Escherichia coli Occurrence and Antimicrobial Resistance in a Swine Slaughtering Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Escherichia coli Isolation
2.3. Antimicrobial Resistance Phenotypic Profile
2.3.1. Antimicrobial Sensitivity Profile by Disk Diffusion
2.3.2. Detection and Confirmation of Extended-Spectrum Beta-Lactamase (ESBL) Producing E. coli
2.4. Statistical Analysis
3. Results
3.1. Isolation of Escherichia coli
3.2. Antimicrobial Resistance Profile
3.3. Multidrug Resistance Profiles
3.4. Comparison of Bacterial Resistance Profile to Antimicrobials at Different Collection Points
3.5. Bacterial Resistance Profile of ESBL-Producing Strings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M. Veterinary Drug Usage and Antimicrobial Resistance in Bacteria of Animal Origin. Basic Clin. Pharmacol. Toxicol. 2005, 96, 271–281. [Google Scholar] [CrossRef]
- Lancini, J.B. Fatores exógenos na função gastrointestinal. In Fisiologia da Digestão e Absorção das Aves; Fundação Apinco de Ciências e Tecnologia: Campinas, Brazil, 1994; pp. 99–126. [Google Scholar]
- Moreno, M.A.; Domínguez, L.; Teshager, T.; Herrero, I.A.; Porrero, M.C. Antibiotic Resistance Monitoring: The Spanish Programme. The VAV Network. Red de Vigilancia de Resistencias Antibióticas En Bacterias de Origen Veterinario. Int. J. Antimicrob. Agents 2000, 14, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.M.; Beller, E.; Glasziou, P.; Clark, J.; Ranakusuma, R.W.; Byambasuren, O.; Bakhit, M.; Page, S.W.; Trott, D.; Del Mar, C. Is Antimicrobial Administration to Food Animals a Direct Threat to Human Health? A Rapid Systematic Review. Int. J. Antimicrob. Agents 2018, 52, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Shobrak, M.Y.; Abo-amer, A.E. Role of Wild Birds as Carriers of Multi-Drug Resistant Escherichia coli and Escherichia vulneris. Braz. J. Microbiol. 2014, 1209, 1199–1209. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-Spectrum β-Lactamase-Producing and AmpC-Producing Escherichia coli from Livestock and Companion Animals, and Their Putative Impact on Public Health: A Global Perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef]
- Zheng, H.; Zeng, Z.; Chen, S.; Liu, Y.; Yao, Q.; Deng, Y.; Chen, X.; Lv, L.; Zhuo, C.; Chen, Z.; et al. Prevalence and Characterisation of CTX-M β-Lactamases amongst Escherichia coli Isolates from Healthy Food Animals in China. Int. J. Antimicrob. Agents 2012, 39, 305–310. [Google Scholar] [CrossRef]
- Haenni, M.; Poirel, L.; Kieffer, N.; Châtre, P.; Saras, E.; Métayer, V.; Dumoulin, R.; Nordmann, P.; Madec, J.Y. Co-Occurrence of Extended Spectrum β Lactamase and MCR-1 Encoding Genes on Plasmids. Lancet Infect. Dis. 2016, 16, 281–282. [Google Scholar] [CrossRef]
- Barilli, E.; Vismarra, A.; Villa, Z.; Bonilauri, P.; Bacci, C. ESβL E. coli Isolated in Pig’s Chain: Genetic Analysis Associated to the Phenotype and Biofilm Synthesis Evaluation. Int. J. Food Microbiol. 2019, 289, 162–167. [Google Scholar] [CrossRef]
- Brisola, M.C. Antimicrobianos utilizando a Escherichia coli como biomarcadora. Master’s Thesis, State University of Santa Catarina, Chapecó, Brasil, 2018; pp. 1–67. [Google Scholar]
- Queenan, K.; Häsler, B.; Rushton, J. A One Health Approach to Antimicrobial Resistance Surveillance: Is There a Business Case for It? Int. J. Antimicrob. Agents 2016, 48, 422–427. [Google Scholar] [CrossRef]
- Nguyen-Viet, H.; Chotinun, S.; Schelling, E.; Widyastuti, W.; Khong, N.V.; Kakkar, M.; Beeche, A.; Jing, F.; Khamlome, B.; Tum, S.; et al. Reduction of Antimicrobial Use and Resistance Needs Sectoral-Collaborations with a One Health Approach: Perspectives from Asia. Int. J. Public Health 2017, 62, 3–5. [Google Scholar] [CrossRef] [PubMed]
- ISO 17604:2015; Microbiology of the Food Chain—Carcass Sampling for Microbiological Analysis. International Organization for Standardization: Geneva, Switzerland, 2015.
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Malvern, PA, USA, 2020; p. 332. [Google Scholar]
- Clinical and Laboratory Standards Institute. VET08 Performance Standards for Antimicrobial Disk; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance; EUCAST: Växjö, Sweden, 2017; pp. 1–43. [Google Scholar]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The Population Genetics of Commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Brenner, D.J.; Krieg, N.R.; Staley, J.R. Manual of Systematic Bacteriology, 2nd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Feng, P.; Weagant, S.D.; Grant, M.A.; Burkhardt, W. Enumeration of Escherichia coli and the Coliform Bacteria. In Bacteriological Analytical Manual (BAM); Food and Drug Administratio: Silver Spring, MD, USA, 2020. [Google Scholar]
- Jay, J.M. Microbiologia de Alimentos, 6th ed.; Artmed: Porto Alegre, Brazil, 2005. [Google Scholar]
- MAPA—Ministério Da Agricultura, Pecuária e Abastecimento. Portaria N° 711, de 1° de Novembro de 1995; MAPA—Ministério Da Agricultura, Pecuária e Abastecimento: Brasília, Brazil, 1995. [Google Scholar]
- Ministério DA Saúde. Plano de Ação Nacional de Prevenção e Controle Da Resistência Aos Antimicrobianos No Âmbito Da Saúde Única 2018–2022; Ministério DA Saúde: Brasília, Brazil, 2018; 23p. [Google Scholar]
- Bunci, S.; Sofos, J. Interventions to Control Salmonella Contamination during Poultry, Cattle and Pig Slaughter. Food Res. Int. 2012, 45, 641–655. [Google Scholar] [CrossRef]
- Terra, N.N.; Fries, L.L.M. A Qualidade Da Carne Suína e Sua Industrialização. I Conferência Virtual Int. sobre Qual. Carne Suína 2000, 1–5. [Google Scholar]
- Ministério DA Saúde. RESOLUÇÃO N° 216, DE 15 DE SETEMBRO DE 2004 Dispõe Sobre Regulamento Técnico de Boas Práticas Para Serviços de Alimentação; Ministério DA Saúde: Brasília, Brazil, 2004. [Google Scholar]
- Arguello, H.; Carvajal, A.; Collazos, J.A.; García-Feliz, C.; Rubio, P. Prevalence and Serovars of Salmonella Enterica on Pig Carcasses, Slaughtered Pigs and the Environment of Four Spanish Slaughterhouses. Food Res. Int. 2012, 45, 905–912. [Google Scholar] [CrossRef]
- Seixas, F.N.; Tochetto, R.; Ferraz, S.M. Presença de Salmonella sp. Em Carcaças Suínas Amostradas Em Diferentes Pontos Da Linha de Processamento. Ciência Anim. Bras. 2009, 10, 634–640. [Google Scholar]
- Mannion, C.; Fanning, J.; Mclernon, J.; Lendrum, L.; Gutierrez, M.; Duggan, S.; Egan, J. The Role of Transport, Lairage and Slaughter Processes in the Dissemination of Salmonella spp. in Pigs in Ireland. Food Res. Int. 2012, 45, 871–879. [Google Scholar] [CrossRef]
- OMS. Resistência Antimicrobiana; OMS: Geneva, Switzerland, 2020. [Google Scholar]
- van Breda, L.K.; Dhungyel, O.P.; Ward, M.P. Antibiotic Resistant Escherichia coli in Southeastern Australian Pig Herds and Implications for Surveillance. Zoonoses Public Health 2018, 65, e1–e7. [Google Scholar] [CrossRef]
- Aabed, K.; Moubayed, N.; Alzahrani, S. Antimicrobial Resistance Patterns among Different Escherichia coli Isolates in the Kingdom of Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 3776–3782. [Google Scholar] [CrossRef]
- Franco, J.M.P.L.; De Carvalho Mendes, R.; Cabral, F.R.F.; Menezes, C.D.A. O Papel Do Farmacêutico Frente à Resistência Bacteriana Ocasionada Pelo Uso Irracional de Antimicrobianos. Sem. Acadêmica 2015, 1, 1–17. [Google Scholar]
- Costa, A.L.P. Resistência Bacteriana Aos Antibióticos: Uma Perspectiva Do Fenômeno Biológico, Suas Consequências e Estratégias de Contenção. UNIFAP 2016, 7, 45–57. [Google Scholar]
- Franco, R.M. Escherichia coli: Ocorrência Em Suínos Abatidos Na Grande Rio e Sua Viabilidade Experimental Em Lingüiça Frescal Tipo Toscana. Ph.D. Thesis, Federal Fluminense University, Niterói, Brazil, 2002. [Google Scholar]
- Jakobsen, L.; Spangholm, D.J.; Pedersen, K.; Jensen, L.B.; Emborg, H.D.; Agersø, Y.; Aarestrup, F.M.; Hammerum, A.M.; Frimodt-Møller, N. Broiler Chickens, Broiler Chicken Meat, Pigs and Pork as Sources of ExPEC Related Virulence Genes and Resistance in Escherichia coli Isolates from Community-Dwelling Humans and UTI Patients. Int. J. Food Microbiol. 2010, 142, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, R.H.; McEwen, S.A.; Meek, A.H.; Friendship, R.M.; Black, W.D.; Clarke, R.C. Sampling Considerations for Herd-Level Measurement of Faecal Escherichia coli Antimicrobial Resistance in Finisher Pigs. Epidemiol. Infect. 1999, 122, 485–496. [Google Scholar] [CrossRef]
- Brasilica, A.V.; Franco, R.M.; Pirola, S.; Mantilla, S. Resistência antimicrobiana de Escherichia coli isoladas de carne e dejetos suínos. Acta Vet. Bras. 2010, 4, 31–36. [Google Scholar]
- MAPA—Ministério Da Agricultura, Pecuária e Abastecimento. Instrução Normativa 9/2003; MAPA—Ministério Da Agricultura, Pecuária e Abastecimento: Brasília, Brazil, 2003. [Google Scholar]
- Rosengren, L.B.; Waldner, C.L.; Reid-Smith, R.J. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs. Appl. Environ. Microbiol. 2009, 75, 1373–1380. [Google Scholar] [CrossRef]
- Arcangioli, M.A.; Leroy-Setrin, S.; Martel, J.L.; Chaslus-Dancla, E. Evolution of Chloramphenicol Resistance, with Emergence of Cross-Resistance to Florfenicol, in Bovine Salmonella Typhimurium Strains Implicates Definitive Phage Type (DT) 104. J. Med. Microbiol. 2000, 49, 103–110. [Google Scholar] [CrossRef]
- Bolton, L.F.; Kelley, L.C.; Lee, M.D.; Fedorka-Cray, P.J.; Maurer, J.J. Detection of Multidrug-Resistant Salmonella enterica serotype typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol. J. Clin. Microbiol. 1999, 37, 1348–1351. [Google Scholar] [CrossRef]
- Silva, F.F.P.; Santos, M.A.A.; Schmidt, V. Resistência a Antimicrobianos de Escherichia coli Isolada de Dejetos Suínos Em Esterqueiras. Arq. Bras. Med. Vet. Zootec. 2008, 60, 762–765. [Google Scholar] [CrossRef]
- Wang, X.M.; Jiang, H.X.; Liao, X.P.; Liu, J.H.; Zhang, W.J.; Zhang, H.; Jiang, Z.G.; Lü, D.H.; Xiang, R.; Liu, Y.H. Antimicrobial Resistance, Virulence Genes, and Phylogenetic Background in Escherichia coli Isolates from Diseased Pigs. FEMS Microbiol. Lett. 2010, 306, 15–21. [Google Scholar] [CrossRef]
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of Resistance in Multiple-Antibiotic-Resistant Escherichia coli Strains of Human, Animal, and Food Origins. Antimicrob. Agents Chemother. 2004, 48, 3996–4001. [Google Scholar] [CrossRef] [PubMed]
- Thorsteinsdottir, T.R.; Haraldsson, G.; Fridriksdottir, V.; Kristinsson, K.G.; Gunnarsson, E. Prevalence and Genetic Relatedness of Antimicrobial-Resistant Escherichia coli Isolated from Animals, Foods and Humans in Iceland. Zoonoses Public Health 2010, 57, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Giuriatti, J. Detecção De Beta-Lactamases De Espectro Estendido (Esbls) Em Isolados De Salmonella Provenientes De Carnes De Frango. Master’s Thesis, Université de l’État de Santa Catarina, Florianópolis, Brazil, 2017. [Google Scholar]
- Doregiraee, F.; Alebouyeh, M.; Nayeri Fasaei, B.; Charkhkar, S.; Tajeddin, E.; Zali, M.R. Changes in Antimicrobial Resistance Patterns and Dominance of Extended Spectrum β-Lactamase Genes among Faecal Escherichia coli Isolates from Broilers and Workers during Two Rearing Periods. Ital. J. Anim. Sci. 2018, 17, 815–824. [Google Scholar] [CrossRef]
Sample Types | Sampling Point | Method | Analytical Unit | Total |
---|---|---|---|---|
Animals | Carcasses—After bleeding | Swab | 400 cm2 | 100 |
Carcasses—After scalding | Swab | 400 cm2 | 100 | |
Carcasses—After evisceration | Swab | 400 cm2 | 100 | |
Carcasses—After the final wash | Swab | 400 cm2 | 100 | |
Feces | Swab | Unity | 100 | |
Environment | Water (residual and potable) | Flask | 100 mL | 20 |
Equipment and utensils surface | Swab | 400 cm2 | 47 | |
Humans | Employee feces | Swab | Unity | 10 |
Food (final products) | Rump, rib, loin cup, shoulder, and shank | Swab | 400 cm2 | 45 |
Total | 622 |
Origin | Sampling Point | n of Samples | Positive Samples—n (%) | Isolates—n (%) | MDR—n (%) |
---|---|---|---|---|---|
Animals | AF | 100 | 93 (93) | 346 (27.46) | 319 (92.19) |
AB | 100 | 86 (86) | 258 (20.47) | 242 (93.79) | |
AS | 100 | 66 (66) | 163 (12.93) | 150 (92.02) | |
AE | 100 | 75 (75) | 175 (13.88) | 128 (73.14) | |
AW | 100 | 70 (70) | 164 (13.01) | 118 (71.95) | |
Pork products | FP | 45 | 32 (71) | 70 | 39 (54.92) |
Environment | PW and RW | 20 | 0 (0) | 0 (0) | 0 (0) |
EQ | 47 | 27 (57.4) | 43 (3.41) | 16 (37.20) | |
Humans | HF | 10 | 9 (90) | 41 (3.25) | 5 (12.19) |
Total | 622 | 458 (73.6) | 1260 (100) | 1017 (80.71) |
Profile | Origins of Isolates | Frequency (%) |
---|---|---|
AMO-TET-CIP-CLO | EN, AF, HF, AS, FP, AW, AB, AE | 179 (14.21) |
AMO-TET-CIP-SUT-CLO | EN, AF, AS, AW, AB, AE | 158 (12.54) |
AMO-TET-CLO | EN, AF, HF, AS, FP, AW, AB, AE | 129 (10.24) |
AMO-TET-SUT-CLO | EN, AF, AS, AW, AB, AE | 114 (9.05) |
TET-CIP-SUT-CLO | EN, AF, AS, FP, AW, AB, AE | 70 (5.56) |
TET-SUT-CLO | AF, AS, AW, AB, AE | 58 (4.60) |
AMO-GEN-TET-CIP-SUT-CLO | EN, AF, AS, AW, AB, AE | 47 (3.73) |
AMO-GEN-TET-SUT-CLO | EN, AF, AS, AW, AB, AE | 45 (3.57) |
AMO-TET-CIP | AF, AS, AB, AE | 18 (1.43) |
TET-CIP-CLO | AF, AW, AB, FP | 14 (1.11) |
GEN-TET-SUT-CLO | AF, AS, AW, AB, AE | 10 (0.79) |
Sample | Reference | Odds Ratio | Confidence Interval 95% | Statistical Difference | |
---|---|---|---|---|---|
EN | AS | 1.43 | 0.70 | 2.94 | No |
EN | FP | 1.82 | 0.76 | 4.35 | No |
EN | AW | 1.72 | 0.84 | 3.57 | No |
AS | FP | 1.27 | 0.59 | 2.70 | No |
AS | AW | 1.20 | 0.66 | 2.17 | No |
AS | AE | 1.54 | 0.83 | 2.86 | No |
FP | AE | 1.22 | 0.55 | 2.70 | No |
AW | AE | 1.28 | 0.69 | 2.38 | No |
HF | AF | 1.48 | 0.16 | 13.44 | No |
AB | AF | 2.16 | 0.83 | 5.62 | No |
AS | HF | 4.64 | 0.56 | 38.29 | No |
FP | HF | 3.66 | 0.42 | 31.98 | No |
AW | HF | 3.86 | 0.47 | 31.95 | No |
AB | HF | 1.47 | 0.17 | 12.53 | No |
AW | FP | 1.05 | 0.49 | 2.29 | No |
AE | AB | 2.05 | 0.99 | 4.23 | No |
HF | AE | 3.00 | 0.36 | 24.98 | Yes |
AF | EN | 10.00 | 3.70 | 25.00 | Yes |
HF | EN | 6.67 | 0.78 | 50.00 | Yes |
AB | EN | 4.55 | 2.04 | 10.00 | Yes |
AE | EN | 2.22 | 1.06 | 4.55 | Yes |
AB | AS | 3.13 | 1.56 | 6.25 | Yes |
AB | FP | 2.50 | 1.05 | 5.88 | Yes |
AB | AW | 2.63 | 1.30 | 5.26 | Yes |
AF | AS | 6.84 | 2.86 | 16.41 | Yes |
AF | FP | 5.40 | 1.98 | 14.74 | Yes |
AF | AW | 5.69 | 2.36 | 13.74 | Yes |
AF | AE | 4.43 | 1.81 | 10.82 | Yes |
Isolate | Multiresistance Profile |
---|---|
1 | AMO-CTZ-TET-CIP-CLO |
2 | AMO-CTF-CTZ-IPM-GEN-TET-CIP-SUT-CLO-AZI |
3 | AMO-CTF-CTZ-CTX-TET-CIP-SUT-CLO |
4 | AMO-CTF-CTX-TET-CIP-SUT-CLO |
5 | AMO-CTF-CTX-TET-CIP-SUT-CLO |
6 | AMO-CTF-CTZ-CTX-TET-CIP-SUT-CLO |
7 | AMO-CTF-CTZ-CTX-TET-CIP-SUT-CLO-AZI |
8 | AMO-CTF-CTX-TET-SUT-CLO |
9 | AMO-CTF-CTZ-CTX-TET-SUT-CLO |
10 | AMO-CTF-CTZ-CTX-IPM-ATM-TET-CIP-SUT-CLO |
11 | AMO-CTF-CTZ-CTX-TET-CIP-SUT-CLO |
12 | AMO-CTF-CTZ-CTX-ATM-TET-CIP-SUT-CLO |
13 | AMO-CTF-CTZ-CTX-TET-SUT-CLO |
14 | AMO-CTF-CTX-TET-SUT-CLO |
15 | AMO-CTF-CTZ-CTX-TET-SUT-CLO |
16 | AMO-CTF-CTX-TET-SUT-CLO |
17 | AMO-CTF-CTX-TET-SUT-CLO-AZI |
18 | AMO-CTF-CTZ-CTX-TET-CIP-SUT-CLO |
19 | AMO-CTF-CTZ-CTX-IPM-ATM-TET-CIP-SUT-CLO |
20 | AMO-CTF-CTX-TET-SUT-CLO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampaio, A.N.d.C.E.; Caron, E.F.F.; Cerqueira-Cézar, C.K.; Juliano, L.C.B.; Tadielo, L.E.; Melo, P.R.L.; de Oliveira, J.P.; Pantoja, J.C.d.F.; Martins, O.A.; Nero, L.A.; et al. Escherichia coli Occurrence and Antimicrobial Resistance in a Swine Slaughtering Process. Pathogens 2024, 13, 912. https://doi.org/10.3390/pathogens13100912
Sampaio ANdCE, Caron EFF, Cerqueira-Cézar CK, Juliano LCB, Tadielo LE, Melo PRL, de Oliveira JP, Pantoja JCdF, Martins OA, Nero LA, et al. Escherichia coli Occurrence and Antimicrobial Resistance in a Swine Slaughtering Process. Pathogens. 2024; 13(10):912. https://doi.org/10.3390/pathogens13100912
Chicago/Turabian StyleSampaio, Aryele Nunes da Cruz Encide, Evelyn Fernanda Flores Caron, Camila Koutsodontis Cerqueira-Cézar, Lára Cristina Bastos Juliano, Leonardo Ereno Tadielo, Patrícia Regina Lopes Melo, Janaína Prieto de Oliveira, José Carlos de Figueiredo Pantoja, Otávio Augusto Martins, Luís Augusto Nero, and et al. 2024. "Escherichia coli Occurrence and Antimicrobial Resistance in a Swine Slaughtering Process" Pathogens 13, no. 10: 912. https://doi.org/10.3390/pathogens13100912
APA StyleSampaio, A. N. d. C. E., Caron, E. F. F., Cerqueira-Cézar, C. K., Juliano, L. C. B., Tadielo, L. E., Melo, P. R. L., de Oliveira, J. P., Pantoja, J. C. d. F., Martins, O. A., Nero, L. A., Possebon, F. S., & Pereira, J. G. (2024). Escherichia coli Occurrence and Antimicrobial Resistance in a Swine Slaughtering Process. Pathogens, 13(10), 912. https://doi.org/10.3390/pathogens13100912