Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections
Abstract
:1. Introduction
2. Material and Methods
2.1. Origin and Identification of the Strains
2.2. Determination of Antibiotic Resistance
2.3. DNA Extraction
2.4. Identification of P. aeruginosa
2.5. Detection of Virulence Genes in the Strains
2.6. Unsupervised Hierarchical Clustering
3. Results
3.1. Virulence and Efflux Pump Genes in the Isolates
3.2. Resistome of Isolated Strains
3.3. Virulence and Efflux Pump Genotype Frequencies According to the Resistome
3.4. Genotype and Phenotype Diversity in Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Çopur Çiçek, A.; Ertürk, A.; Ejder, N.; Rakici, E.; Kostakoğlu, U.; Esen Yıldız, İ.; Özyurt, S.; Sönmez, E. Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. Infect. Drug Resist. 2021, 14, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Jeong, Y.; Bae, S.; Kim, M.J.; Chong, Y.P.; Kim, S.H.; Lee, S.O.; Choi, S.H.; Kim, Y.S.; Jung, J. Short versus prolonged courses of antimicrobial therapy for patients with uncomplicated Pseudomonas aeruginosa bloodstream infection: A retrospective study. J. Antimicrob. Chemother. 2021, 77, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Yang, Z.; Wang, J.; Liu, X.; Cao, Y.; Pan, Y.; Han, L.; Zhan, S. Prevalence of Pseudomonas aeruginosa and antimicrobial-resistant Pseudomonas aeruginosa in patients with pneumonia in mainland China: A systematic review and meta-analysis. Int. J. Infect. Dis. 2016, 49, 119–128. [Google Scholar] [CrossRef]
- Newman, J.N.; Floyd, R.V.; Fothergill, J.L. Invasion and diversity in Pseudomonas aeruginosa urinary tract infections. J. Med. Microbiol. 2022, 71, 001458. [Google Scholar] [CrossRef]
- El Husseini, N.; Mekonnen, S.A.; Hall, C.L.; Cole, S.J.; Carter, J.A.; Belew, A.T.; El-Sayed, N.M.; Lee, V.T. Characterization of the Entner-Doudoroff pathway in Pseudomonas aeruginosa catheter-associated urinary tract infections. J. Bacteriol. 2024, 206, e0036123. [Google Scholar] [CrossRef] [PubMed]
- Rashid Mahmood, A.; Mansour Hussein, N. Study of Antibiotic Resistant Genes in Pseudomonas aeroginosa Isolated from Burns and Wounds. Arch. Razi Inst. 2022, 77, 403–411. [Google Scholar]
- Markou, P.; Apidianakis, Y. Pathogenesis of intestinal Pseudomonas aeruginosa infection in patients with cancer. Front. Cells Infect. Microbiol. 2014, 3, 115. [Google Scholar] [CrossRef]
- Gomez-Olivas, J.D.; Oscullo, G.; Martinez-Garcia, M.A. Isolation of Pseudomonas aeruginosa in Stable Chronic Obstructive Pulmonary Disease Patients-Should We Treat It? J. Clin. Med. 2023, 12, 5054. [Google Scholar] [CrossRef]
- Hall, C.W.; Hinz, A.J.; Gagnon, L.B.; Zhang, L.; Nadeau, J.P.; Copeland, S.; Saha, B.; Mah, T.F. Pseudomonas aeruginosa Biofilm Antibiotic Resistance Gene ndvB Expression Requires the RpoS Stationary-Phase Sigma Factor. Appl. Environ. Microbiol. 2018, 84, e02762-17. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, S.Y.; Roh, E.Y.; Lee, H.S. Difference of Type 3 secretion system (T3SS) effector gene genotypes (exoU and exoS) and its implication to antibiotics resistances in isolates of P. aeruginosa from chronic otitis media. Auris Nasus Larynx 2017, 44, 258–265. [Google Scholar] [CrossRef]
- Faraji, F.; Mahzounieh, M.; Ebrahimi, A.; Fallah, F.; Teymournejad, O.; Lajevardi, B. Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microb. Pathog. 2016, 99, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Elmouaden, C.; Laglaoui, A.; Ennanei, L.; Bakkali, M.; Abid, M. Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. J. Infect. Dev. Ctries. 2019, 13, 892–989. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, S.; Hardouin, J. Exoproteomics for Better Understanding Pseudomonas aeruginosa Virulence. Toxins 2020, 12, 571. [Google Scholar] [CrossRef]
- de Sousa, T.; Hébraud, M.; Dapkevicius, M.L.N.E.; Maltez, L.; Pereira, J.E.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 12892. [Google Scholar] [CrossRef]
- Miyoshi-Akiyama, T.; Miyoshi-Akiyama, T.; Tada, T.; Ohmagari, N.; Viet Hung, N.; Tharavichitkul, P.; Pokhrel, B.M.; Gniadkowski, M.; Shimojima, M.; Kirikae, T. Emergence and Spread of Epidemic Multidrug-Resistant Pseudomonas aeruginosa. Genome Biol. Evol. 2017, 9, 3238–3245. [Google Scholar] [CrossRef]
- Al-Orphaly, M.; Hadi, H.A.; Eltayeb, F.K.; Al-Hail, H.; Samuel, B.G.; Sultan, A.A.; Skariah, S. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere 2021, 6, e00202-21. [Google Scholar] [CrossRef] [PubMed]
- Matos, E.C.O.; Andriolo, R.B.; Rodrigues, Y.C.; Lima, P.D.L.; Carneiro, I.C.D.R.S.; Lima, K.V.B. Mortality in patients with multidrug-resistant Pseudomonas aeruginosa infections: A meta-analysis. Rev Soc Bras Med. Trop. 2018, 51, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 3, 177–192. [Google Scholar] [CrossRef]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa—Mechanisms, epidemiology and evolution. Drug Resist. Update 2019, 4, 100640. [Google Scholar] [CrossRef]
- Dreier, J.; Ruggerone, P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol. 2015, 6, 660. [Google Scholar] [CrossRef] [PubMed]
- Avakh, A.; Grant, G.D.; Cheesman, M.J.; Kalkundri, T.; Hall, S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics 2023, 12, 1304. [Google Scholar] [CrossRef] [PubMed]
- Stefani, S.; Campana, S.; Cariani, L.; Carnovale, V.; Colombo, C.; Lleo, M.M.; Iula, V.D.; Minicucci, L.; Morelli, P.; Pizzamiglio, G.; et al. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int. J. Med. Microbiol. 2017, 307, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Nazari, M.; Ramazanzadeh, R.; Sahebkar, A.; Safarzadeh, E.; Khademi, F. Association of carbapenem and multidrug resistance with the expression of efflux pump-encoding genes in Pseudomonas aeruginosa clinical isolates. Acta Microbiol. Immunol. Hung. 2023, 70, 161–166. [Google Scholar] [CrossRef]
- González-Olvera, E.M.; Pérez-Morales, R.; González Zamora, A.; Castro-Escarpulli, G.; Palma-Martínez, I.; Alba-Romero, J.J. Antibiotic resistance, virulence factors and genotyping of Pseudomonas aeruginosa in public hospitals of northeastern Mexico. J. Infect. Dev. Ctries. 2019, 13, 374–383. [Google Scholar] [CrossRef]
- Logan, L.K.; Gandra, S.; Mandal, S.; Klein, E.Y.; Levinson, J.; Weinstein, R.A.; Laxminarayan, R. Prevention Epicenters Program, US Centers for Disease Control and Prevention. Multidrug- and Carbapenem-Resistant Pseudomonas aeruginosa in Children, United States, 1999–2012. J. Pediatric. Infect. Dis. Soc. 2017, 6, 352–359. [Google Scholar]
- Zahedi-Bialvaei, A.; Rahbar, M.; Hamidi-Farahani, R.; Asgari, A.; Esmailkhani, A.; Mardani-Dashti, Y.; Soleiman-Meigooni, S. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb. Pathog. 2021, 153, 104789. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance standards for antimicrobial susceptibility testing. In CLSI, Twenty-Third Informational Supplement M100-S23; Carpenter, D.E., Ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013; Volume 74. [Google Scholar]
- Ooka, T.; Terajima, J.; Kusumoto, M.; Iguchi, A.; Kurokawa, K.; Ogura, Y.; Asadulghani, M.; Nakayama, K.; Murase, K.; Ohnishi, M.; et al. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains. J. Clin. Microbiol. 2009, 47, 2888–2894. [Google Scholar] [CrossRef]
- Kaszab, E.; Szoboszlay, S.; Dobolyi, C.; Háhn, J.; Pék, N.; Kriszt, B. Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts. Bioresour. Technol. 2011, 102, 1543–1548. [Google Scholar] [CrossRef]
- Ullah, W.; Qasim, M.; Rahman, H.; Jie, Y.; Muhammad, N. Beta-lactamase-producing Pseudomonas aeruginosa: Phenotypic characteristics and molecular identification of virulence genes. J. Chin. Med. Assoc. 2017, 80, 173–177. [Google Scholar] [CrossRef]
- Kaiser, S.J.; Mutters, N.T.; DeRosa, A.; Ewers, C.; Frank, U.; Günther, F. Determinants for persistence of Pseudomonas aeruginosa in hospitals: Interplay between resistance, virulence and biofilm formation. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Kamel, N.A.; Tohamy, S.T.; Alshahrani, M.Y.; Aboshanab, K.M. Evaluation of fortimicin antibiotic combinations against MDR Pseudomonas aeruginosa and resistome analysis of a whole genome sequenced pandrug resistant isolate. BMC Microbiol. 2024, 24, 164. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zeng, F.; Huang, Y.; Xu, Q.; Yang, Y.; Gong, W.; Shi, C.; Zhang, Y. Clinical efficacy of ceftazidime/avibactam combination therapy for severe hospital-acquired pulmonary infections caused by carbapenem-resistant and difficult-to-treat Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2024, 63, 107021. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.S.B.E.; Ozler, B.; Baddal, B. Characterization of Virulence Genes Associated with Type III Secretion System and Biofilm Formation in Pseudomonas aeruginosa Clinical Isolates. Curr. Microbiol. 2023, 80, 389. [Google Scholar] [CrossRef]
- Zhen, S.; Zhao, Y.; Chen, Z.; Zhang, T.; Wang, J.; Jiang, E.; Zhang, F.; Mi, Y.; Zhu, X.; Han, M.; et al. Assessment of mortality-related risk factors and effective antimicrobial regimens for treatment of bloodstream infections caused by carbapenem-resistant Pseudomonas aeruginosa in patients with hematological diseases. Front. Cells Infect. Microbiol. 2023, 13, 1156651. [Google Scholar] [CrossRef]
- Wijit, K.; Sonthisombat, P.; Diewsurin, J. A score to predict Pseudomonas aeruginosa infection in older patients with community-acquired pneumonia. BMC Infect. Dis. 2023, 23, 700. [Google Scholar] [CrossRef]
- Mousavi, M.; Behrouz, B.; Irajian, G.; Mahdavi, M.; Korpi, F.; Motamedifar, M. Passive immunization against Pseudomonas aeruginosa recombinant PilA in a murine burn wound model. Microb. Pathog. 2016, 101, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fritsch, M.; Hammond, L.; Landreville, R.; Slatculescu, C.; Colavita, A.; Mah, T.F. Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS ONE 2013, 8, e61625. [Google Scholar] [CrossRef]
- Chang, T.W.; Wang, C.F.; Huang, H.J.; Wang, I.; Hsu, S.T.; Liao, Y.D. Key residues of outer membrane protein OprI involved in hexamer formation and bacterial susceptibility to cationic antimicrobial peptides. Antimicrob. Agents Chemother. 2015, 59, 6210–6222. [Google Scholar] [CrossRef]
- Algammal, A.M.; Eidaroos, N.H.; Alfifi, K.J.; Alatawy, M.; Al-Harbi, A.I.; Alanazi, Y.F.; Ghobashy, M.O.I.; Khafagy, A.R.; Esawy, A.M.; El-Sadda, S.S.; et al. oprL Gene Sequencing, Resistance Patterns, Virulence Genes, Quorum Sensing and Antibiotic Resistance Genes of XDR Pseudomonas aeruginosa Isolated from Broiler Chickens. Infect. Drug Resist. 2023, 16, 853–867. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Jeon, J.; Lee, J.H.; Jin, S.; Ha, U.H. Pseudomonas aeruginosa GroEL Stimulates Production of PTX3 by Activating the NF-κB Pathway and Simultaneously Downregulating MicroRNA-9. Infect. Immun. 2017, 85, e00935-16. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.; Hao, Y.; Walling, B.E.; Jeffries, J.L.; Ohman, D.E.; Lau, G.W. Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS ONE 2011, 6, e27091. [Google Scholar] [CrossRef]
- Saint-Criq, V.; Villeret, B.; Bastaert, F.; Kheir, S.; Hatton, A.; Cazes, A.; Xing, Z.; Sermet-Gaudelus, I.; Garcia-Verdugo, I.; Edelman, A.; et al. LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator-IL-6-antimicrobial-repair pathway. Thorax 2018, 73, 49–61. [Google Scholar] [CrossRef]
- Laarman, A.J.; Bardoel, B.W.; Ruyken, M.; Fernie, J.; Milder, F.J.; van Strijp, J.A.; Rooijakkers, S.H. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J. Inmunol. 2012, 188, 386–393. [Google Scholar] [CrossRef]
- Leid, J.G.; Willson, C.J.; Shirtliff, M.E.; Hassett, D.J.; Parsek, M.R.; Jeffers, A.K. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J. Immunol. 2005, 175, 7512–7518. [Google Scholar] [CrossRef] [PubMed]
- Goltermann, L.; Tolker-Nielsen, T. Importance of the Exopolysaccharide Matrix in Antimicrobial Tolerance of Pseudomonas aeruginosa Aggregates. Antimicrob. Agents Chemother. 2017, 61, e02696-16. [Google Scholar] [CrossRef]
- MacEachran, D.P.; Ye, S.; Bomberger, J.M.; Hogan, D.A.; Swiatecka-Urban, A.; Stanton, B.A.; O’Toole, G.A. The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator. Infect. Immun. 2007, 75, 3902–3912. [Google Scholar] [CrossRef]
- Pereira, S.G.; Rosa, A.C.; Ferreira, A.S.; Moreira, L.M.; Proença, D.N.; Morais, P.V.; Cardoso, O. Virulence factors and infection ability of Pseudomonas aeruginosa isolates from a hydropathic facility and respiratory infections. J. Appl. Microbiol. 2014, 116, 1359–1368. [Google Scholar] [CrossRef]
- Bahl, C.D.; St Laurent, J.D.; Karthikeyan, R.S.; Priya, J.L.; Prajna, L.; Zegans, M.E.; Madden, D.R. The cif Virulence Factor Gene Is Present in Isolates from Patients with Pseudomonas aeruginosa Keratitis. Cornea 2017, 36, 358–362. [Google Scholar] [CrossRef]
- Thacharodi, A.; Lamont, I.L. Aminoglycoside resistance in Pseudomonas aeruginosa: The contribution of the MexXY-OprM efflux pump varies between isolates. J. Med. Microbiol. 2022, 71, 1551. [Google Scholar] [CrossRef] [PubMed]
- Gervasoni, S.; Malloci, G.; Bosin, A.; Vargiu, A.V.; Zgurskaya, H.I.; Ruggerone, P. Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of Pseudomonas aeruginosa. Phys. Chem. Chem. Phys. 2022, 24, 16566–16575. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Schweizer, H.P. Evidence of MexT-independent overexpression of MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa in presence of metabolic stress. PLoS ONE 2011, 6, e26520. [Google Scholar] [CrossRef]
- Laborda, P.; Lolle, S.; Hernando-Amado, S.; Alcalde-Rico, M.; Aanæs, K.; Martínez, J.L.; Molin, S.; Johansen, H.K. Mutations in the efflux pump regulator MexZ shift tissue colonization by Pseudomonas aeruginosa to a state of antibiotic tolerance. Nat. Commun. 2024, 15, 2584. [Google Scholar] [CrossRef]
- Cabot, G.; Ocampo-Sosa, A.A.; Tubau, F.; Macia, M.D.; Rodríguez, C.; Moya, B.; Zamorano, L.; Suárez, C.; Peña, C.; Martínez-Martínez, L.; et al. Spanish Network for Research in Infectious Diseases (REIPI). Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: Prevalence and impact on resistance in a Spanish multicenter study. Antimicrob. Agents Chemother. 2011, 55, 1906–1911. [Google Scholar] [CrossRef]
- Terzi, H.A.; Kulah, C.; Ciftci, I.H. The effects of active efflux pumps on antibiotic resistance in Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2014, 30, 2681–2687. [Google Scholar] [CrossRef] [PubMed]
- Abednezhad, A.; Bakhshi, B.; Moghadam, N.A.; Faraji, N.; Derakhshan-Nezhad, E.; Mohammadi Barzelighi, H. Characteristics of multiresistant Pseudomonas aeruginosa isolates from burn patients in Iran. Acta Microbiol. Immunol. Hung. 2023, 70, 29–37. [Google Scholar] [CrossRef]
- Ugwuanyi, F.C.; Ajayi, A.; Ojo, D.A.; Adeleye, A.I.; Smith, S.I. Evaluation of efux pump activity and bioflm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann. Clin. Microbiol. Antimicrob. 2021, 2, 11. [Google Scholar]
- Nasser, M.; Gayen, S.; Kharat, A.S. Prevalence of β-lactamase and antibiotic-resistant Pseudomonas aeruginosa in the Arab region. J. Glob. Antimicrob. Resist. 2020, 22, 152–160. [Google Scholar] [CrossRef]
- Reyes, J.; Komarow, L.; Chen, L.; Ge, L.; Hanson, B.M.; Cober, E.; Herc, E.; Alenazi, T.; Kaye, K.S.; Garcia-Diaz, J.; et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): A prospective cohort study. Lancet Microbe 2023, 4, e159–e170. [Google Scholar] [CrossRef]
- Haghi, F.; Zeighami, H.; Monazami, A.; Toutouchi, F.; Nazaralian, S.; Naderi, G. Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb. Pathog. 2018, 115, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Cabot, G.; Gómez-Zorrilla, S.; Zamorano, L.; Ocampo-Sosa, A.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; et al. Spanish Network for Research in Infectious Diseases (REIPI). Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin. Infect. Dis. 2015, 60, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Bosaeed, M.; Ahmad, A.; Alali, A.; Mahmoud, E.; Alswidan, L.; Alsaedy, A.; Aljuhani, S.; Alalwan, B.; Alshamrani, M.; Alothman, A. Experience with Ceftolozane-Tazobactam for the Treatment of Serious Pseudomonas aeruginosa Infections in Saudi Tertiary Care Center. Infect. Dis. 2020, 13, 117863372. [Google Scholar] [CrossRef] [PubMed]
Function | Gene | Strain Origin (n = 124) | |||||||
---|---|---|---|---|---|---|---|---|---|
Hospital-Acquired (n = 67) | Community-Acquired (n = 57) | p-Value | Total No. (%) | ||||||
Bacteremia (n = 24) No. (%) | Pneumonia (n = 16) No. (%) | Wound Infection (n = 27) No. (%) | UTI (n = 37) No. (%) | Respiratory Infection (n = 10) No. (%) | Catheter-Associated Infection (n = 10) No. (%) | ||||
Adhesins | pilA | 22 (91.6) | 16 (100) | 26 (96.2) | 32 (86.4) | 10 (100) | 9 (90) | 0.5373 | 115 (92.7) |
Biofilm formation | ndvB | 23 (95.8) | 16 (100) | 25 (92.5) | 34 (91.8) | 10 (100) | 9 (90) | 0.8466 | 117 (94.3) |
Outer membrane proteins | oprI | 24 (100) | 16 (100) | 27 (100) | 37 (100) | 10 (100) | 10 (100) | 1 | 124 (100) |
oprL | 24 (100) | 16 (100) | 27 (100) | 37 (100) | 10 (100) | 10 (100) | 1 | 124 (100) | |
Elastases | lasA | 24 (100) | 16 (100) | 27 (100) | 37 (100) | 10 (100) | 10 (100) | 1 | 124 (100) |
lasB | 24 (100) | 15 (93.7) | 26 (96.2) | 37 (100) | 10 (100) | 10 (100) | 0.5026 | 122 (98.3) | |
Alkaline protease | apr | 24 (100) | 15 (93.7) | 27 (100) | 37 (100) | 10 (100) | 10 (100) | 0.5027 | 123 (99.1) |
Alginate | algD | 24 (100) | 16 (100) | 27 (100) | 35 (94.5) | 10 (100) | 10 (100) | 0.7526 | 121 (97.5) |
Chaperone | groEL | 24 (100) | 16 (100) | 27 (100) | 37 (100) | 10 (100) | 10 (100) | 1 | 124 (100) |
Epoxide hydrolase | cif | 24 (100) | 16 (100) | 26 (96.2) | 35 (94.5) | 10 (100) | 10 (100) | 0.9227 | 121 (97.5) |
Efflux pump system (antibiotic resistance) | mexB | 24 (100) | 16 (100) | 27 (100) | 36 (97.2) | 10 (100) | 10 (100) | 1 | 123 (99.1) |
mexF | 24 (100) | 16 (100) | 27 (100) | 35 (94.5) | 10 (100) | 10 (100) | 1 | 122 (98.3) | |
mexY | 23 (95.8) | 16 (100) | 27 (100) | 37 (100) | 10 (100) | 10 (100) | 0.4839 | 123 (99.1) | |
mexZ | 24 (100) | 16 (100) | 27 (100) | 36 (97.2) | 10 (100) | 9 (90) | 0.3956 | 122 (98.3) |
Antibiotic Group | Gene | Strain Origin (n = 124) | |||||||
---|---|---|---|---|---|---|---|---|---|
Hospital-Acquired (n = 67) | Community-Acquired (n = 57) | p-Value | Total No. (%) | ||||||
Bacteremia (n = 24) No. (%) | Pneumonia (n = 16) No. (%) | Wound Infection (n = 27) No. (%) | UTI (n = 37) No. (%) | Respiratory Infection (n = 10) No. (%) | Catheter-Associated Infection (n = 10) No. (%) | ||||
Beta-lactams | Ampicillin (AM) | 24 (100) | 16 (100) | 26 (96.2) | 37 (100) | 10 (100) | 9 (90) | 0.6992 | 120 (96.7) |
Carbenicillin (CB) | 24 (100) | 16 (100) | 27 (100) | 37 (100) | 9 (90) | 10 (100) | 0.1613 | 122 (98.3) | |
Cefalotin (CF) | 24 (100) | 16 (100) | 27 (100) | 37 (100) | 10 (100) | 10 (100) | 1 | 121 (97.5) | |
Cefotaxime (CFX) | 22 (91.6) | 16 (100) | 25 (92.5) | 35 (94.5) | 8 (80) | 7 (70) | 0.1026 | 108 (87) | |
Quinolones | Ciprofloxacin (CPF) | 16 (66.6) | 9 (56.2) | 12 (44.4) | 23 (62.1) | 3 (30) | 2 (20) | 0.06182 | 63 (50.8) |
Norfloxacin (NOF) | 21 (87.5) | 13 (81.2) | 20 (74) | 33 (89.1) | 6 (60) | 7 (70) | 0.217 | 97 (78.2) | |
Phenicols | Chloramphenicol (CL) | 23 (95.8) | 14 (87.5) | 23 (85.1) | 37 (100) | 10 (100) | 10 (100) | 0.08525 | 114 (91.9) |
Nitrofurans | Nitrofurantoin (NF) | 19 (79.1) | 12 (75) | 18 (66.6) | 31 (83.7) | 7 (70) | 5 (50) | 0.2976 | 88 (70.9) |
Aminoglycosides | Amikacin (AK) | 17 (70.8) | 9 (56.2) | 14 (51.8) | 23 (62.1) | 3 (30) | 4 (40) | 0.2531 | 70 (56.4) |
Gentamicin (GE) | 21 (87.5) | 13 (81.2) | 18 (66.6) | 28 (75.6) | 6 (60) | 7 (70) | 0.4363 | 93 (75) | |
Netilmycin (NET) | 17 (70.8) | 12 (75) | 16 (59.2) | 29 (78.3) | 4 (40) | 4 (40) | 0.08111 | 78 (62.9) | |
Sulfonamide/Trimethoprim | Sulfamethoxazole/trime thoprim (SXT) | 24 (100) | 16 (100) | 27 (100) | 36 (97.2) | 10 (100) | 10 (100) | 1 | 120 (96.7) |
Multidrug-Resistant (n = 124) (Different Antibiotic Group) | No. of Antibiotic Groups | No. (%) |
3 | 0 (0) | |
4 | 0 (0) | |
5 | 0 (0) | |
6 | 4 (3.2) | |
7 | 9 (7.2) | |
8 | 24 (19.3) | |
9 | 19 (15.3) | |
10 | 16 (12.9) | |
11 | 9 (7.2) | |
12 | 43 (34.6) |
Function | Gene | Hospital-Acquired (n = 67) No. (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta-Lactams | Quinolones | Phenicols | Nitrofurans | Aminoglycosides | Sulfonamide/ Trimethoprim | ||||||||
AM | CB | CF | CFX | CPF | NOF | CL | NF | AK | GE | NET | SXT | ||
Adhesins | pilA | 63 (94) | 64 (95.5) | 64 (95.5) | 60 (89.5) | 36 (53.7) | 51 (76.1) | 57 (85.0) | 46 (68.6) | 37 (55.2) | 49 (73.1) | 43 (64.1) | 64 (95.5) |
Biofilm formation | ndvB | 63 (94) | 64 (95.5) | 64 (95.5) | 60 (89.5) | 35 (52.2) | 52 (77.6) | 58 (86.5) | 46 (68.6) | 37 (55.2) | 49 (73.1) | 42 (62.6) | 64 (95.5) |
Outer membrane proteins | oprI | 66 (98.5) | 67 (100) | 67 (100) | 63 (94) | 37 (55.2) | 54 (80.6) | 60 (89.5) | 49 (73.1) | 40 (59.7) | 52 (77.6) | 45 (67.1) | 67 (100) |
oprL | 66 (98.5) | 67 (100) | 67 (100) | 63 (94) | 37 (55.2) | 54 (80.6) | 60 (89.5) | 49 (73.1) | 40 (59.7) | 52 (77.6) | 45 (67.1) | 67 (100) | |
Elastases | lasA | 66 (98.5) | 67 (100) | 67 (100) | 63 (94) | 37 (55.2) | 54 (80.6) | 60 (89.5) | 49 (73.1) | 40 (59.7) | 52 (77.6) | 45 (67.1) | 67 (100) |
lasB | 64 (95.5) | 65 (97) | 67 (100) | 61 (91.0) | 36 (53.7) | 52 (77.6) | 58 (86.5) | 48 (71.6) | 38 (56.7) | 50 (74.6) | 45 (67.1) | 65 (97) | |
Alkaline protease | apr | 65 (97) | 66 (98.5) | 66 (98.5) | 62 (92.5) | 37 (55.2) | 53 (79.1) | 59 (88.0) | 49 (73.1) | 39 (58.2) | 51 (76.1) | 45 (67.1) | 66 (98.5) |
Alginate | algD | 66 (98.5) | 66 (98.5) | 66 (98.5) | 62 (92.5) | 36 (53.7) | 53 (79.1) | 59 (88.0) | 49 (73.1) | 40 (59.7) | 51 (76.1) | 44 (65.6) | 66 (98.5) |
Chaperone | groEL | 66 (98.5) | 67 (100) | 67 (100) | 63 (94) | 37 (55.2) | 54 (80.6) | 60 (89.5) | 49 (73.1) | 40 (59.7) | 52 (77.6) | 45 (67.1) | 67(100) |
Epoxide hydrolase | cif | 65 (97) | 66 (98.5) | 66 (98.5) | 62 (92.5) | 37 (55.2) | 53 (79.1) | 59 (88.0) | 48 (71.6) | 39 (58.2) | 51 (76.1) | 44 (65.6) | 66 (98.5) |
Efflux pump system (antibiotic resistance) | mexB | 66 (98.5) | 67 (100) | 67 (100) | 63 (94) | 37 (55.2) | 54 (80.6) | 60 (89.5) | 49 (73.1) | 40 (59.7) | 52 (77.6) | 45 (67.1) | 67 (100) |
mexF | 66 (98.5) | 67 (100) | 67 (100) | 63 (94) | 37 (55.2) | 54 (80.6) | 60 (89.5) | 49 (73.1) | 40 (59.7) | 52 (77.6) | 45 (67.1) | 67 (100) | |
mexY | 65 (97) | 66 (98.5) | 66 (98.5) | 62 (92.5) | 37 (55.2) | 54 (80.6) | 49 (73.1) | 48 (71.6) | 39 (58.2) | 51 (76.1) | 44 (65.6) | 66 (98.5) | |
mexZ | 66 (98.5) | 67 (100) | 67 (100) | 63 (94) | 37 (55.2) | 54 (80.6) | 60 (89.5) | 49 (73.1) | 40 (59.7) | 52 (77.6) | 45 (67.1) | 67 (100) | |
p-value | 0.8315 | 0.1377 | 0.1377 | 0.9972 | 1 | 1 | 0.002491 | 1 | 1 | 1 | 1 | 0.1161 |
Function | Gene | Community-Acquired Infections (n = 57) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta-lactams | Quinolones | Phenicols | Nitrofurans | Aminoglycosides | Sulfonamide/Trimethoprim | ||||||||
AM | CB | CF | CFX | CPF | NOF | CL | NF | AK | GE | NET | SXT | ||
Adhesins | pilA | 50 (87.7) | 50 (87.7) | 51 (89.4) | 44 (77.1) | 26 (45.6) | 41 (71.9) | 51 (89.4) | 38 (66.6) | 26 (45.6) | 36 (63.1) | 34 (59.6) | 50 (87.7) |
Biofilm formation | ndvB | 52 (91.2) | 52 (91.2) | 53 (92.9) | 46 (80.7) | 27 (47.3) | 42 (73.6) | 53 (92.9) | 40 (70.1) | 26 (45.6) | 37 (64.9) | 35 (61.4) | 52 (91.2) |
Outer membrane proteins | oprI | 56 (98.2) | 56 (98.2) | 57 (100) | 50 (87.7) | 28 (49.1) | 46 (80.7) | 57 (100) | 43 (75.4) | 30 (52.6) | 41 (71.9) | 37 (64.9) | 56 (98.2) |
oprL | 56 (98.2) | 56 (98.2) | 57 (100) | 50 (87.7) | 28 (49.1) | 46 (80.7) | 57 (100) | 43 (75.4) | 30 (52.6) | 41 (71.9) | 37 (64.9) | 56 (98.2) | |
Elastases | lasA | 56 (98.2) | 56 (98.2) | 57 (100) | 50 (87.7) | 28 (49.1) | 46 (80.7) | 57 (100) | 43 (75.4) | 30 (52.6) | 41 (71.9) | 37 (64.9) | 56 (98.2) |
lasB | 56 (98.2) | 56 (98.2) | 57 (100) | 50 (87.7) | 28 (49.1) | 46 (80.7) | 57 (100) | 43 (75.4) | 31 (54.3) | 41 (71.9) | 37 (64.9) | 56 (98.2) | |
Alkaline protease | apr | 56 (98.2) | 56 (98.2) | 57 (100) | 50 (87.7) | 28 (49.1) | 46 (80.7) | 57 (100) | 43 (75.4) | 30 (52.6) | 41 (71.9) | 37 (64.9) | 56 (98.2) |
Alginate | algD | 54 (94.7) | 54 (94.7) | 55 (96.4) | 48 (84.2) | 27 (47.3) | 44 (77.1) | 55 (96.4) | 42 (73.6) | 30 (52.6) | 40 (70.1) | 36 (63.1) | 54 (94.7) |
Chaperone | groEL | 56 (98.2) | 56 (98.2) | 57 (100) | 50 (87.7) | 28 (49.1) | 46 (80.7) | 57 (100) | 43 (75.4) | 30 (52.6) | 41 (71.9) | 37 (64.9) | 56 (98.2) |
Epoxide hydrolase | cif | 54 (94.7) | 54 (94.7) | 55 (96.4) | 48 (84.2) | 27 (47.3) | 44 (77.1) | 55 (96.4) | 41 (71.9) | 28 (49.1) | 39 (68.4) | 35 (61.4) | 54 (94.7) |
Efflux pump system (antibiotic resistance) | mexB | 55 (96.4) | 55 (96.4) | 56 (98.2) | 49 (85.9) | 27 (47.3) | 45 (78.9) | 56 (98.2) | 42 (73.6) | 29 (50.8) | 40 (70.1) | 36 (63.1) | 55 (96.4) |
mexF | 54 (94.7) | 54 (94.7) | 55 (96.4) | 48 (84.2) | 26 (45.6) | 45 (78.9) | 55 (96.4) | 41 (71.9) | 29 (50.8) | 40 (70.1) | 35 (61.4) | 54 (94.7) | |
mexY | 56 (98.2) | 56 (98.2) | 57 (100) | 50 (87.7) | 28 (49.1) | 45 (78.9) | 57 (100) | 43 (75.4) | 30 (52.6) | 41 (71.9) | 37 (64.9) | 56 (98.2) | |
mexZ | 54 (94.7) | 54 (94.7) | 55 (96.4) | 48 (84.2) | 27 (47.3) | 46 (80.7) | 55 (96.4) | 41 (71.9) | 30 (52.6) | 41 (71.9) | 35 (61.4) | 54 (94.7) | |
p-value | 0.2267 | 0.2267 | 0.001567 | 0.9592 | 1 | 0.9889 | 0.001567 | 0.9989 | 1 | 0.9987 | 0.9954 | 0.2267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monroy-Pérez, E.; Herrera-Gabriel, J.P.; Olvera-Navarro, E.; Ugalde-Tecillo, L.; García-Cortés, L.R.; Moreno-Noguez, M.; Martínez-Gregorio, H.; Vaca-Paniagua, F.; Paniagua-Contreras, G.L. Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections. Pathogens 2024, 13, 868. https://doi.org/10.3390/pathogens13100868
Monroy-Pérez E, Herrera-Gabriel JP, Olvera-Navarro E, Ugalde-Tecillo L, García-Cortés LR, Moreno-Noguez M, Martínez-Gregorio H, Vaca-Paniagua F, Paniagua-Contreras GL. Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections. Pathogens. 2024; 13(10):868. https://doi.org/10.3390/pathogens13100868
Chicago/Turabian StyleMonroy-Pérez, Eric, Jennefer Paloma Herrera-Gabriel, Elizabeth Olvera-Navarro, Lorena Ugalde-Tecillo, Luis Rey García-Cortés, Moisés Moreno-Noguez, Héctor Martínez-Gregorio, Felipe Vaca-Paniagua, and Gloria Luz Paniagua-Contreras. 2024. "Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections" Pathogens 13, no. 10: 868. https://doi.org/10.3390/pathogens13100868
APA StyleMonroy-Pérez, E., Herrera-Gabriel, J. P., Olvera-Navarro, E., Ugalde-Tecillo, L., García-Cortés, L. R., Moreno-Noguez, M., Martínez-Gregorio, H., Vaca-Paniagua, F., & Paniagua-Contreras, G. L. (2024). Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections. Pathogens, 13(10), 868. https://doi.org/10.3390/pathogens13100868