Effectiveness of an Infection Control Program Among the Ysleta del Sur Pueblo in Preventing COVID-19-Related Hospitalizations and Deaths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Infection Control Program
2.2. SREC Infection Control Program
2.3. Data Collection and Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Gorbalenya, A.; Baker, S.; Baric, R.S.; de Groot, R.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Rev. Microbiol. 2020, 5, 536–544. [Google Scholar]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Khadka, R.B.; Bhandari, R.; Gyawali, R.; Neupane, B.; Pant, D. Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19). Nov. Res. Microbiol. J. 2020, 4, 675–687. [Google Scholar]
- Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses 2021, 13, 202. [Google Scholar] [CrossRef]
- Bushmaker, T.; Yinda, C.K.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Adney, D.; Bushmaker, C.; van Doremalen, N.; Fischer, R.J.; Plowright, R.K.; et al. Comparative Aerosol and Surface Stability of SARS-CoV-2 Variants of Concern. Emerg. Infect. Dis. 2023, 29, 1033–1037. [Google Scholar] [CrossRef]
- Amirfakhryan, H.; Safari, F. Outbreak of SARS-CoV2: Pathogenesis of infection and cardiovascular involvement. Hellenic. J. Cardiol. 2021, 62, 13–23. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, J.; Hong, S.P.; Choi, S.Y.; Yang, M.J.; Ju, Y.S.; Kim, Y.T.; Kim, H.M.; Rahman, M.T.; Chung, M.K.; et al. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J. Clin. Investig. 2021, 131, e148517. [Google Scholar] [CrossRef]
- Hou, Y.J.; Okuda, K.; Edwards, C.E.; Martinez, D.R.; Asakura, T.; Dinnon, K.H.; Kato, T.; Lee, R.E.; Yount, B.L.; Mascenik, T.M.; et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020, 182, 429–446.e14. [Google Scholar] [CrossRef]
- Khan, M.; Yoo, S.J.; Clijsters, M.; Backaert, W.; Vanstapel, A.; Speleman, K.; Lietaer, C.; Choi, S.; Hether, T.D.; Marcelis, L.; et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021, 184, 5932–5949.e15. [Google Scholar] [CrossRef] [PubMed]
- Alomair, B.M.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Buhadily, A.K.; Alexiou, A.; Papadakis, M.; Alshammari, M.A.; Saad, H.M.; Batiha, G.E. Mixed storm in SARS-CoV-2 infection: A narrative review and new term in the COVID-19 era. Immun. Inflamm. Dis. 2023, 11, e838. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modeling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef]
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease 2019 Situation Report 51-11th March 2020. WHO Bull. 2020, 2019, 2633. [Google Scholar]
- Kuldeep, D.; Sharun, K.; Ruchi, T.; Shubhankar, S.; Sudipta, B.; Yashpal, S.M.; Karam, P.S.; Wanpen, C.D.; Katterine, B.A.; Alfonso, J.R.M. Coronavirus Disease 2019-COVID-19. Clin. Microbiol. Rev. 2020, 33, 10-1128. [Google Scholar]
- Ayittey, F.K.; Ayittey, M.K.; Chiwero, N.B.; Kamasah, J.S.; Dzuvor, C. Economic impacts of Wuhan 2019-nCoV on China and the world. J. Med. Virol. 2020, 92, 473–475. [Google Scholar] [CrossRef]
- Bliss, F.; City, H.; Dulce, A.; Elizario, S. El Paso Strong COVID Tracker. Available online: https://www.epstrong.org/results.php (accessed on 30 January 2023).
- Centers for Disease Control and Prevention. COVID Data Tracker; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2023.
- CDC. The Science of Masking to Control COVID-19 Most SARS-CoV-2 Infections Are Spread by People without Symptoms; CDC: Atlanta, GA, USA, 2020.
- Centers for Disease Control and Prevention-CDC. Guidance for Cleaning and Disinfecting Public Spaces; Coronavirus Disease 2019; CDC: Atlanta, GA, USA, 2020; pp. 1–9.
- U.S. Census Bureau 2020. Profiles. Available online: https://data.census.gov/profile/Ysleta_del_Sur_Pueblo_and_Off-Reservation_Trust_Land,_TX?g=2500000US4755 (accessed on 2 October 2024).
- Centers for Disease Control and Prevention. ACIP Evidence to Recommendations (EtR) for Use of Bivalent COVID-19 Vaccine Booster Doses under an Emergency Use Authorization; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2023.
- Baranova, A.; Cao, H.; Teng, S.; Zhang, F. A phenome-wide investigation of risk factors for severe COVID-19. J. Med. Virol. 2023, 95, e28264. [Google Scholar] [CrossRef]
- Muhamad, S.A.; Ugusman, A.; Kumar, J.; Skiba, D.; Hamid, A.A.; Aminuddin, A. COVID-19 and Hypertension: The What, the Why, and the How. Front. Physiol. 2021, 12, 665064. [Google Scholar] [CrossRef] [PubMed]
- Baghani, M.; Fathalizade, F.; Loghman, A.H.; Samieefar, N.; Ghobadinezhad, F.; Rashedi, R.; Baghsheikhi, H.; Sodeifian, F.; Rahimzadegan, M.; Akhlaghdoust, M. COVID-19 vaccine hesitancy worldwide and its associated factors: A systematic review and meta-analysis. Sci. One Health 2023, 2, 100048. [Google Scholar] [CrossRef] [PubMed]
- Newman, P.A.; Dinh, D.A.; Nyoni, T.; Allan, K.; Fantus, S.; Williams, C.C.; Tepjan, S.; Reid, L.; Guta, A. COVID-19 Vaccine Hesitancy and Under-Vaccination among Marginalized Populations in the United States and Canada: A Scoping Review. J. Racial Ethn. Health Disparities 2023. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. COVID-19 Vaccines for People Who Are NOT Moderately or Severely Immunocompromised; CDC: Atlanta, GA, USA, 2024.
Male | Female | Total | p-Value | |
---|---|---|---|---|
Tribal members | 27.30% | 25.60% | 52.90% | 0.793 |
Non-tribal members | 24.80% | 22.30% | 47.10% |
El Paso County | SREC | p-Value | |
---|---|---|---|
Population | 837,654 | 523 | |
COVID positive cases | 321,827 (38.4%) | 320 (61.2%) | <0.0001 * |
Hospitalizations | 19,949 (6.2%) | 0 (0%) | <0.0001 * |
Deaths | 3698 (1.15%) | 0 (0%) | 0.0058 * |
Vaccination rate | 79.26% | 98.47% | <0.0001 * |
EP COVID-19 Deaths (3698) | SREC COVID-19 Positive (320) | p-Value | |
---|---|---|---|
Hypertension | 10.00% | 16.90% | 0.0003 * |
Diabetic/pre-diabetic | 11.00% | 14.70% | 0.0528 |
Chronic lung disease | 6.00% | 8.77% | 0.054 |
Cardiovascular disease | 6.00% | 4.70% | 0.3876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, C.M.; Aparicio, V.; Calzada, G.; Mena, A.; Spencer, C.T. Effectiveness of an Infection Control Program Among the Ysleta del Sur Pueblo in Preventing COVID-19-Related Hospitalizations and Deaths. Pathogens 2024, 13, 913. https://doi.org/10.3390/pathogens13100913
Torres CM, Aparicio V, Calzada G, Mena A, Spencer CT. Effectiveness of an Infection Control Program Among the Ysleta del Sur Pueblo in Preventing COVID-19-Related Hospitalizations and Deaths. Pathogens. 2024; 13(10):913. https://doi.org/10.3390/pathogens13100913
Chicago/Turabian StyleTorres, Cameron M., Victoria Aparicio, Gabriela Calzada, Ascension Mena, and Charles T. Spencer. 2024. "Effectiveness of an Infection Control Program Among the Ysleta del Sur Pueblo in Preventing COVID-19-Related Hospitalizations and Deaths" Pathogens 13, no. 10: 913. https://doi.org/10.3390/pathogens13100913
APA StyleTorres, C. M., Aparicio, V., Calzada, G., Mena, A., & Spencer, C. T. (2024). Effectiveness of an Infection Control Program Among the Ysleta del Sur Pueblo in Preventing COVID-19-Related Hospitalizations and Deaths. Pathogens, 13(10), 913. https://doi.org/10.3390/pathogens13100913