Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meier, H.; Spinner, K.; Crump, L.; Kuenzli, E.; Schuepbach, G.; Zinsstag, J. State of Knowledge on the Acquisition, Diversity, Interspecies Attribution and Spread of Antimicrobial Resistance between Humans, Animals and the Environment: A Systematic Review. Antibiotics 2022, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic Resistance Is the Quintessential One Health Issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.T.; Carvalho, J.; Cunha, M.V.; Serrano, E.; Palmeira, J.D.; Fonseca, C. Temporal and Geographical Research Trends of Antimicrobial Resistance in Wildlife—A Bibliometric Analysis. One Health 2020, 11, 100198. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Métayer, V.; Jarry, R.; Drapeau, A.; Puech, M.-P.; Madec, J.-Y.; Keck, N. Wide Spread of BlaCTX–M–9/Mcr-9 IncHI2/ST1 Plasmids and CTX-M-9-Producing Escherichia Coli and Enterobacter Cloacae in Rescued Wild Animals. Front. Microbiol. 2020, 11, 601317. [Google Scholar] [CrossRef]
- Mukerji, S.; Stegger, M.; Truswell, A.V.; Laird, T.; Jordan, D.; Abraham, R.J.; Harb, A.; Barton, M.; O’Dea, M.; Abraham, S. Resistance to Critically Important Antimicrobials in Australian Silver Gulls (Chroicocephalus Novaehollandiae) and Evidence of Anthropogenic Origins. J. Antimicrob. Chemother. 2019, 74, 2566–2574. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.-B.; Zeng, Z.-L.; Yang, X.-W.; Huang, Y.; Liu, J.-H. The Role of Wildlife (Wild Birds) in the Global Transmission of Antimicrobial Resistance Genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef]
- Cao, J.; Hu, Y.; Liu, F.; Wang, Y.; Bi, Y.; Lv, N.; Li, J.; Zhu, B.; Gao, G.F. Metagenomic Analysis Reveals the Microbiome and Resistome in Migratory Birds. Microbiome 2020, 8, 26. [Google Scholar] [CrossRef]
- Gambino, D.; Vicari, D.; Vitale, M.; Schirò, G.; Mira, F.; Giglia, M.L.; Riccardi, A.; Gentile, A.; Giardina, S.; Carrozzo, A.; et al. Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Microorganisms 2021, 9, 203. [Google Scholar] [CrossRef]
- Gutiérrez, J.; González-Acuña, D.; Fuentes-Castillo, D.; Fierro, K.; Hernández, C.; Zapata, L.; Verdugo, C. Antibiotic Resistance in Wildlife from Antarctic Peninsula. Sci. Total Environ. 2024, 916, 170340. [Google Scholar] [CrossRef]
- Kimani, T.; Kiambi, S.; Eckford, S.; Njuguna, J.; Makonnen, Y.; Rugalema, G.; Morzaria, S.P.; Lubroth, J.; Fasina, F.O. Expanding beyond Zoonoses: The Benefits of a National One Health Coordination Mechanism to Address Antimicrobial Resistance and Other Shared Health Threats at the Human–Animal–Environment Interface in Kenya. Rev. Sci. Tech. de l’OIE 2019, 38, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Lagerstrom, K.M.; Hadly, E.A. The Under-Investigated Wild Side of Escherichia Coli: Genetic Diversity, Pathogenicity and Antimicrobial Resistance in Wild Animals. Proc. R. Soc. B Biol. Sci. 2021, 288, rspb.2021.0399. [Google Scholar] [CrossRef]
- Swift, B.M.C.; Bennett, M.; Waller, K.; Dodd, C.; Murray, A.; Gomes, R.L.; Humphreys, B.; Hobman, J.L.; Jones, M.A.; Whitlock, S.E.; et al. Anthropogenic Environmental Drivers of Antimicrobial Resistance in Wildlife. Sci. Total Environ. 2019, 649, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Juárez-Fernández, G.; Höfle, Ú.; Cardona-Cabrera, T.; Mínguez, D.; Pineda-Pampliega, J.; Lozano, C.; Zarazaga, M.; Torres, C. Nasotracheal Microbiota of Nestlings of Parent White Storks with Different Foraging Habits in Spain. Ecohealth 2023, 20, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, C.A.; Bonnedahl, J.; Woksepp, H.; Hernandez, J.; Olsen, B.; Ramey, A.M. Acquisition and Dissemination of Cephalosporin-Resistant, E. Coli in Migratory Birds Sampled at an Alaska Landfill as Inferred through Genomic Analysis. Sci. Rep. 2018, 8, 7361. [Google Scholar] [CrossRef]
- Atterby, C.; Börjesson, S.; Ny, S.; Järhult, J.D.; Byfors, S.; Bonnedahl, J. ESBL-Producing Escherichia Coli in Swedish Gulls—A Case of Environmental Pollution from Humans? PLoS ONE 2017, 12, e0190380. [Google Scholar] [CrossRef]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-Mediated Resistance Is Going Wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef]
- Höfle, U.; Jose Gonzalez-Lopez, J.; Camacho, M.C.; Solà-Ginés, M.; Moreno-Mingorance, A.; Manuel Hernández, J.; De La Puente, J.; Pineda-Pampliega, J.; Aguirre, J.I.; Torres-Medina, F.; et al. Foraging at Solid Urban Waste Disposal Sites as Risk Factor for Cephalosporin and Colistin Resistant Escherichia Coli Carriage in White Storks (Ciconia Ciconia). Front. Microbiol. 2020, 11, 1397. [Google Scholar] [CrossRef]
- Woksepp, H.; Karlsson, K.; Börjesson, S.; Karlsson Lindsjö, O.; Söderlund, R.; Bonnedahl, J. Dissemination of Carbapenemase-Producing Enterobacterales through Wastewater and Gulls at a Wastewater Treatment Plant in Sweden. Sci. Total Environ. 2023, 886, 163997. [Google Scholar] [CrossRef]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High Prevalence and Diversity of Extended-Spectrum β-Lactamase and Emergence of OXA-48 Producing Enterobacterales in Wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef]
- Suárez-pérez, A.; Corbera, J.A.; González-Martín, M.; Donázar, J.A.; Rosales, R.S.; Morales, M.; Tejedor-Junco, M.T. Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron Percnopterus Majorensis). Animals 2020, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Tejedor-Junco, M.T. Antimicrobial Resistance Patterns of Bacteria Isolated from Chicks of Canarian Egyptian Vultures (Neophron Percnopterus Majorensis): A “One Health” Problem? Comp. Immunol. Microbiol. Infect. Dis. 2023, 92, 101925. [Google Scholar] [CrossRef] [PubMed]
- Badia-Boher, J.A.; Sanz-Aguilar, A.; de la Riva, M.; Gangoso, L.; van Overveld, T.; García-Alfonso, M.; Luzardo, O.P.; Suarez-Pérez, A.; Donázar, J.A. Evaluating European LIFE Conservation Projects: Improvements in Survival of an Endangered Vulture. J. Appl. Ecol. 2019, 56, 1210–1219. [Google Scholar] [CrossRef]
- Cortés-Avizanda, A.; Blanco, G.; DeVault, T.L.; Markandya, A.; Virani, M.Z.; Brandt, J.; Donázar, J.A. Supplementary Feeding and Endangered Avian Scavengers: Benefits, Caveats, and Controversies. Front. Ecol. Environ. 2016, 14, 191–199. [Google Scholar] [CrossRef]
- Blanco, G.; Díaz de Tuesta, J.A. Culture- and Molecular-Based Detection of Swine-Adapted Salmonella Shed by Avian Scavengers. Sci. Total Environ. 2018, 634, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Junza, A.; Segarra, D.; Barbosa, J.; Barrón, D. Wildlife Contamination with Fluoroquinolones from Livestock: Widespread Occurrence of Enrofloxacin and Marbofloxacin in Vultures. Chemosphere 2016, 144, 1536–1543. [Google Scholar] [CrossRef]
- Blanco, G.; Junza, A.; Barrón, D. Food Safety in Scavenger Conservation: Diet-Associated Exposure to Livestock Pharmaceuticals and Opportunist Mycoses in Threatened Cinereous and Egyptian Vultures. Ecotoxicol. Environ. Saf. 2017, 135, 292–301. [Google Scholar] [CrossRef]
- Blanco, G.; Gómez-Ramírez, P.; Lambertucci, S.A.; Wiemeyer, G.M.; Plaza, P.I.; Hiraldo, F.; Donázar, J.A.; Sánchez-Zapata, J.A.; García-Fernández, A.J. Unexpected Exposure of Andean Condors (Vultur Gryphus) to Pharmaceutical Mixtures. Biol. Conserv. 2023, 280, 109964. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of Animal Origin. Microbiol. Spectr. 2018, 6, 185–227. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Souillard, R.; Laurentie, J.; Kempf, I.; Le Caër, V.; Le Bouquin, S.; Serror, P.; Allain, V. Increasing Incidence of Enterococcus-Associated Diseases in Poultry in France over the Past 15 Years. Vet. Microbiol. 2022, 269, 109426. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.W.; Donabedian, S.M.; Zervos, M.J. Superinfection with Enterococcus Faecalis During Quinupristin/Dalfopristin Therapy. Clin. Infect. Dis. 1996, 24, 91–93. [Google Scholar] [CrossRef]
- Herrero, I.A.; Issa, N.C.; Patel, R. Nosocomial Spread of Linezolid-Resistant, Vancomycin-Resistant Enterococcus Faecium. N. Engl. J. Med. 2002, 346, 867–869. [Google Scholar] [CrossRef]
- Lewis, J.S., II. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.CLSI Supplement M100; Clinical and Labortory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Marrow, J.; Whittington, J.K.; Mitchell, M.; Hoyer, L.L.; Maddox, C. Prevalence and Antibiotic-Resistance Characteristics of Enterococcus Spp. Isolated from Free-Living and Captive Raptors in Central Illinois. J. Wildl. Dis. 2009, 45, 302–313. [Google Scholar] [CrossRef]
- Ben Yahia, H.; Chairat, S.; Hamdi, N.; Gharsa, H.; Ben Sallem, R.; Ceballos, S.; Torres, C.; Ben Slama, K. Antimicrobial Resistance and Genetic Lineages of Faecal Enterococci of Wild Birds: Emergence of VanA and VanB2 Harbouring Enterococcus Faecalis. Int. J. Antimicrob. Agents 2018, 52, 936–941. [Google Scholar] [CrossRef]
- Kwit, R.; Zając, M.; Śmiałowska-Węglińska, A.; Skarżyńska, M.; Bomba, A.; Lalak, A.; Skrzypiec, E.; Wojdat, D.; Koza, W.; Mikos-Wojewoda, E.; et al. Prevalence of Enterococcus Spp. and the Whole-Genome Characteristics of Enterococcus Faecium and Enterococcus Faecalis Strains Isolated from Free-Living Birds in Poland. Pathogens 2023, 12, 836. [Google Scholar] [CrossRef]
- Cagnoli, G.; Bertelloni, F.; Interrante, P.; Ceccherelli, R.; Marzoni, M.; Ebani, V.V. Antimicrobial-Resistant Enterococcus Spp. in Wild Avifauna from Central Italy. Antibiotics 2022, 11, 852. [Google Scholar] [CrossRef]
- Radhouani, H.; Poeta, P.; Gonçalves, A.; Pacheco, R.; Sargo, R.; Igrejas, G. Wild Birds as Biological Indicators of Environmental Pollution: Antimicrobial Resistance Patterns of Escherichia Coli and Enterococci Isolated from Common Buzzards (Buteo Buteo). J. Med. Microbiol. 2012, 61, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Cormican, M.; Flamm, R.K.; Mendes, R.E.; Jones, R.N. Temporal and Geographic Variation in Antimicrobial Susceptibility and Resistance Patterns of Enterococci: Results from the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019, 6, S54–S62. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Miller, W.R.; Axell-House, D.; Munita, J.M.; Arias, C.A. Antimicrobial Susceptibility Testing for Enterococci. J. Clin. Microbiol. 2022, 60, e00843-21. [Google Scholar] [CrossRef] [PubMed]
- Balli, E.P.; Venetis, C.A.; Miyakis, S. Systematic Review and Meta-Analysis of Linezolid versus Daptomycin for Treatment of Vancomycin-Resistant Enterococcal Bacteremia. Antimicrob Agents Chemother. 2014, 58, 734–739. [Google Scholar] [CrossRef]
- Guyomard-Rabenirina, S.; Reynaud, Y.; Pot, M.; Albina, E.; Couvin, D.; Ducat, C.; Gruel, G.; Ferdinand, S.; Legreneur, P.; Le Hello, S.; et al. Antimicrobial Resistance in Wildlife in Guadeloupe (French West Indies): Distribution of a Single BlaCTX–M–1/IncI1/ST3 Plasmid Among Humans and Wild Animals. Front. Microbiol. 2020, 11, 1524. [Google Scholar] [CrossRef]
- Di Lallo, G.; D’Andrea, M.M.; Sennati, S.; Thaller, M.C.; Migliore, L.; Gentile, G. Evidence of Another Anthropic Impact on Iguana Delicatissima from the Lesser Antilles: The Presence of Antibiotic Resistant Enterobacteria. Antibiotics 2021, 10, 885. [Google Scholar] [CrossRef]
- Laborda, P.; Sanz-García, F.; Ochoa-Sánchez, L.E.; Gil-Gil, T.; Hernando-Amado, S.; Martínez, J.L. Wildlife and Antibiotic Resistance. Front. Cell. Infect. Microbiol. 2022, 12, 873989. [Google Scholar] [CrossRef]
- Guitart-Matas, J.; Espunyes, J.; Illera, L.; Gonzalez-Escalona, N.; Ribas, M.P.; Marco, I.; Migura-Garcia, L. High-Risk Lineages of Extended Spectrum Cephalosporinase Producing Escherichia Coli from Eurasian Griffon Vultures (Gyps Fulvus) Foraging in Landfills in North-Eastern Spain. Sci. Total Environ. 2024, 909, 168625. [Google Scholar] [CrossRef]
- Di Francesco, A.; Salvatore, D.; Bertelloni, F.; Ebani, V.V. Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Animals 2023, 13, 76. [Google Scholar] [CrossRef]
- Ahlstrom, C.A.; Scott, L.C.; Woksepp, H.; Bonnedahl, J.; Ramey, A.M. Environmental Antimicrobial Resistance Gene Detection from Wild Bird Habitats Using Two Methods: A Commercially Available Culture-Independent QPCR Assay and Culture of Indicator Bacteria Followed by Whole-Genome Sequencing. J. Glob. Antimicrob Resist. 2023, 33, 186–193. [Google Scholar] [CrossRef]
Antimicrobial Categories | Antimicrobial Agents | Abbreviation and the Charge of Disks or MIC Breakpoint |
---|---|---|
Aminoglycosides except Streptomycin | Gentamicin (high level) | GM (500 µg) |
Streptomycin | Streptomycin (high level) | S (2000 µg) |
Carbapenems | Imipenem | IMP (10 µg) |
Glycopeptides | Vancomycin Teicoplanin | VAN (30 µg) TEI (30 µg) |
Oxazolidinones | Linezolid | LZD (30 µg) |
Fluoroquinolones | Ciprofloxacin Levofloxacin | CIP (5 µg) LVX (5 µg) |
Tetracyclines | Doxycycline | D (30 µg) |
Penicillins | Ampicillin | AM (10 µg) |
Streptogramins | Quinupristin/Dalfopristin | SYN (15 µg) |
Sample Type/Antibiotic | Choana (n = 50) R/I/S (% R + I) | Cloaca (n = 51) R/I/S (% R + I) | Isolates with Resistance in Both Samples from the Same Animal |
---|---|---|---|
Imipenem | 8/0/42 (16.0%) | 9/0/42 (17.6%) | 1 |
Ciprofloxacin | 17/27/6 (88.0%) | 21/23/7 (86.3%) | 7 |
Levofloxacin | 6/19/25 (50.0%) | 13/14/24 (52.9%) | 2 |
Teicoplanin | 0/7/43 (14.0%) | 2/8/41 (19.6%) | 0 |
Linezolid | 0/2/48 (4.0%) | 1/5/45 (11.8%) | 0 |
Ampicillin | 1/0/49 (2.0%) | 5/0/46 (9.8%) | 0 |
Quinupristin/Dalfopristin * | 28/4/6 (84.2%) | 27/2/2 (93.5%) | 15 |
Doxycycline | 11/3/36 (28.0%) | 10/12/29 (43.1%) | 3 |
Vancomycin | 5/13/32 (36.0%) | 10/10/31 (39.2%) | 1 |
Gentamicin | 0/0/50 (0.0%) | 0/0/51 (0.0%) | 0 |
Streptomycin | 5/0/45 (10.0%) | 1/0/50 (2.0%) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Martín, M.R.; Suárez-Pérez, A.; Álamo-Peña, A.; Valverde Tercedor, C.; Corbera, J.A.; Tejedor-Junco, M.T. Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture. Pathogens 2024, 13, 855. https://doi.org/10.3390/pathogens13100855
González-Martín MR, Suárez-Pérez A, Álamo-Peña A, Valverde Tercedor C, Corbera JA, Tejedor-Junco MT. Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture. Pathogens. 2024; 13(10):855. https://doi.org/10.3390/pathogens13100855
Chicago/Turabian StyleGonzález-Martín, Margarita Rosa, Alejandro Suárez-Pérez, Alejandro Álamo-Peña, Carmen Valverde Tercedor, Juan Alberto Corbera, and María Teresa Tejedor-Junco. 2024. "Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture" Pathogens 13, no. 10: 855. https://doi.org/10.3390/pathogens13100855
APA StyleGonzález-Martín, M. R., Suárez-Pérez, A., Álamo-Peña, A., Valverde Tercedor, C., Corbera, J. A., & Tejedor-Junco, M. T. (2024). Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture. Pathogens, 13(10), 855. https://doi.org/10.3390/pathogens13100855