From Trypomastigotes to Trypomastigotes: Analyzing the One-Way Intracellular Journey of Trypanosoma cruzi by Ultrastructure Expansion Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Ultrastructure Expansion Microscopy
3. Results
3.1. Intracellular Amastigogenesis and Basal Body Repositioning
3.2. Discrete Intermediate Forms Precede Intracellular Trypomastigogenesis
3.3. Are the Intracellular Epimastigotes a Non-Dividing Form?
3.4. Semi-Closed Nuclear Mitosis in Amastigotes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chagas, C. Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem. Inst. Oswaldo Cruz 1909, 1, 159–218. [Google Scholar] [CrossRef]
- Vickerman, K. The Diversity of the Kinetoplastid Flagellates. 1977. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19762501581 (accessed on 29 September 2024).
- De Souza, W. Cell biology of Trypanosoma cruzi. Int. Rev. Cytol. 1984, 86, 197–283. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.S.; Ávila, A.R.; De Souza, W.; Motta, M.C.M.; Cavalcanti, D.P. Revisiting the Trypanosoma cruzi metacyclogenesis: Morphological and ultrastructural analyses during cell differentiation. Parasites Vectors 2018, 11, 83. [Google Scholar] [CrossRef]
- Vidal, J.C.; De Souza, W. 3D FIB-SEM structural insights into the architecture of sub-pellicular microtubules of Trypanosoma cruzi epimastigotes. Biol. Cell 2022, 114, 203–210. [Google Scholar] [CrossRef]
- Alcantara, C.L.; Souza, W.; Cunha E Silva, N.L. The cytostome-cytopharynx complex of intracellular and extracellular amastigotes of Trypanosoma cruzi exhibit structural and functional differences. Cell. Microbiol. 2021, 23, e13346. [Google Scholar] [CrossRef]
- Alcantara, C.D.L.; Vidal, J.C.; De Souza, W.; Cunha-e-Silva, N.L. The three-dimensional structure of the cytostome-cytopharinx complex of Trypanosoma cruzi epimastigotes. J. Cell Sci. 2014, 127, 2227–2237. [Google Scholar] [CrossRef]
- Meyer, H.; De Souza, W. Electron Microscopic Study of Trypanosoma cruzi Periplast in Tissue Cultures. I. Number and Arrangement of the Peripheral Microtubules in the Various Forms of the Parasite’s Life Cycle. J. Protozool. 1976, 23, 385–390. [Google Scholar] [CrossRef]
- Meyer, H.; Porter, K.R. A study of Trypanosoma cruzi with the electron microscope. Parasitology 1954, 44, 16–23. [Google Scholar] [CrossRef]
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Andrews, N.W.; Hong, K.; Robbins, E.S.; Nussenzweig, V. Stage-Specific Surface Antigens Expressed during the Morphogenesis of Vertebrate Forms of Trypanosoma cruzi. Exp. Parasitol. 1987, 64, 474–484. [Google Scholar] [CrossRef]
- Pan, S.C. Trypanosoma cruzi: Ultrastructure of morphogenesis in vitro and in vivo. Exp. Parasitol. 1978, 46, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Faucher, J.-F.; Baltz, T.; Petry, K.G. Detection of an “epimastigote-like” intracellular stage of Trypanosoma cruzi. Parasitol. Res. 1995, 81, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Almeida-de-Faria, M.; Freymüller, E.; Colli, W.; Alves, M.J.M. Trypanosoma cruzi: Characterization of an Intracellular Epimastigote-like Form. Exp. Parasitol. 1999, 92, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Valdéz, F.J.; Padilla, A.; Wang, W.; Orr, D.; Tarleton, R.L. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. eLife 2018, 7, e34039. [Google Scholar] [CrossRef]
- Tardieux, I.; Webster, P.; Ravesloot, J.; Boron, W.; Lunn, J.A.; Heuser, J.E.; Andrews, N.W. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 1992, 71, 1117–1130. [Google Scholar] [CrossRef]
- Milder, R.; Kloetzel, J. The development of Trypanosoma cruzi in macrophages in vitro. Interaction with lysosomes and host cell fate. Parasitology 1980, 80, 139–145. [Google Scholar] [CrossRef]
- Andrews, N.W.; Whitlow, M.B. Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Mol. Biochem. Parasitol. 1989, 33, 249–256. [Google Scholar] [CrossRef]
- Meirelles, M.N.; De Souza, W. Interaction of lysosomes with endocytic vacuoles in macrophages simultaneously infected with Trypanosoma cruzi and Toxoplasma gondii. J. Submicrosc. Cytol. 1983, 15, 889–896. [Google Scholar]
- Tomasina, R.; González, F.C.; Echeverría, S.; Cabrera, A.; Robello, C. Insights into the Cell Division of Neospora caninum. Microorganisms 2024, 12, 61. [Google Scholar] [CrossRef]
- de Hernández, M.A.; Peralta, G.M.; Vena, R.; Alonso, V.L. Ultrastructural Expansion Microscopy in Three In Vitro Life Cycle Stages of Trypanosoma cruzi. J. Vis. Exp. 2023, 195, e65381. [Google Scholar] [CrossRef]
- Liffner, B.; Cepeda Diaz, A.K.; Blauwkamp, J.; Anaguano, D.; Frolich, S.; Muralidharan, V.; Wilson, D.W.; Dvorin, J.D.; Absalon, S. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. eLife 2023, 12, RP88088. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Pacheco, N.; Tosetti, N.; Krishnan, A.; Haase, R.; Maco, B.; Suarez, C.; Ren, B.; Soldati-Favre, D. Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex. mBio 2021, 12, e02057-21. [Google Scholar] [CrossRef] [PubMed]
- Bertiaux, E.; Balestra, A.C.; Bournonville, L.; Louvel, V.; Maco, B.; Soldati-Favre, D.; Brochet, M.; Guichard, P.; Hamel, V. Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. PLoS Biol. 2021, 19, e3001020. [Google Scholar] [CrossRef]
- Gambarotto, D.; Hamel, V.; Guichard, P. Chapter 4—Ultrastructure expansion microscopy (U-ExM). In Methods in Cell Biology; Guichard, P., Hamel, V., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 57–81. [Google Scholar] [CrossRef]
- Sinclair, A.N.; de Graffenried, C.L. More than Microtubules: The Structure and Function of the Subpellicular Array in Trypanosomatids. Trends Parasitol. 2019, 35, 760–777. [Google Scholar] [CrossRef] [PubMed]
- Milder, R.; Dean, M.P. The Cytostome of Trypanosoma cruzi and T. conorhini. J. Protozool. 1969, 16, 730–737. [Google Scholar] [CrossRef]
- Romaniuk, M.A.; Frasch, A.C.; Cassola, A. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi. PLoS Pathog. 2018, 14, e1007059. [Google Scholar] [CrossRef]
- De Souza, W.; Barrias, E.S. May the epimastigote form of Trypanosoma cruzi be infective? Acta Trop. 2020, 212, 105688. [Google Scholar] [CrossRef]
- Solari, A.J. The 3-dimensional fine structure of the mitotic spindle in Trypanosoma cruzi. Chromosoma 1980, 78, 239–255. [Google Scholar] [CrossRef]
- De Sousa, A.S.; Vermeij, D.; Ramos, A.N., Jr.; Luquetti, A.O. Chagas disease. Lancet 2024, 403, 203–218. [Google Scholar] [CrossRef]
- De Carvalho, T.M.; de Souza, W. Early events related with the behaviour of Trypanosoma cruzi within an endocytic vacuole in mouse peritoneal macrophages. Cell Struct. Funct. 1989, 14, 383–392. [Google Scholar] [CrossRef]
- Araujo, A.A.; Philippe, B. The hows and whys of amastigote flagellum motility in Trypanosoma cruzi. mBio 2023, 14, e00531-23. [Google Scholar] [CrossRef]
- Kurup, S.P.; Tarleton, R.L. The Trypanosoma cruzi Flagellum Is Discarded via Asymmetric Cell Division following Invasion and Provides Early Targets for Protective CD8+ T Cells. Cell Host Microbe 2014, 16, 439–449. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomasina, R.; González, F.C.; Cabrera, A.; Basmadjián, Y.; Robello, C. From Trypomastigotes to Trypomastigotes: Analyzing the One-Way Intracellular Journey of Trypanosoma cruzi by Ultrastructure Expansion Microscopy. Pathogens 2024, 13, 866. https://doi.org/10.3390/pathogens13100866
Tomasina R, González FC, Cabrera A, Basmadjián Y, Robello C. From Trypomastigotes to Trypomastigotes: Analyzing the One-Way Intracellular Journey of Trypanosoma cruzi by Ultrastructure Expansion Microscopy. Pathogens. 2024; 13(10):866. https://doi.org/10.3390/pathogens13100866
Chicago/Turabian StyleTomasina, Ramiro, Fabiana C. González, Andrés Cabrera, Yester Basmadjián, and Carlos Robello. 2024. "From Trypomastigotes to Trypomastigotes: Analyzing the One-Way Intracellular Journey of Trypanosoma cruzi by Ultrastructure Expansion Microscopy" Pathogens 13, no. 10: 866. https://doi.org/10.3390/pathogens13100866
APA StyleTomasina, R., González, F. C., Cabrera, A., Basmadjián, Y., & Robello, C. (2024). From Trypomastigotes to Trypomastigotes: Analyzing the One-Way Intracellular Journey of Trypanosoma cruzi by Ultrastructure Expansion Microscopy. Pathogens, 13(10), 866. https://doi.org/10.3390/pathogens13100866