Fasciola hepatica Excretory-Secretory Products (Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fh-ES Preparation
2.2. Assessment of Endotoxin Level
2.3. SDS PAGE Analysis
2.4. THP-1 Macrophages Stimulation
2.5. Microarray Experiments
2.6. Statistical Analyses
3. Results
3.1. Fh-ES Assessment Using SDS-PAGE
3.2. Statistical Analyses of Changes in miRNAnome Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Acronyms
CL | Cathepsins L |
CL-like | Cathepsin L-like proteins |
Cox-2 | cyclooxygenase-2 |
CXCL8 | C-X-C motif ligand 8 |
DALY | Disability-Adjusted Life Years |
ECM | extracellular matrix |
FDR | false discovery rate |
FWER | family wise error rate |
FABP | fatty acid binding protein |
FBS | Fetal Bovine Serum |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
GEO | Gene Expression Omnibus |
GST | glutathione S-transferases |
HDM | helminth defense molecule |
iNOS | inducible nitric oxide synthase |
LAL | Limulus amebocyte lysate |
LAP | leucine aminopeptidase |
LPS | lipopolysaccharide |
miRNA | micro RNA |
NEJ | newly excysted juvenile |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NGS | Next-Generation Sequencing |
NLRP3 | family pyrin domain containing 3 inflammasome |
PBS | phosphate-buffered saline |
PRX | peroxiredoxin |
TGF-β | transforming growth factor beta |
TLR | Toll-like receptor |
References
- Alemneh, T.; Ayelign, M. Fasciolosis—Public Health and Economic Impacts: A Review. Int. J. Zool. Investig. 2018, 4, 186–195. [Google Scholar]
- Kelley, J.M.; Rathinasamy, V.; Elliott, T.P.; Rawlin, G.; Beddoe, T.; Stevenson, M.A.; Spithill, T.W. Determination of the prevalence and intensity of Fasciola hepatica infection in dairy cattle from six irrigation regions of Victoria, South-eastern Australia, further identifying significant triclabendazole resistance on three properties. Vet. Parasitol. 2020, 277, 109019. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Biggeri, A.; Musella, V.; De Waal, T.; Hertzberg, H.; Mavrot, F.; Torgerson, P.R.; Selemetas, N.; Coll, T.; Bosco, A.; et al. Sheep and Fasciola hepatica in Europe: The GLOWORM experience. Geospat. Health 2015, 9, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Alsulami, M.N.; Mohamed, K.; Wakid, M.H.; Abdel-Gaber, R.; Timsah, A.G.; Al-Megrin, W.A.I.; Khan, A.; Elkholy, W.A.; Abdelaal, K.A.A.; Elshabrawy, H.A.; et al. Molecular Characterization of Fasciola hepatica in Sheep Based on DNA Sequences of Ribosomal ITS-1. Infect. Drug Resist. 2023, 16, 6661–6671. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, K.; Zhang, H.; Sabir, A.J.; Abbas, R.Z.; Ijaz, M.; Durrani, A.Z.; Saleem, M.H.; Rehman, M.U.; Iqbal, M.K.; Wang, Y.; et al. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microb. Pathog. 2017, 109, 253–262. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/questions-and-answers/item/q-a-on-fascioliasis (accessed on 15 September 2024).
- Lalor, R.; Cwiklinski, K.; Calvani, N.E.D.; Dorey, A.; Hamon, S.; Corrales, J.L.; Dalton, J.P.; De Marco Verissimo, C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and FasciolaGigantica that cause the zoonosis Fasciolosis. Virulence 2021, 12, 2839–2867. [Google Scholar] [CrossRef]
- Carnevale, S.; Malandrini, J.B.; Pantano, M.L.; Sawicki, M.; Soria, C.C.; Kuo, L.H.; Kamenetzky, L.; Astudillo, O.G.; Velásquez, J.N. Fasciola hepatica infection in humans: Overcoming problems for the diagnosis. Acta Parasitol. 2016, 61, 776–783. [Google Scholar] [CrossRef]
- Rondelaud, D.; Belfaiza, M.; Vignoles, P.; Moncef, M.; Dreyfuss, G. Redial generations of Fasciola hepatica: A review. J. Helminthol. 2009, 83, 245–254. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/books/NBK537032/ (accessed on 15 September 2024).
- Tanabe, M.B.; Caravedo, M.A.; Clinton White, A., Jr.; Cabada, M.M. An Update on the Pathogenesis of Fascioliasis: What Do We Know? Res. Rep. Trop. Med. 2024, 15, 13–24. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/liver-flukes/hcp/clinical-overview-fasciola/index.html (accessed on 15 September 2024).
- Kaya, M.; Beştaş, R.; Cetin, S. Clinical presentation and management of Fasciola hepatica infection: Single-center experience. World J. Gastroenterol. 2011, 17, 4899–4904. [Google Scholar] [CrossRef]
- Ezzat, R.F.; Karboli, T.A.; Kasnazani, K.A.; Hamawandi, A.M. Endoscopic management of biliary fascioliasis: A case report. J. Med. Case Rep. 2010, 4, 83. [Google Scholar] [CrossRef]
- Bailey, S.R.; Nelson, M.H.; Himes, R.A.; Li, Z.; Mehrotra, S.; Paulos, C.M. Th17 cells in cancer: The ultimate identity crisis. Front. Immunol. 2014, 5, 276. [Google Scholar] [CrossRef]
- Ferraro, A.; Buonocore, S.M.; Auquier, P.; Nicolas, I.; Wallemacq, H.; Boutriau, D.; van der Most, R.G. Role and plasticity of Th1 and Th17 responses in immunity to Staphylococcus aureus. Hum. Vaccines Immunother. 2019, 15, 2980–2992. [Google Scholar] [CrossRef] [PubMed]
- Corripio-Miyar, Y.; Hayward, A.; Lemon, H.; Sweeny, A.R.; Bal, X.; Kenyon, F.; Pilkington, J.G.; Pemberton, J.M.; Nussey, D.H.; McNeilly, T.N. Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal. Sci. Rep. 2022, 12, 3197. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lozano-Ruiz, B.; Yang, F.M.; Fan, D.D.; Shen, L.; González-Navajas, J.M. The Multifaceted Role of Th1, Th9, and Th17 Cells in Immune Checkpoint Inhibition Therapy. Front. Immunol. 2021, 12, 625667. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Samani, M.; Bagheri, N.; Rafieian-Kopaei, M.; Shirzad, H. Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review. Phytother. Res. PTR 2017, 31, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Bąska, P.; Norbury, L.J.; Zawistowska-Deniziak, A.; Wiśniewski, M.; Januszkiewicz, K. Excretory/secretory products from two Fasciola hepatica isolates induce different transcriptional changes and IL-10 release in LPS-activated bovine "BOMA" macrophages. Parasitol. Res. 2017, 116, 2775–2782. [Google Scholar] [CrossRef]
- Valanparambil, R.M.; Tam, M.; Jardim, A.; Geary, T.G.; Stevenson, M.M. Primary Heligmosomoides polygyrus bakeri infection induces myeloid-derived suppressor cells that suppress CD4+ Th2 responses and promote chronic infection. Mucosal Immunol. 2017, 10, 238–249. [Google Scholar] [CrossRef]
- Ryan, S.; Shiels, J.; Taggart, C.C.; Dalton, J.P.; Weldon, S. Fasciola hepatica-Derived Molecules as Regulators of the Host Immune Response. Front. Immunol. 2020, 11, 2182. [Google Scholar] [CrossRef]
- Murphy, A.; Cwiklinski, K.; Lalor, R.; O’Connell, B.; Robinson, M.W.; Gerlach, J.; Joshi, L.; Kilcoyne, M.; Dalton, J.P.; O’Neill, S.M. Fasciola hepatica Extracellular Vesicles isolated from excretory-secretory products using a gravity flow method modulate dendritic cell phenotype and activity. PLoS Negl. Trop. Dis. 2020, 14, e0008626. [Google Scholar] [CrossRef]
- Cwiklinski, K.; de la Torre-Escudero, E.; Trelis, M.; Bernal, D.; Dufresne, P.J.; Brennan, G.P.; O’Neill, S.; Tort, J.; Paterson, S.; Marcilla, A.; et al. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis. Mol. Cell. Proteom. MCP 2015, 14, 3258–3273. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, S.; O’Neill, S.M.; Stack, C.M.; Robinson, M.W.; Turnbull, L.; Whitchurch, C.; Dalton, J.P. Helminth cysteine proteases inhibit TRIF-dependent activation of macrophages via degradation of TLR3. J. Biol. Chem. 2010, 285, 3383–3392. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, S.; O’Neill, S.M.; Sekiya, M.; Mulcahy, G.; Dalton, J.P. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect. Immun. 2005, 73, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.W.; Donnelly, S.; Hutchinson, A.T.; To, J.; Taylor, N.L.; Norton, R.S.; Perugini, M.A.; Dalton, J.P. A family of helminth molecules that modulate innate cell responses via molecular mimicry of host antimicrobial peptides. PLoS Pathog. 2011, 7, e1002042. [Google Scholar] [CrossRef]
- Fromm, B.; Trelis, M.; Hackenberg, M.; Cantalapiedra, F.; Bernal, D.; Marcilla, A. The revised microRNA complement of Fasciola hepatica reveals a plethora of overlooked microRNAs and evidence for enrichment of immuno-regulatory microRNAs in extracellular vesicles. Int. J. Parasitol. 2015, 45, 697–702. [Google Scholar] [CrossRef]
- Zawistowska-Deniziak, A.; Lambooij, J.M.; Kalinowska, A.; Patente, T.A.; Łapiński, M.; van der Zande, H.J.; Basalaj, K.; de Korne, C.M.; Chaye, M.A.M.; Gasan, T.A.; et al. Fasciola hepatica Fatty Acid Binding Protein 1 Modulates T cell Polarization by Promoting Dendritic Cell Thrombospondin-1 Secretion Without Affecting Metabolic Homeostasis in Obese Mice. Front. Immunol. 2022, 13, 884663. [Google Scholar] [CrossRef]
- Ramos-Benítez, M.J.; Ruiz-Jiménez, C.; Aguayo, V.; Espino, A.M. Recombinant Fasciola hepatica fatty acid binding protein suppresses toll-like receptor stimulation in response to multiple bacterial ligands. Sci. Rep. 2017, 7, 5455. [Google Scholar] [CrossRef]
- Sulaiman, A.A.; Zolnierczyk, K.; Japa, O.; Owen, J.P.; Maddison, B.C.; Emes, R.D.; Hodgkinson, J.E.; Gough, K.C.; Flynn, R.J. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes. PLoS Pathog. 2016, 12, e1005991. [Google Scholar] [CrossRef]
- Celias, D.P.; Corvo, I.; Silvane, L.; Tort, J.F.; Chiapello, L.S.; Fresno, M.; Arranz, A.; Motran, C.C.; Cervi, L. Cathepsin L3 From Fasciola hepatica Induces NLRP3 Inflammasome Alternative Activation in Murine Dendritic Cells. Front. Immunol. 2019, 10, 552. [Google Scholar] [CrossRef]
- Bąska, P.; Zawistowska-Deniziak, A.; Norbury, L.J.; Wiśniewski, M.; Januszkiewicz, K. Fasciola Hepatica Isolates Induce Different Immune Responses in Unmaturated Bovine Macrophages. J. Vet. Res. 2019, 63, 63–70. [Google Scholar] [CrossRef]
- Guasconi, L.; Burstein, V.L.; Beccacece, I.; Mena, C.; Chiapello, L.S.; Masih, D.T. Dectin-1 on macrophages modulates the immune response to Fasciola hepatica products through the ERK signaling pathway. Immunobiology 2018, 223, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, C.M.; González-Arce, A.; Soler, C.; Ramírez-Toledo, V.; Trelis, M.; Bernal, D.; Marcilla, A. Extracellular vesicles from the trematodes Fasciola hepatica and Dicrocoelium dendriticum trigger different responses in human THP-1 macrophages. J. Extracell. Vesicles 2023, 12, e12317. [Google Scholar] [CrossRef] [PubMed]
- Curtale, G.; Rubino, M.; Locati, M. MicroRNAs as Molecular Switches in Macrophage Activation. Front. Immunol. 2019, 10, 799. [Google Scholar] [CrossRef] [PubMed]
- Khayati, S.; Dehnavi, S.; Sadeghi, M.; Tavakol Afshari, J.; Esmaeili, S.A.; Mohammadi, M. The potential role of miRNA in regulating macrophage polarization. Heliyon 2023, 9, e21615. [Google Scholar] [CrossRef]
- Ni, W.J.; Leng, X.M. Dynamic miRNA-mRNA paradigms: New faces of miRNAs. Biochem. Biophys. Rep. 2015, 4, 337–341. [Google Scholar] [CrossRef]
- Tran, N.; Ricafrente, A.; To, J.; Lund, M.; Marques, T.M.; Gama-Carvalho, M.; Cwiklinski, K.; Dalton, J.P.; Donnelly, S. Fasciola hepatica hijacks host macrophage miRNA machinery to modulate early innate immune responses. Sci. Rep. 2021, 11, 6712. [Google Scholar] [CrossRef]
- Długosz, E.; Basałaj, K.; Zawistowska-Deniziak, A. Cytokine production and signalling in human THP-1 macrophages is dependent on Toxocara canis glycans. Parasitol. Res. 2019, 118, 2925–2933. [Google Scholar] [CrossRef]
- Aguayo, V.; Valdés Fernandez, B.N.; Rodríguez-Valentín, M.; Ruiz-Jiménez, C.; Ramos-Benítez, M.J.; Méndez, L.B.; Espino, A.M. Fasciola hepatica GST downregulates NF-κB pathway effectors and inflammatory cytokines while promoting survival in a mouse septic shock model. Sci. Rep. 2019, 9, 2275. [Google Scholar] [CrossRef] [PubMed]
- Morphew, R.M.; Wright, H.A.; LaCourse, E.J.; Woods, D.J.; Brophy, P.M. Comparative proteomics of excretory-secretory proteins released by the liver fluke Fasciola hepatica in sheep host bile and during in vitro culture ex host. Mol. Cell. Proteom. MCP 2007, 6, 963–972. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-pyrogen-and-endotoxins-testing-questions-and-answers (accessed on 28 August 2024).
- Lesack, K.; Naugler, C. An open-source software program for performing Bonferroni and related corrections for multiple comparisons. J. Pathol. Inform. 2011, 2, 52. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://genespring-support.com/files/gs_12_6/GeneSpring-manual.pdf (accessed on 15 September 2024).
- Collett, C.F.; Phillips, H.C.; Fisher, M.; Smith, S.; Fenn, C.; Goodwin, P.; Morphew, R.M.; Brophy, P.M. Fasciola hepatica Cathepsin L Zymogens: Immuno-Proteomic Evidence for Highly Immunogenic Zymogen-Specific Conformational Epitopes to Support Diagnostics Development. J. Proteome Res. 2022, 21, 1997–2010. [Google Scholar] [CrossRef] [PubMed]
- Prowse, R.K.; Chaplin, P.; Robinson, H.C.; Spithill, T.W. Fasciola hepatica cathepsin L suppresses sheep lymphocyte proliferation in vitro and modulates surface CD4 expression on human and ovine T cells. Parasite Immunol. 2002, 24, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, M.; Mulcahy, G.; Irwin, J.A.; Stack, C.M.; Donnelly, S.M.; Xu, W.; Collins, P.; Dalton, J.P. Biochemical characterisation of the recombinant peroxiredoxin (FhePrx) of the liver fluke, Fasciola hepatica. FEBS Lett. 2006, 580, 5016–5022. [Google Scholar] [CrossRef] [PubMed]
- LaCourse, E.J.; Perally, S.; Morphew, R.M.; Moxon, J.V.; Prescott, M.; Dowling, D.J.; O’Neill, S.M.; Kipar, A.; Hetzel, U.; Hoey, E.; et al. The Sigma class glutathione transferase from the liver fluke Fasciola hepatica. PLoS Neglected Trop. Dis. 2012, 6, e1666. [Google Scholar] [CrossRef]
- Martínez-Fernández, A.R.; Nogal-Ruiz, J.J.; López-Abán, J.; Ramajo, V.; Oleaga, A.; Manga-González, Y.; Hillyer, G.V.; Muro, A. Vaccination of mice and sheep with Fh12 FABP from Fasciola hepatica using the new adjuvant/immunomodulator system ADAD. Vet. Parasitol. 2004, 126, 287–298. [Google Scholar] [CrossRef]
- Figueroa-Santiago, O.; Espino, A.M. Fasciola hepatica fatty acid binding protein induces the alternative activation of human macrophages. Infect. Immun. 2014, 82, 5005–5012. [Google Scholar] [CrossRef]
- Martínez-Sernández, V.; Mezo, M.; González-Warleta, M.; Perteguer, M.J.; Muiño, L.; Guitián, E.; Gárate, T.; Ubeira, F.M. The MF6p/FhHDM-1 major antigen secreted by the trematode parasite Fasciola hepatica is a heme-binding protein. J. Biol. Chem. 2014, 289, 1441–1456. [Google Scholar] [CrossRef]
- Marcilla, A.; De la Rubia, J.E.; Sotillo, J.; Bernal, D.; Carmona, C.; Villavicencio, Z.; Acosta, D.; Tort, J.; Bornay, F.J.; Esteban, J.G.; et al. Leucine aminopeptidase is an immunodominant antigen of Fasciola hepatica excretory and secretory products in human infections. Clin. Vaccine Immunol. CVI 2008, 15, 95–100. [Google Scholar] [CrossRef]
- Nicholson, K.J.; Sherman, M.; Divi, S.N.; Bowles, D.R.; Vaccaro, A.R. The Role of Family-wise Error Rate in Determining Statistical Significance. Clin. Spine Surg. 2022, 35, 222–223. [Google Scholar] [CrossRef]
- Murray, M.H.; Blume, J.D. FDRestimation: Flexible False Discovery Rate Computation in R. F1000Research 2021, 10, 441. [Google Scholar] [CrossRef] [PubMed]
- Korthauer, K.; Kimes, P.K.; Duvallet, C.; Reyes, A.; Subramanian, A.; Teng, M.; Shukla, C.; Alm, E.J.; Hicks, S.C. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 2019, 20, 118. [Google Scholar] [CrossRef]
- Pawitan, Y.; Michiels, S.; Koscielny, S.; Gusnanto, A.; Ploner, A. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 2005, 21, 3017–3024. [Google Scholar] [CrossRef] [PubMed]
- Bąska, P.; Norbury, L.J. The Role of the Intestinal Epithelium in the "Weep and Sweep" Response during Gastro-Intestinal Helminth Infections. Animals 2022, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.E.; Greer, J.; Dixit, A.; Alvarado, R.; McCauley-Winter, P.; To, J.; Tanaka, A.; Hutchinson, A.T.; Robinson, M.W.; Simpson, A.M.; et al. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Sci. Rep. 2016, 6, 37789. [Google Scholar] [CrossRef]
- Valdes-Fernandez, B.N.; Ruiz-Jimenez, C.; Armina-Rodriguez, A.; Mendez, L.B.; Espino, A.M. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli-lipopolysaccharide, whereas it modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. Microbiol. Spectr. 2024, 12, e0347523. [Google Scholar] [CrossRef]
- Roig, J.; Saiz, M.L.; Galiano, A.; Trelis, M.; Cantalapiedra, F.; Monteagudo, C.; Giner, E.; Giner, R.M.; Recio, M.C.; Bernal, D.; et al. Extracellular Vesicles From the Helminth Fasciola hepatica Prevent DSS-Induced Acute Ulcerative Colitis in a T-Lymphocyte Independent Mode. Front. Microbiol. 2018, 9, 1036. [Google Scholar] [CrossRef]
- Mammana, S.; Fagone, P.; Cavalli, E.; Basile, M.S.; Petralia, M.C.; Nicoletti, F.; Bramanti, P.; Mazzon, E. The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. Int. J. Mol. Sci. 2018, 19, 831. [Google Scholar] [CrossRef]
- Figueroa-Santiago, O.; Espino, A.M. Fasciola hepatica ESPs Could Indistinctly Activate or Block Multiple Toll-Like Receptors in a Human Monocyte Cell Line. Ann. Clin. Pathol. 2017, 5, 1112. [Google Scholar]
- Guasconi, L.; Serradell, M.C.; Masih, D.T. Fasciola hepatica products induce apoptosis of peritoneal macrophages. Vet. Immunol. Immunopathol. 2012, 148, 359–363. [Google Scholar] [CrossRef]
- Bąska, P.; Norbury, L.J.; Wiśniewski, M.; Januszkiewicz, K.; Wędrychowicz, H. Excretory/secretory products of Fasciola hepatica but not recombinant phosphoglycerate kinase induce death of human hepatocyte cells. Acta Parasitol. 2013, 58, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Bąska, P.; Zawistowska-Deniziak, A.; Zdziarska, A.M.; Wasyl, K.; Wiśniewski, M.; Cywińska, A.; Klockiewicz, M.; Januszkiewicz, K.; Wkedrychowicz, H. Fasciola hepatica—The pilot study of in vitro assessing immune response against native and recombinant antigens of the fluke. Acta Parasitol. 2013, 58, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Chen, D.; He, J.J.; Zheng, W.B.; Tian, A.L.; Zhao, G.H.; Elsheikha, H.M.; Zhu, X.-Q. Fasciola gigantica-Derived Excretory-Secretory Products Alter the Expression of mRNAs, miRNAs, lncRNAs, and circRNAs Involved in the Immune Response and Metabolism in Goat Peripheral Blood Mononuclear Cells. Front. Immunol. 2021, 12, 653755. [Google Scholar] [CrossRef] [PubMed]
- Zawistowska-Deniziak, A.; Basałaj, K.; Strojny, B.; Młocicki, D. New Data on Human Macrophages Polarization by Hymenolepis diminuta Tapeworm-An In Vitro Study. Front. Immunol. 2017, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Chantree, P.; Tarasuk, M.; Prathaphan, P.; Ruangtong, J.; Jamklang, M.; Chumkiew, S.; Martviset, P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023, 12, 395. [Google Scholar] [CrossRef]
- Luly, F.R.; Lévêque, M.; Licursi, V.; Cimino, G.; Martin-Chouly, C.; Théret, N.; Negri, R.; Cavinato, L.; Ascenzioni, F.; Del Porto, P. MiR-146a is over-expressed and controls IL-6 production in cystic fibrosis macrophages. Sci. Rep. 2019, 9, 16259. [Google Scholar] [CrossRef] [PubMed]
- Self-Fordham, J.B.; Naqvi, A.R.; Uttamani, J.R.; Kulkarni, V.; Nares, S. MicroRNA: Dynamic Regulators of Macrophage Polarization and Plasticity. Front. Immunol. 2017, 8, 1062. [Google Scholar] [CrossRef]
- Scalavino, V.; Liso, M.; Cavalcanti, E.; Gigante, I.; Lippolis, A.; Mastronardi, M.; Chieppa, M.; Serino, G. miR-369-3p modulates inducible nitric oxide synthase and is involved in regulation of chronic inflammatory response. Sci. Rep. 2020, 10, 15942. [Google Scholar] [CrossRef]
- Li, C.; Hu, X.; Li, L.; Li, J.H. Differential microRNA expression in the peripheral blood from human patients with COVID-19. J. Clin. Lab. Anal. 2020, 34, e23590. [Google Scholar] [CrossRef]
- Naqvi, A.R.; Zhong, S.; Dang, H.; Fordham, J.B.; Nares, S.; Khan, A. Expression Profiling of LPS Responsive miRNA in Primary Human Macrophages. J. Microb. Biochem. Technol. 2016, 8, 136–143. [Google Scholar] [CrossRef]
- Graff, J.W.; Dickson, A.M.; Clay, G.; McCaffrey, A.P.; Wilson, M.E. Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem. 2012, 287, 21816–21825. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Bang, H.; Young, S. Sample size calculation for multiple testing in microarray data analysis. Biostatistics 2005, 6, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Pounds, S.; Morris, S.W. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 2003, 19, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Sealfon, S.C.; Speed, T.P. Multiple testing and its applications to microarrays. Stat. Methods Med. Res. 2009, 18, 543–563. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zheng, Y. MicroRNA expression profile in RAW264.7 macrophage cells exposed to Echinococcus multilocularis metacestodes. Parasitology 2018, 145, 416–423. [Google Scholar] [CrossRef]
- Batan Pumeda, S. Comparison Between Next-Generation Sequencing and Microarrays for miRNA Expression in Cancer Samples. Natl. Acad. Sci. Lett. 2023. [Google Scholar] [CrossRef]
S | Description | Correction |
---|---|---|
1 | Independence of p-values across genes is assumed. | Benjamini–Hochberg (FDR) |
Storey with Bootstrapping. Storey with Curve Fitting. | Benjamini–Hochberg refinements | |
2 | Permutates all the genes at the same time, accounting for their dependence. | Westfall and Young (FWER) |
3 | A stepwise procedure. Tests each hypothesis in an ordered sequence, allowing one to accept or reject a hypothesis based on the previous step, with a focus on power and stringency. | Bonferroni-Holm (FWER) |
4 | A single step procedure where each p value is corrected independently. | Bonferroni (FWER) |
miRNA | Change | Fold | Benjamini–Hochberg | Storey with Bootstrapping | Storey with Curve Fitting | Westfall and Young | Bonferroni-Holm FWER | Bonferroni FWER |
---|---|---|---|---|---|---|---|---|
p-Value | ||||||||
hsa-miR-4730 | down | 6.58 | ns | ns | ns | ns | ns | ns |
hsa-miR-4728-3p | down | 5.72 | ns | ns | ns | ns | ns | ns |
hsa-miR-1910-5p | down | 4.12 | ns | ns | ns | ns | ns | ns |
hsa-miR-6824-3p | down | 3.31 | ns | ns | ns | ns | ns | ns |
hsa-miR-4741 | down | 3.14 | ns | ns | ns | ns | ns | ns |
hsa-miR-4462 | down | 3.1 | ns | ns | ns | ns | ns | ns |
hsa-miR-26a-1-3p | down | 2.6 | ns | ns | ns | ns | ns | ns |
hsa-miR-324-3p | up | 1.4 | ns | ns | ns | ns | ns | ns |
hsa-miR-19b-1-5p | up | 3.31 | ns | ns | ns | ns | ns | ns |
hsa-miR-7152-3p | up | 3.51 | ns | ns | ns | ns | ns | ns |
hsa-miR-6780a-5p | up | 4 | ns | ns | ns | ns | ns | ns |
hsa-miR-219a-5 | up | 4.09 | ns | ns | ns | ns | ns | ns |
hsa-miR-6512-5p | up | 4.32 | ns | ns | ns | ns | ns | ns |
hsa-miR-378a-5p | up | 4.52 | ns | ns | ns | ns | ns | ns |
hsa-miR-34c-5p | up | 4.57 | ns | ns | ns | ns | ns | ns |
hsa-miR-487b-3p | up | 5.15 | ns | ns | ns | ns | ns | ns |
hsa-miR-4651 | up | 5.17 | ns | ns | ns | ns | ns | ns |
hsa-miR-1537-3p | up | 7.1 | ns | ns | ns | <0.05 | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bąska, P.; Majewska, A.; Zygner, W.; Długosz, E.; Wiśniewski, M. Fasciola hepatica Excretory-Secretory Products (Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique. Pathogens 2024, 13, 854. https://doi.org/10.3390/pathogens13100854
Bąska P, Majewska A, Zygner W, Długosz E, Wiśniewski M. Fasciola hepatica Excretory-Secretory Products (Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique. Pathogens. 2024; 13(10):854. https://doi.org/10.3390/pathogens13100854
Chicago/Turabian StyleBąska, Piotr, Alicja Majewska, Wojciech Zygner, Ewa Długosz, and Marcin Wiśniewski. 2024. "Fasciola hepatica Excretory-Secretory Products (Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique" Pathogens 13, no. 10: 854. https://doi.org/10.3390/pathogens13100854
APA StyleBąska, P., Majewska, A., Zygner, W., Długosz, E., & Wiśniewski, M. (2024). Fasciola hepatica Excretory-Secretory Products (Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique. Pathogens, 13(10), 854. https://doi.org/10.3390/pathogens13100854