus with a predator and a parasitoid in the biological control of greenhouse whitefly. Biocontrol Sci. Technol. 2009, 19, 429–446. [Google Scholar] [CrossRef]
- Lazreg, F.; Huang, Z.; Ali, S.; Ren, S. Effect of Lecanicillium muscarium on Eretmocerus sp. nr. furuhashii (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Hemiptera: Aleyrodidae). J. Pest Sci. 2009, 82, 27–32. [Google Scholar] [CrossRef]
- Lecuona, R.; Crespo, D.; La Rossa, F. Populational parameters of Spalangia endius Walker (Hymenoptera: Pteromalidae) on pupae of Musca domestica L. (Diptera: Muscidae) treated with two strains of Beauveria bassiana (Bals.) Vuil. (Deuteromycetes). Neotrop. Entomol. 2007, 36, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Martins, I.C.F.; Silva, R.J.; Alencar, J.R.D.C.C.; Silva, K.P.; Cividanes, F.J.; Duarte, R.T.; Agostini, L.T.; Polanczyk, R.A. Interactions between the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) on Myzus persicae (Hemiptera: Aphididae). J. Econ. Entomol. 2014, 107, 933–938. [Google Scholar] [CrossRef]
- Miranda-Fuentes, P.; Yousef-Yousef, M.; Valverde-García, P.; Rodríguez-Gómez, I.M.; Garrido-Jurado, I.; Quesada-Moraga, E. Entomopathogenic fungal endophyte-mediated tritrophic interactions between Spodoptera littoralis and its parasitoid Hyposoter didymator. J. Pest Sci. 2021, 94, 933–945. [Google Scholar] [CrossRef]
- Miranda-Fuentes, P.; Quesada-Moraga, E.; Aldebis, H.K.; Yousef-Naef, M. Compatibility between the endoparasitoid Hyposoter didymator and the entomopathogenic fungus Metarhizium brunneum: A laboratory simulation for the simultaneous use to control Spodoptera littoralis. Pest Manag. Sci. 2020, 76, 1060–1070. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Hatcher, P.E. Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biol. Control 2017, 110, 44–55. [Google Scholar] [CrossRef]
- Nascimento, P.T.; Fadini, M.A.; Valicente, F.H.; Ribeiro, P.E. Does Bacillus thuringiensis have adverse effects on the host egg location by parasitoid wasps? Rev. Bras. Entomol. 2018, 62, 260–266. [Google Scholar] [CrossRef]
- Ngangambe, M.H.; Mwatawala, M.W. Effects of entomopathogenic fungi (EPFs) and cropping systems on parasitoids of fall armyworm (Spodoptera frugiperda) on maize in eastern central, Tanzania. Biocontrol Sci. Technol. 2020, 30, 418–430. [Google Scholar] [CrossRef]
- Nielsen, C.; Skovgård, H.; Steenberg, T. Effect of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) on survival and reproduction of the filth fly parasitoid, Spalangia cameroni (Hymenoptera: Pteromalidae). Environ. Entomol. 2005, 34, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Nozad-Bonab, Z.; Hejazi, M.J.; Iranipour, S.; Arzanlou, M.; Biondi, A. Lethal and sublethal effects of synthetic and bio-insecticides on Trichogramma brassicae parasitizing Tuta absoluta. PLoS ONE 2021, 16, e0243334. [Google Scholar] [CrossRef] [PubMed]
- Oreste, M.; Bubici, G.; Poliseno, M.; Tarasco, E. Effect of Beauveria bassiana and Metarhizium anisopliae on the Trialeurodes vaporariorum-Encarsia formosa system. J. Pest. Sci. 2016, 89, 153–160. [Google Scholar] [CrossRef]
- Potrich, M.; Alves, L.F.; Lozano, E.; Roman, J.C.; Pietrowski, V.; Neves, P.M. Interactions between Beauveria bassiana and Trichogramma pretiosum under laboratory conditions. Entomol. Exp. Appl. 2015, 154, 213–221. [Google Scholar] [CrossRef]
- Presa-Parra, E.; Hernández-Rosas, F.; Bernal, J.S.; Valenzuela-González, J.E.; Martínez-Tlapa, J.; Birke, A. Impact of Metarhizium robertsii on adults of the parasitoid Diachasmimorpha longicaudata and parasitized Anastrepha ludens larvae. Insects 2021, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Rännbäck, L.-M.; Cotes, B.; Anderson, P.; Rämert, B.; Meyling, N.V. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae. J. Invertebr. Pathol. 2015, 124, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossoni, C.; Kassab, S.O.; Loureiro, E.D.S.; Pereira, F.F.; Costa, D.P.; Barbosa, R.H.; Zanuncio, J.C. Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) are compatible with Cotesia flavipes (Hymenoptera: Braconidae). Fla. Entomol. 2014, 97, 1794–1804. [Google Scholar] [CrossRef]
- Ruiu, L.; Satta, A.; Floris, I. Susceptibility of the house fly pupal parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae) to the entomopathogenic bacteria Bacillus thuringiensis and Brevibacillus laterosporus. Biol. Control 2007, 43, 188–194. [Google Scholar] [CrossRef]
- Mama Sambo, S.; Akutse, K.S.; Du Plessis, H.; Aigbedion-Atalor, P.O.; Mohamed, S.A.; Ndlela, S. Interactions between the entomopathogenic fungus Metarhizium anisopliae ICIPE 20 and the endoparasitoid Dolichogenidea gelechiidivoris, and implications for combined biocontrol of Tuta absoluta. Biology 2022, 11, 1323. [Google Scholar] [CrossRef]
- Santos, A.L.Z.; Pinto, C.P.G.; Fonseca, S.S.; de Azevedo, E.B.; Polanczyk, R.A.; Rossi, G.D. Immune interactions, risk assessment and compatibility of the endoparasitoid Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to two entomopathogenic fungi. Biol. Control 2022, 166, 104836. [Google Scholar] [CrossRef]
- Sarhozaki, M.T.; Aramideh, S.; Akbarian, J.; Pirsa, S. Efficacy of Beauveria bassiana in combination with NeemAzal-T/S on the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and its natural enemies. Trop. Agric. 2021, 98, 19. [Google Scholar]
- Shrestha, G.; Enkegaard, A.; Reddy, G.V.; Skovgård, H.; Steenberg, T. Susceptibility of larvae and pupae of the aphid parasitoid Aphelinus abdominalis (Hymenoptera: Aphelinidae) to the entomopathogenic fungus Beauveria bassiana. Ann. Entomol. Soc. Am. 2017, 110, 121–127. [Google Scholar] [CrossRef]
- Shrestha, G.; Reddy, G.V.P. Field efficacy of insect pathogen, botanical, and jasmonic acid for the management of wheat midge Sitodiplosis mosellana and the impact on adult parasitoid Macroglenes penetrans populations in spring wheat. Insect Sci. 2019, 26, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Stoianova, E.; Williams, T.; Cisneros, J.; Muñoz, D.; Murillo, R.; Tasheva, E.; Caballero, P. Interactions between an ectoparasitoid and a nucleopolyhedrovirus when simultaneously attacking Spodoptera exigua (Lepidoptera: Noctuidae). J. Appl. Entomol. 2012, 136, 596–604. [Google Scholar] [CrossRef] [Green Version]
- Tamayo-Mejía, F.; Tamez-Guerra, P.; Guzmán-Franco, A.W.; Gomez-Flores, R. Can Beauveria bassiana Bals. (Vuill) (Ascomycetes: Hypocreales) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) be used together for improved biological control of Bactericera cockerelli (Hemiptera: Triozidae)? Biol. Control 2015, 90, 42–48. [Google Scholar] [CrossRef]
- Tamayo-Mejía, F.; Tamez-Guerra, P.; Guzmán-Franco, A.W.; Gomez-Flores, R. Developmental stage affects survival of the ectoparasitoid Tamarixia triozae exposed to the fungus Beauveria bassiana. Biol. Control 2016, 93, 30–36. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, H.; Liu, X.; Michaud, J.P.; Xu, H.; Zhao, Z.; Zhang, S.; Li, Z. Laboratory evaluation of the compatibility of Beauveria bassiana with the egg parasitoid Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) for joint application against the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae). Pest Manag. Sci. 2022, 78, 3608–3619. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016; ISBN 3-319-24277-6. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Moon, K.-W. Web-Based Analysis without R in Your Computer; CRAN: Windhoek, Namibia, 2020; ISBN 978-89-5566-185-9. [Google Scholar]
- Gonthier, J.; Koller, J.; Arnó, J.; Collatz, J.; Sutter, L. Models for the practitioner: Predicting the efficient biocontrol of Tuta absoluta under different management scenarios. Crop Prot. 2023, 172, 106316. [Google Scholar] [CrossRef]
- Biondi, A.; Zappalà, L.; Stark, J.D.; Desneux, N. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 2013, 8, e76548. [Google Scholar] [CrossRef] [Green Version]
- Stark, J.D.; Banks, J.E.; Acheampong, S. Estimating susceptibility of biological control agents to pesticides: Influence of life history strategies and population structure. Biol. Control 2004, 29, 392–398. [Google Scholar] [CrossRef]
- Jervis, M.A.; Ellers, J.; Harvey, J.A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 2008, 53, 361–385. [Google Scholar] [CrossRef] [Green Version]
- Gonthier, J.; Arnó, J.; Romeis, J.; Collatz, J. Few indirect effects of baculovirus on parasitoids demonstrate high compatibility of biocontrol methods against Tuta absoluta. Pest Manag. Sci. 2023, 79, 1431–1441. [Google Scholar] [CrossRef]
- Gauld, I.D. Evolutionary patterns of host utilization by ichneumonoid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biol. J. Linn. Soc. 1988, 35, 351–377. [Google Scholar] [CrossRef]
- Sedaratian-Jahromi, A. Effects of entomopathogens on insect predators and parasitoids. In Microbes for Sustainable Insect Pest Management: Hydrolytic Enzyme & Secondary Metabolite; Ahmad, W., Jamshedpūrī, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 183–231. ISBN 978-3-030-67230-0. [Google Scholar]
Combinations of Parasitoids and Entomopathogenic Microorganisms | Aphelinidae | Braconidae | Eulophidae | FI. | ICHN. | PTEROM. | TRICHOGRAMM. | Total | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A. abdominalis | E. formosa | E. furuhashii | E. mundus | A. colemani | C. insularis | C. flavipes | D. longicaudata | D. rapae | D. gelechiidivoris | H. hebetor | M. bicoloratus | M. pallidipes | S. agrili | E. plathypenae | T. radiata | T. triozae | T. planipennisi | T. rapae | C. sonorensis | H. didymator | M. raptor | S. cameroni | S. endius | T. atopovirilia | T. brassicae | T. chilonis | T. dendrolimi | T. pretiosum | ||||
Bacteria | Bacillus thuringiensis var. aizawai | 2 | 2 | |||||||||||||||||||||||||||||
Bacillus thuringiensis var. israelensis | 1 | 1 | ||||||||||||||||||||||||||||||
Bacillus thuringiensis var. kurstaki | 1 d | 1 | 2 d | 2 | 6 | |||||||||||||||||||||||||||
Brevibacillus laterosporus | 1 | 1 | ||||||||||||||||||||||||||||||
Fungi | Acremonium sclerotigenum | 1 | 1 | |||||||||||||||||||||||||||||
Beauveria bassiana | 1 td | 5 t | 1 | 2 | 3 | 2 t | 1 | 2 t | 5 td | 1 | 1 d | 2 | 4 td | 1 td | 6 td | 37 | ||||||||||||||||
Lecanicillium longisporum | 3 td | 3 | ||||||||||||||||||||||||||||||
Lecanicillium muscarium | 1t | 1 td | 1 t | 2 | 1 | 6 | ||||||||||||||||||||||||||
Metarhizium anisopliae | 1 t | 1 | 4 | 1 | 1 t | 2 t | 1 t | 1 d | 1 t | 13 | ||||||||||||||||||||||
Metarhizium brunneum | 1 | 1 d | 2 | 4 | ||||||||||||||||||||||||||||
Metarhizium robertsii | 1 | 1 | ||||||||||||||||||||||||||||||
Paecilomyces variotii | 1 | 1 | ||||||||||||||||||||||||||||||
Simplicillium sp. | 1 | 1 | ||||||||||||||||||||||||||||||
Viruses | Helicoverpa armigera NPV | 1 td | 1 | |||||||||||||||||||||||||||||
Spodoptera exigua MNPV | 1 td | 1 td | 1 td | 3 | ||||||||||||||||||||||||||||
Spodoptera frugiperda MNPV | 2 t | 1 d | 3 | |||||||||||||||||||||||||||||
Total | 1 | 10 | 1 | 1 | 7 | 2 | 7 | 2 | 6 | 1 | 4 | 1 | 1 | 1 | 1 | 3 | 5 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 4 | 1 | 2 | 1 | 10 | 84 |
Effect of Entomopathogenic Microorganisms on Different Parameters of Parasitoid Wasps. | Parasitism Rate | Emergence Rate | Parasitoid Mortality | Female Sex Ratio | Female Longevity | Male Longevity | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | NE | P | N | NE | P | N | NE | P | N | NE | P | N | NE | P | N | NE | P | ||
Bacteria | Bacillus thuringiensis var. aizawai | 2 | 2 | 2 | |||||||||||||||
Bacillus thuringiensis var. israelensis | 2 | 1 | 1 | 1 | 2 | ||||||||||||||
Bacillus thuringiensis var. kurstaki | 10 | 2 | 5 | 3 | 2 | 2 | 1 | 2 | 1 | ||||||||||
Brevibacillus laterosporus | 2 | 1 | 1 | 1 | 2 | ||||||||||||||
Fungi | Acremonium sclerotigenum | 1 | 1 | ||||||||||||||||
Beauveria bassiana | 53 | 124 | 2 | 77 | 50 | 13 | 97 | 1 | 5 | 48 | 50 | 30 | 45 | 29 | |||||
Lecanicillium longisporum | 9 | 9 | 36 | 9 | 9 | ||||||||||||||
Lecanicillium muscarium | 11 | 7 | 15 | 13 | 6 | 12 | 10 | 1 | 5 | ||||||||||
Metarhizium anisopliae | 8 | 11 | 13 | 14 | 5 | 5 | 3 | 10 | 11 | 14 | 8 | 16 | |||||||
Metarhizium brunneum | 6 | 14 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
Metarhizium robertsii | 1 | 2 | 1 | 2 | 2 | 2 | |||||||||||||
Paecilomyces variotii | 1 | 1 | |||||||||||||||||
Pandora neoaphidis | |||||||||||||||||||
Simplicillium sp. | 1 | 1 | |||||||||||||||||
Viruses | Helicoverpa armigera NPV | 3 | 1 | 1 | 2 | 1 | 2 | 3 | |||||||||||
Spodoptera exigua MNPV | 4 | 2 | 11 | 9 | 2 | 3 | |||||||||||||
Spodoptera frugiperda MNPV | 4 | 10 | 1 | 10 | 1 | 4 | |||||||||||||
Total | 82 | 178 | 4 | 143 | 110 | 0 | 70 | 120 | 4 | 17 | 75 | 0 | 66 | 63 | 1 | 55 | 70 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koller, J.; Sutter, L.; Gonthier, J.; Collatz, J.; Norgrove, L. Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review. Pathogens 2023, 12, 957. https://doi.org/10.3390/pathogens12070957
Koller J, Sutter L, Gonthier J, Collatz J, Norgrove L. Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review. Pathogens. 2023; 12(7):957. https://doi.org/10.3390/pathogens12070957
Chicago/Turabian StyleKoller, Janique, Louis Sutter, Jérémy Gonthier, Jana Collatz, and Lindsey Norgrove. 2023. "Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review" Pathogens 12, no. 7: 957. https://doi.org/10.3390/pathogens12070957
APA StyleKoller, J., Sutter, L., Gonthier, J., Collatz, J., & Norgrove, L. (2023). Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review. Pathogens, 12(7), 957. https://doi.org/10.3390/pathogens12070957