A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress, Challenge Strains, and Future Directions
Abstract
:1. Introduction
1.1. Epidemiology
1.2. RVF Disease and Vaccination
2. Nonhuman Primate (NHP) Disease Models
2.1. Old World Monkeys
2.1.1. Rhesus Macaques (Macaca mulatta)
2.1.2. Cynomolgus Macaques (Macaca fascicularis)
2.1.3. Other Old World Species
2.2. New World Monkeys
2.2.1. Common Marmosets (Callithrix jacchus)
2.2.2. Other New World Species
3. Virus Challenge Strain
4. Discussion and Future Direction
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasaya, T.; Palacios, G.; Briese, T.; Di Serio, F.; Groschup, M.H.; Neriya, Y.; Song, J.W.; Tomitaka, Y. ICTV Virus Taxonomy Profile: Phenuiviridae 2023. J. Gen. Virol. 2023, 104, 001893. [Google Scholar] [CrossRef]
- Nathanson, N.; González-Scarano, F. BUNYAVIRIDAE|General Features. In Encyclopedia of Virology, 2nd ed.; Granoff, A., Webster, R.G., Eds.; Elsevier: Oxford, UK, 1999; pp. 204–212. [Google Scholar]
- Nicoletti, L. Rift Valley Fever and Other Phleboviruses (Bunyaviridae). In Reference Module in Biomedical Sciences; Elsevier: Oxford, UK, 2014. [Google Scholar]
- Nicoletti, L.; Ciufolini, M.G. Rift Valley Fever and Other Phleboviruses. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Oxford, UK, 2008; pp. 490–497. [Google Scholar]
- Daubney, R.; Hudson, J.R.; Garnham, P.C.C. Enzootic hepatitis or rift valley fever. An undescribed virus disease of sheep cattle and man from east africa. J. Pathol. Bacteriol. 1931, 34, 545–579. [Google Scholar] [CrossRef]
- Gachohi, J.M.; Njenga, M.K.; Kitala, P.; Bett, B. Modelling Vaccination Strategies against Rift Valley Fever in Livestock in Kenya. PLoS Negl. Trop. Dis. 2016, 10, e0005049. [Google Scholar] [CrossRef]
- Jansen van Vuren, P.; Kgaladi, J.; Patharoo, V.; Ohaebosim, P.; Msimang, V.; Nyokong, B.; Paweska, J.T. Human Cases of Rift Valley Fever in South Africa, 2018. Vector Borne Zoonotic Dis. 2018, 18, 713–715. [Google Scholar] [CrossRef]
- Maluleke, M.R.; Phosiwa, M.; van Schalkwyk, A.; Michuki, G.; Lubisi, B.A.; Kegakilwe, P.S.; Kemp, S.J.; Majiwa, P.A.O. A comparative genome analysis of Rift Valley Fever virus isolates from foci of the disease outbreak in South Africa in 2008–2010. PLoS Negl. Trop. Dis. 2019, 13, e0006576. [Google Scholar] [CrossRef]
- Mroz, C.; Gwida, M.; El-Ashker, M.; El-Diasty, M.; El-Beskawy, M.; Ziegler, U.; Eiden, M.; Groschup, M.H. Seroprevalence of Rift Valley fever virus in livestock during inter-epidemic period in Egypt, 2014/15. BMC Vet. Res. 2017, 13, 87. [Google Scholar] [CrossRef]
- Tumusiime, D.; Isingoma, E.; Tashoroora, O.B.; Ndumu, D.B.; Bahati, M.; Nantima, N.; Mugizi, D.R.; Jost, C.; Bett, B. Mapping the risk of Rift Valley fever in Uganda using national seroprevalence data from cattle, sheep and goats. PLoS Negl. Trop. Dis. 2023, 17, e0010482. [Google Scholar] [CrossRef]
- Atuman, Y.J.; Kudi, C.A.; Abdu, P.A.; Okubanjo, O.O.; Wungak, Y.; Ularamu, H.G.; Abubakar, A. Serological Evidence of Antibodies to Rift Valley Fever Virus in Wild and Domestic Animals in Bauchi State, Nigeria. Vet. Med. Int. 2022, 2022, 6559193. [Google Scholar] [CrossRef]
- Jori, F.; Alexander, K.A.; Mokopasetso, M.; Munstermann, S.; Moagabo, K.; Paweska, J.T. Serological Evidence of Rift Valley Fever Virus Circulation in Domestic Cattle and African Buffalo in Northern Botswana (2010–2011). Front. Vet. Sci. 2015, 2, 63. [Google Scholar] [CrossRef] [PubMed]
- Lubisi, B.A.; Ndouvhada, P.N.; Neiffer, D.; Penrith, M.L.; Sibanda, D.R.; Bastos, A. Seroprevalence of Rift valley fever in South African domestic and wild suids (1999–2016). Transbound. Emerg. Dis. 2020, 67, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Pawęska, J.T.; Msimang, V.; Kgaladi, J.; Hellferscee, O.; Weyer, J.; Jansen van Vuren, P. Rift Valley Fever Virus Seroprevalence among Humans, Northern KwaZulu-Natal Province, South Africa, 2018–2019. Emerg. Infect. Dis. 2021, 27, 3159–3162. [Google Scholar] [CrossRef]
- Selmi, R.; Mamlouk, A.; Ben Said, M.; Ben Yahia, H.; Abdelaali, H.; Ben Chehida, F.; Daaloul-Jedidi, M.; Gritli, A.; Messadi, L. First serological evidence of the Rift Valley fever Phlebovirus in Tunisian camels. Acta Trop. 2020, 207, 105462. [Google Scholar] [CrossRef]
- Trabelsi, M.K.; Hachid, A.; Derrar, F.; Messahel, N.E.; Bia, T.; Mockbel, Y.; Khardine, A.F.; Degui, D.; Bellout, L.; Benaissa, M.H.; et al. Serological evidence of Rift Valley fever viral infection among camels imported into Southern Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2023, 100, 102035. [Google Scholar] [CrossRef]
- Kwaśnik, M.; Rożek, W.; Rola, J. Rift Valley Fever—A Growing Threat To Humans and Animals. J. Vet. Res. 2021, 65, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Abd el-Rahim, I.H.; Abd el-Hakim, U.; Hussein, M. An epizootic of Rift Valley fever in Egypt in 1997. Rev. Sci. Tech. 1999, 18, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.; Helmy, Y.A. The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses 2019, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, M.A.; Abdel-Hamid, Y.M.; Beier, J.C. Rift Valley Fever in Egypt and other African countries: Historical review, recent outbreaks and possibility of disease occurrence in Egypt. Acta Trop. 2018, 181, 40–49. [Google Scholar] [CrossRef]
- Meegan, J.M. The Rift Valley fever epizootic in Egypt 1977-78. 1. Description of the epizzotic and virological studies. Trans. R. Soc. Trop. Med. Hyg. 1979, 73, 618–623. [Google Scholar] [CrossRef]
- Al-Afaleq, A.I.; Hussein, M.F. The status of Rift Valley fever in animals in Saudi Arabia: A mini review. Vector Borne Zoonotic Dis. 2011, 11, 1513–1520. [Google Scholar] [CrossRef]
- CDC. Outbreak of Rift Valley fever—Saudi Arabia, August–October, 2000. MMWR Morb. Mortal. Wkly. Rep. 2000, 49, 905–908. [Google Scholar]
- Brown, J.L.; Dominik, J.W.; Morrissey, R.L. Respiratory infectivity of a recently isolated Egyptian strain of Rift Valley fever virus. Infect. Immun. 1981, 33, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Bosworth, A.; Ghabbari, T.; Dowall, S.; Varghese, A.; Fares, W.; Hewson, R.; Zhioua, E.; Chakroun, M.; Tiouiri, H.; Ben Jemaa, M.; et al. Serologic evidence of exposure to Rift Valley fever virus detected in Tunisia. New Microbes New Infect. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Fakour, S.; Naserabadi, S.; Ahmadi, E. The first positive serological study on rift valley fever in ruminants of Iran. J. Vector Borne Dis. 2017, 54, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Gür, S.; Kale, M.; Erol, N.; Yapici, O.; Mamak, N.; Yavru, S. The first serological evidence for Rift Valley fever infection in the camel, goitered gazelle and Anatolian water buffaloes in Turkey. Trop. Anim. Health Prod. 2017, 49, 1531–1535. [Google Scholar] [CrossRef]
- Muhsen, R.K. Seroepidemiology of Rift Valley Fever in Basrah. Kufa J. Vet. Med. Sci. 2012, 3, 91–95. [Google Scholar] [CrossRef]
- Yilmaz, A.; Yilmaz, H.; Faburay, B.; Karakullukcu, A.; Barut, K.; Cizmecigil, U.Y.; Aydin, O.; Tekelioglu, B.K.; Kasapcopur, O.; Ozkul, A.A.; et al. Presence of antibodies to Rift Valley fever virus in children, cattle and sheep in Turkey. J. Virol. Antivir. Res. 2017, 6, 21–29. [Google Scholar]
- Wandera, N.; Olds, P.; Muhindo, R.; Ivers, L. Rift Valley Fever—The Need for an Integrated Response. N. Engl. J. Med. 2023, 389, 1829–1832. [Google Scholar] [CrossRef]
- Gear, J.; De Meillon, B.; Measroch, V.; Davis, D.H.; Harwin, H. Rift valley fever in South Africa. 2. The occurrence of human cases in the Orange Free State, the North-Western Cape Province, the Western and Southern Transvaal. B. Field and laboratory investigation. S. Afr. Med. J. 1951, 25, 908–912. [Google Scholar] [PubMed]
- Joubert, J.D.; Ferguson, A.L.; Gear, J. Rift Valley fever in South Africa: 2. The occurrence of human cases in the Orange Free State, the north-western Cape province, the western and southern Transvaal. A Epidemiological and clinical findings. S. Afr. Med. J. 1951, 25, 890–891. [Google Scholar]
- Laughlin, L.W.; Meegan, J.M.; Strausbaugh, L.J.; Morens, D.M.; Watten, R.H. Epidemic Rift Valley fever in Egypt: Observations of the spectrum of human illness. Trans. R. Soc. Trop. Med. Hyg. 1979, 73, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Schwentker, F.F.; Rivers, T.M. Rift valley fever in man: Report of a fatal laboratory infection complicated by thrombophlebitis. J. Exp. Med. 1934, 59, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Grossi-Soyster, E.N.; Banda, T.; Teng, C.Y.; Muchiri, E.M.; Mungai, P.L.; Mutuku, F.M.; Gildengorin, G.; Kitron, U.; King, C.H.; Desiree Labeaud, A. Rift Valley Fever Seroprevalence in Coastal Kenya. Am. J. Trop. Med. Hyg. 2017, 97, 115–120. [Google Scholar] [CrossRef]
- Memish, Z.A.; Masri, M.A.; Anderson, B.D.; Heil, G.L.; Merrill, H.R.; Khan, S.U.; Alsahly, A.; Gray, G.C. Elevated antibodies against Rift Valley fever virus among humans with exposure to ruminants in Saudi Arabia. Am. J. Trop. Med. Hyg. 2015, 92, 739–743. [Google Scholar] [CrossRef]
- Ayari, R.; Chaouch, H.; Findlay-Wilson, S.; Hachfi, W.; Ben Lasfar, N.; Bellazreg, F.; Dowall, S.; Hannachi, N.; Letaief, A. Seroprevalence and Risk Factors Associated with Phleboviruses and Crimean-Congo Hemorrhagic Fever Virus among Blood Donors in Central Tunisia. Pathogens 2024, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Tezcan-Ulger, S.; Kurnaz, N.; Ulger, M.; Aslan, G.; Emekdas, G. Serological evidence of Rift Valley fever virus among humans in Mersin province of Turkey. J. Vector Borne Dis. 2019, 56, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lapa, D.; Specchiarello, E.; Francalancia, M.; Girardi, E.; Maggi, F.; Garbuglia, A.R. Detection of Anti-Rift Valley Fever Virus Antibodies in Serum Samples of Patients with Suspected Arbovirus Infection. Microorganisms 2023, 11, 2081. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Efficacy Trials of Rift Valley Fever Vaccines and Therapeutics Guidance on Clinical Trial Design; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Lumley, S.; Hernández-Triana, L.M.; Horton, D.L.; Fernández de Marco, M.D.M.; Medlock, J.M.; Hewson, R.; Fooks, A.R.; Johnson, N. Competence of mosquitoes native to the United Kingdom to support replication and transmission of Rift Valley fever virus. Parasit Vectors 2018, 11, 308. [Google Scholar] [CrossRef] [PubMed]
- Sabin, A.B.; Blumberg, R.W. Human Infection with Rift Valley Fever Virus and Immunity Twelve Years After Single Attack. Proc. Soc. Exp. Biol. Med. 1947, 64, 385–389. [Google Scholar] [CrossRef]
- Linthicum, K.J.; Britch, S.C.; Anyamba, A. Rift Valley Fever: An Emerging Mosquito-Borne Disease. Annu. Rev. Entomol. 2016, 61, 395–415. [Google Scholar] [CrossRef]
- Madani, T.A.; Al-Mazrou, Y.Y.; Al-Jeffri, M.H.; Mishkhas, A.A.; Al-Rabeah, A.M.; Turkistani, A.M.; Al-Sayed, M.O.; Abodahish, A.A.; Khan, A.S.; Ksiazek, T.G.; et al. Rift Valley fever epidemic in Saudi Arabia: Epidemiological, clinical, and laboratory characteristics. Clin. Infect. Dis. 2003, 37, 1084–1092. [Google Scholar] [CrossRef]
- McIntosh, B.M.; Russell, D.; dos Santos, I.; Gear, J.H. Rift Valley fever in humans in South Africa. S. Afr. Med. J. 1980, 58, 803–806. [Google Scholar] [PubMed]
- Tinto, B.; Quellec, J.; Cêtre-Sossah, C.; Dicko, A.; Salinas, S.; Simonin, Y. Rift Valley fever in West Africa: A zoonotic disease with multiple socio-economic consequences. One Health 2023, 17, 100583. [Google Scholar] [CrossRef] [PubMed]
- Mehand, M.S.; Al-Shorbaji, F.; Millett, P.; Murgue, B. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018, 159, 63–67. [Google Scholar] [PubMed]
- Noad, R.J.; Simpson, K.; Fooks, A.R.; Hewson, R.; Gilbert, S.C.; Stevens, M.P.; Hosie, M.J.; Prior, J.; Kinsey, A.M.; Entrican, G.; et al. UK vaccines network: Mapping priority pathogens of epidemic potential and vaccine pipeline developments. Vaccine 2019, 37, 6241–6247. [Google Scholar] [CrossRef] [PubMed]
- Gouglas, D.; Christodoulou, M.; Plotkin, S.A.; Hatchett, R. CEPI: Driving Progress Toward Epidemic Preparedness and Response. Epidemiol. Rev. 2019, 41, 28–33. [Google Scholar] [CrossRef]
- Gerken, K.N.; LaBeaud, A.D.; Mandi, H.; L’Azou Jackson, M.; Breugelmans, J.G.; King, C.H. Paving the way for human vaccination against Rift Valley fever virus: A systematic literature review of RVFV epidemiology from 1999 to 2021. PLoS Negl. Trop. Dis. 2022, 16, e0009852. [Google Scholar] [CrossRef] [PubMed]
- Kitandwe, P.K.; McKay, P.F.; Kaleebu, P.; Shattock, R.J. An Overview of Rift Valley Fever Vaccine Development Strategies. Vaccines 2022, 10, 1794. [Google Scholar] [CrossRef] [PubMed]
- Finch, C.L.; Dowling, W.E.; King, T.H.; Martinez, C.; Nguyen, B.V.; Roozendaal, R.; Rustomjee, R.; Skiadopoulos, M.H.; Vert-Wong, E.; Yellowlees, A.; et al. Bridging Animal and Human Data in Pursuit of Vaccine Licensure. Vaccines 2022, 10, 1384. [Google Scholar] [CrossRef]
- Administration, F.a.D. New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. Final rule. Fed. Regist. 2002, 67, 37988–37998. [Google Scholar]
- Graham, V.A.; Easterbrook, L.; Kennedy, E.; Rayner, E.; Findlay-Wilson, S.; Flett, L.; Wise, E.L.; Treagus, S.; Fotheringham, S.; Kempster, S.; et al. Pathogenesis of Rift Valley Fever Virus in a BALB/c Mouse Model Is Affected by Virus Culture Conditions and Sex of the Animals. Viruses 2023, 15, 2369. [Google Scholar] [CrossRef]
- Bales, J.M.; Powell, D.S.; Bethel, L.M.; Reed, D.S.; Hartman, A.L. Choice of inbred rat strain impacts lethality and disease course after respiratory infection with Rift Valley Fever Virus. Front. Cell. Infect. Microbiol. 2012, 2, 105. [Google Scholar] [CrossRef] [PubMed]
- Scharton, D.; Van Wettere, A.J.; Bailey, K.W.; Vest, Z.; Westover, J.B.; Siddharthan, V.; Gowen, B.B. Rift Valley fever virus infection in golden Syrian hamsters. PLoS ONE 2015, 10, e0116722. [Google Scholar] [CrossRef]
- Francis, T.; Magill, T.P. Rift valley fever: A report of three cases of laboratory infection and the experimental transmission of the disease to ferrets. J. Exp. Med. 1935, 62, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, D.J.; Albe, J.R.; Nambulli, S.; Tilston-Lunel, N.L.; Hartman, A.L.; Lakdawala, S.S.; Klein, E.; Duprex, W.P.; McElroy, A.K. Rift Valley Fever Virus Infection Causes Acute Encephalitis in the Ferret. mSphere 2020, 5, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, X.; Jiang, L.; Zhou, Y.; Liu, Y.; Wang, F.; Zhang, L. Natural hosts and animal models for Rift Valley fever phlebovirus. Front. Vet. Sci. 2023, 10, 1258172. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, G.; López-Gil, E.; Warimwe, G.M.; Brun, A. Understanding Rift Valley fever: Contributions of animal models to disease characterization and control. Mol. Immunol. 2015, 66, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Solari, S.; Baker, R.J. Mammal Species of the World: A Taxonomic and Geographic Reference by D. E. Wilson; D. M. Reeder. J. Mammal. 2007, 88, 824–830. [Google Scholar] [CrossRef]
- Mätz-Rensing, K.; Lowenstine, L.J. Chapter 14—New World and Old World Monkeys. In Pathology of Wildlife and Zoo Animals; Terio, K.A., McAloose, D., Leger, J.S., Eds.; Academic Press: New York, NY, USA, 2018; pp. 343–374. [Google Scholar]
- Herron, I.C.T.; Laws, T.R.; Nelson, M. Marmosets as models of infectious diseases. Front. Cell. Infect. Microbiol. 2024, 14, 1340017. [Google Scholar] [CrossRef] [PubMed]
- Findlay, G.M.; Daubney, R. The virus of rift valley fever or enzoötic hepatitis. Lancet 1931, 218, 1350–1351. [Google Scholar] [CrossRef]
- Findlay, G.M. Rift valley fever or enzootic hepatitis. Trans. R. Soc. Trop. Med. Hyg. 1932, 25, 229–262. [Google Scholar] [CrossRef]
- Findlay, G.; Mackenzie, R.; Stern, R. Studies on Neurotropic Rift Valley Fever Virus: The Susceptibility of Sheep and Monkeys. Br. J. Exp. Pathol. 1936, 17, 431–441. [Google Scholar]
- Smithburn, K.C.; Haddow, A.J.; Gillett, J.D. Rift Valley fever; isolation of the virus from wild mosquitoes. Br. J. Exp. Pathol. 1948, 29, 107–121. [Google Scholar]
- Miller, W.S.; Demchak, P.; Rosenberger, C.R.; Dominik, J.W.; Bradshaw, J.L. Stability and infectivity of airborne yellow fever and rift valley fever viruses. Am. J. Epidemiol. 1963, 77, 114–121. [Google Scholar] [CrossRef]
- Easterday, B.C. Rift valley fever. Adv. Vet. Sci. 1965, 10, 65–127. [Google Scholar]
- Peters, C.J.; Reynolds, J.A.; Slone, T.W.; Jones, D.E.; Stephen, E.L. Prophylaxis of Rift Valley fever with antiviral drugs, immune serum, an interferon inducer, and a macrophage activator. Antiviral Res. 1986, 6, 285–297. [Google Scholar] [CrossRef]
- Peters, C.J.; Jones, D.; Trotter, R.; Donaldson, J.; White, J.; Stephen, E.; Slone, T.W., Jr. Experimental Rift Valley fever in rhesus macaques. Arch. Virol. 1988, 99, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Morrill, J.C.; Jennings, G.B.; Cosgriff, T.M.; Gibbs, P.H.; Peters, C.J. Prevention of Rift Valley fever in rhesus monkeys with interferon-alpha. Rev. Infect. Dis. 1989, 11 (Suppl. S4), S815–S825. [Google Scholar] [CrossRef]
- Morrill, J.C.; Jennings, G.B.; Johnson, A.J.; Cosgriff, T.M.; Gibbs, P.H.; Peters, C.J. Pathogenesis of Rift Valley fever in rhesus monkeys: Role of interferon response. Arch. Virol. 1990, 110, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Cosgriff, T.M.; Morrill, J.C.; Jennings, G.B.; Hodgson, L.A.; Slayter, M.V.; Gibbs, P.H.; Peters, C.J. Hemostatic derangement produced by Rift Valley fever virus in rhesus monkeys. Rev. Infect. Dis. 1989, 11 (Suppl. S4), S807–S814. [Google Scholar] [CrossRef]
- Morrill, J.C.; Knauert, F.K.; Ksiazek, T.G.; Meegan, J.M.; Peters, C.J. Rift Valley fever infection of rhesus monkeys: Implications for rapid diagnosis of human disease. Res. Virol. 1989, 140, 139–146. [Google Scholar] [CrossRef]
- Morrill, J.C.; Czarniecki, C.W.; Peters, C.J. Recombinant human interferon-gamma modulates Rift Valley fever virus infection in the rhesus monkey. J. Interferon Res. 1991, 11, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Morrill, J.C.; Peters, C.J. Pathogenicity and neurovirulence of a mutagen-attenuated Rift Valley fever vaccine in rhesus monkeys. Vaccine 2003, 21, 2994–3002. [Google Scholar] [CrossRef] [PubMed]
- Morrill, J.C.; Peters, C.J. Mucosal immunization of rhesus macaques with Rift Valley Fever MP-12 vaccine. J. Infect. Dis. 2011, 204, 617–625. [Google Scholar] [CrossRef]
- Morrill, J.C.; Peters, C.J. Protection of MP-12-vaccinated rhesus macaques against parenteral and aerosol challenge with virulent rift valley fever virus. J. Infect. Dis. 2011, 204, 229–236. [Google Scholar] [CrossRef]
- Smith, D.R.; Bird, B.H.; Lewis, B.; Johnston, S.C.; McCarthy, S.; Keeney, A.; Botto, M.; Donnelly, G.; Shamblin, J.; Albariño, C.G.; et al. Development of a novel nonhuman primate model for Rift Valley fever. J. Virol. 2012, 86, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Hartman, A.L.; Powell, D.S.; Bethel, L.M.; Caroline, A.L.; Schmid, R.J.; Oury, T.; Reed, D.S. Aerosolized rift valley fever virus causes fatal encephalitis in african green monkeys and common marmosets. J. Virol. 2014, 88, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Bian, T.; Hao, M.; Zhao, X.; Zhao, C.; Luo, G.; Zhang, Z.; Fu, G.; Yang, L.; Chen, Y.; Wang, Y.; et al. A Rift Valley fever mRNA vaccine elicits strong immune responses in mice and rhesus macaques. Npj Vaccines 2023, 8, 164. [Google Scholar] [CrossRef] [PubMed]
- Findlay, G.M. The infectivity of rift valley fever for monkeys. Trans. R. Soc. Trop. Med. Hyg. 1932, 26, 161–168. [Google Scholar] [CrossRef]
- Davies, F.G.; Clausen, B.; Lund, L.J. The pathogenicity of Rift Valley fever virus for the baboon. Trans. R. Soc. Trop. Med. Hyg. 1972, 66, 363–365. [Google Scholar] [CrossRef]
- Smith, D.R.; Johnston, S.C.; Piper, A.; Botto, M.; Donnelly, G.; Shamblin, J.; Albariño, C.G.; Hensley, L.E.; Schmaljohn, C.; Nichol, S.T.; et al. Attenuation and efficacy of live-attenuated Rift Valley fever virus vaccine candidates in non-human primates. PLoS Negl. Trop. Dis. 2018, 12, e0006474. [Google Scholar] [CrossRef] [PubMed]
- Wichgers Schreur, P.J.; Mooij, P.; Koopman, G.; Verstrepen, B.E.; Fagrouch, Z.; Mortier, D.; van Driel, N.; Kant, J.; van de Water, S.; Bogers, W.M.; et al. Safety and immunogenicity of four-segmented Rift Valley fever virus in the common marmoset. Npj Vaccines 2022, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- FDA. Product Development under the Animal Rule; U.S. Department of Health and Human Services, CDER, CBER, Eds.; FDA: Silver Spring, MD, USA, 2015; pp. 1–54. [Google Scholar]
- Hirschberg, R.; Ward, L.A.; Kilgore, N.; Kurnat, R.; Schiltz, H.; Albrecht, M.T.; Christopher, G.W.; Nuzum, E. Challenges, progress, and opportunities: Proceedings of the filovirus medical countermeasures workshop. Viruses 2014, 6, 2673–2697. [Google Scholar] [CrossRef] [PubMed]
- Rusnak, J.M.; Glass, P.J.; Weaver, S.C.; Sabourin, C.L.; Glenn, A.M.; Klimstra, W.; Badorrek, C.S.; Nasar, F.; Ward, L.A. Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule. Viruses 2019, 11, 807. [Google Scholar] [CrossRef] [PubMed]
- Neumann, G.; Feldmann, H.; Watanabe, S.; Lukashevich, I.; Kawaoka, Y. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J. Virol. 2002, 76, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, H.; Takada, A.; Kobasa, D.; Jones, S.; Neumann, G.; Theriault, S.; Bray, M.; Feldmann, H.; Kawaoka, Y. Molecular determinants of Ebola virus virulence in mice. PLoS Pathog. 2006, 2, e73. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.S.; Bethel, L.M.; Powell, D.S.; Caroline, A.L.; Hartman, A.L. Differences in aerosolization of Rift Valley fever virus resulting from choice of inhalation exposure chamber: Implications for animal challenge studies. Pathog. Dis. 2014, 71, 227–233. [Google Scholar] [CrossRef]
- Terasaki, K.; Ramirez, S.I.; Makino, S. Mechanistic Insight into the Host Transcription Inhibition Function of Rift Valley Fever Virus NSs and Its Importance in Virulence. PLoS Negl. Trop. Dis. 2016, 10, e0005047. [Google Scholar] [CrossRef]
- Kainulainen, M.; Habjan, M.; Hubel, P.; Busch, L.; Lau, S.; Colinge, J.; Superti-Furga, G.; Pichlmair, A.; Weber, F. Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH. J. Virol. 2014, 88, 3464–3473. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, G.E.R.; Jansen van Vuren, P.; Wichgers Schreur, P.J.; Odendaal, L.; Clift, S.J.; Kortekaas, J.; Paweska, J.T. Mutation of adjacent cysteine residues in the NSs protein of Rift Valley fever virus results in loss of virulence in mice. Virus Res. 2018, 249, 31–44. [Google Scholar] [CrossRef]
- Borrego, B.; Brun, A. A Hyper-Attenuated Variant of Rift Valley Fever Virus Generated by a Mutagenic Drug (Favipiravir) Unveils Potential Virulence Markers. Front. Microbiol. 2020, 11, 621463. [Google Scholar] [CrossRef]
- Borrego, B.; Moreno, S.; de la Losa, N.; Weber, F.; Brun, A. The Change P82L in the Rift Valley Fever Virus NSs Protein Confers Attenuation in Mice. Viruses 2021, 13, 542. [Google Scholar] [CrossRef]
- St Claire, M.C.; Ragland, D.R.; Bollinger, L.; Jahrling, P.B. Animal Models of Ebolavirus Infection. Comp. Med. 2017, 67, 253–262. [Google Scholar] [PubMed]
- Parish, L.A.; Stavale, E.J.; Houchens, C.R.; Wolfe, D.N. Developing Vaccines to Improve Preparedness for Filovirus Outbreaks: The Perspective of the USA Biomedical Advanced Research and Development Authority (BARDA). Vaccines 2023, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Bird, B.H.; Albariño, C.G.; Nichol, S.T. Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease. Virology 2007, 362, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Morrill, J.C.; Ikegami, T.; Yoshikawa-Iwata, N.; Lokugamage, N.; Won, S.; Terasaki, K.; Zamoto-Niikura, A.; Peters, C.J.; Makino, S. Rapid accumulation of virulent rift valley Fever virus in mice from an attenuated virus carrying a single nucleotide substitution in the m RNA. PLoS ONE 2010, 5, e9986. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Moshiri, A.; Harris, R.A.; Raveendran, M.; Nguyen, T.; Kim, S.; Young, L.; Wang, K.; Wiseman, R.; et al. Genetic diversity of 1,845 rhesus macaques improves genetic variation interpretation and identifies disease models. Nat. Commun. 2024, 15, 5658. [Google Scholar] [CrossRef]
- Taylor, K.L.; Lanning, L.; Wolfraim, L.; Shrivastava Gales, S.; Sico, C.; Dowling, W.E.; Ward, L.A.; Florence, W.C.; Nuzum, E.; Bryant, P.R. A U.S. Government-Coordinated Effort to Leverage Non-Human Primate Data to Facilitate Ebolavirus Vaccine Development. Vaccines 2022, 10, 1201. [Google Scholar] [CrossRef]
- Muñoz-Fontela, C.; Dowling, W.E.; Funnell, S.G.P.; Gsell, P.S.; Riveros-Balta, A.X.; Albrecht, R.A.; Andersen, H.; Baric, R.S.; Carroll, M.W.; Cavaleri, M.; et al. Animal models for COVID-19. Nature 2020, 586, 509–515. [Google Scholar] [CrossRef]
Publication | Challenge Dose | Challenge Route 1 | Number 2 | Outcomes |
---|---|---|---|---|
Findlay et al., 1931 [64] | Unknown | Unknown | Unknown |
|
Findlay, 1932 [65] | Unknown | i.p. | 10 |
|
i.c. | 1 |
| ||
s.c. | 1 |
| ||
i.n. | 2 |
| ||
Findlay et al., 1936 [66] | Unknown | i.c. | 3 |
|
i.p. | 5 |
| ||
i.n. | 2 |
| ||
Smithburn et al., 1948 [67] | Unknown | s.c. | 6 |
|
Miller et al., 1963 [68] | 2820 MIPLD50 5 | Aerosol | 4 |
|
275 MIPLD50 | Aerosol | 4 |
| |
145 MIPLD50 | Aerosol | 4 |
| |
76 MIPLD50 | Aerosol | 4 |
| |
Easterday, 1965 [69] | Unknown | Unknown | Unknown |
|
Peters et al., 1986 [70] | 4.2 log10 pfu | i.v. | 4 |
|
Peters et al., 1988 [71] | 5.3 log10 pfu | s.c. | 3 |
|
4.7 log10 pfu | i.v. | 4 |
| |
4.1 log10 pfu | i.v. | 3 |
| |
4.8 log10 pfu | i.v. | 5 |
| |
Morrill et al., 1989 [72] | 105 pfu | i.v. | 17 |
|
Morrill et al., 1989 [75] | 5.0 log10 pfu | i.v. |
| |
Cosgriff et al., 1989 [74] | 5.0 log10 pfu | i.m. 3 |
| |
Morrill et al., 1990 [73] | 105 pfu | i.v. |
| |
Morrill et al., 1991 [76] | 105 pfu | i.v. | 3 |
|
Morrill et al., 2003 [77] | 5.0 log10 pfu | i.v. | 4 |
|
Smith et al., 2011 [80] | 7 log10 pfu | i.v. | 4 |
|
Morrill et al., 2011 [78] | ~105 pfu | Aerosol | 4 |
|
Morrill et al., 2011 [79] | 3 × 106 pfu | i.v. | 3 |
|
~5 × 105 pfu | Aerosol | 5 |
| |
Hartman et al., 2014 [81] | 5.04 or 5.67 log10 pfu | Aerosol | 2 |
|
Bian et al., 2023 [82] | N/A | N/A | N/A |
|
Publication | Challenge Dose | Challenge Route 1 | Number | Outcomes |
---|---|---|---|---|
Findlay et al., 1936 [66] | Unknown | i.c. | 1 |
|
Easterday, 1965 [69] | Unknown | Unknown | Unknown |
|
Hartman et al., 2014 [81] | 5.04 and 5.67 log10 pfu | Aerosol | 2 |
|
Publication | Challenge Dose | Challenge Route 1 | Number 2 | Outcomes |
---|---|---|---|---|
Findlay et al., 1932 [83] | Unknown | s.c. | 3 |
|
Smith et al., 2011 [80] | 7 log10 pfu | i.v. | 4 |
|
7 log10 pfu | i.n. | 4 |
| |
7 log10 pfu | s.c. | 4 |
| |
5 log10 pfu | s.c. | 4 |
| |
Hartman et al., 2014 [81] | Various (1.78–5.18 log10 pfu) | Aerosol | 8 |
|
Smith et al., 2018 [85] | 6.4 log10 pfu | s.c. | 5 |
|
Schreur et al., 2022 [86] | 107 TCID50 | s.c. + i.m. | 4 |
|
107 TCID50 | s.c. | 6 |
|
ZH501 | ZH501 (Recombinant) | Other (Recombinant 74HB59 and 35/74) |
---|---|---|
Peters et al., 1986 [70] | Smith et al., 2011 [80] | Schreur et al., 2022 [86] |
Peters et al., 1988 [71] | Hartman et al., 2014 2 [81] | |
Morrill et al., 1989 1 [72] | Reed et al., 2014 2 [92] | |
Morrill et al., 1989 1 [75] | Smith et al., 2018 [85] | |
Cosgriff et al., 1989 1 [74] | ||
Morrill et al., 1990 1 [73] | ||
Morrill et al., 1991 [76] | ||
Morrill et al., 2003 [77] | ||
Morrill et al., 2011 [78] | ||
Morrill et al., 2011 [79] |
% Nucleotide Changes | |||
---|---|---|---|
ZH501 1 vs. 74HB59 2 | ZH501 vs. 35/74 3 | 74HB59 vs. 35/74 | |
L segment | 0.020 | 0.038 | 0.034 |
M segment | 0.024 | 0.051 | 0.047 |
S segment | 0.022 | 0.037 | 0.028 |
NSs | 0.026 | 0.047 | 0.034 |
Strain | Amino Acid Position | ||||||||
---|---|---|---|---|---|---|---|---|---|
23 | 75 | 133 | 167 | 202 | 217 | 239 | 242 | 250 | |
ZH501 | PHE | ALA | ASN | ALA | LYS | VAL | ILE | ILE | MET |
74HB59 | ILE | ALA | ASN | VAL | LYS | ALA | ILE | VAL | MET |
35/74 | ILE | VAL | SER | VAL | ARG | ALA | VAL | VAL | ILE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebisine, K.; Quist, D.; Findlay-Wilson, S.; Kennedy, E.; Dowall, S. A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress, Challenge Strains, and Future Directions. Pathogens 2024, 13, 856. https://doi.org/10.3390/pathogens13100856
Ebisine K, Quist D, Findlay-Wilson S, Kennedy E, Dowall S. A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress, Challenge Strains, and Future Directions. Pathogens. 2024; 13(10):856. https://doi.org/10.3390/pathogens13100856
Chicago/Turabian StyleEbisine, Kimimuepigha, Darcy Quist, Stephen Findlay-Wilson, Emma Kennedy, and Stuart Dowall. 2024. "A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress, Challenge Strains, and Future Directions" Pathogens 13, no. 10: 856. https://doi.org/10.3390/pathogens13100856
APA StyleEbisine, K., Quist, D., Findlay-Wilson, S., Kennedy, E., & Dowall, S. (2024). A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress, Challenge Strains, and Future Directions. Pathogens, 13(10), 856. https://doi.org/10.3390/pathogens13100856