Methylene Blue Has Strong Extracellular Virucidal Activity Against a SARS-CoV-2-Related Pangolin Coronavirus with No Intracellular or In Vivo Efficacy
Abstract
:1. Introduction
2. Results
2.1. Methylene Blue Has No Antiviral Activity in a Surrogate SARS-CoV-2 Mouse Model
2.2. Methylene Blue Has Strong Extracellular Virucidal Activity in the Absence of Light
2.3. Methylene Blue Has No Apparent Ability to Inhibit Viral Replication
2.4. Mouse Plasma Exhibits Partial Virucidal Activity but Can Significantly Increase the EC50 of Methylene Blue
3. Discussion
4. Materials and Methods
4.1. Cells, Viruses, and Compounds
4.2. In Vivo Antiviral Activity Test of Methylene Blue
4.3. Plaque Assay
4.4. Real-Time Reverse Transcription PCR (RT–qPCR) Analysis
4.5. Plaque Reduction Assay
4.6. Antiviral Activity Test in Cells
4.7. Neutralization Assay in Mouse Plasma
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambrecht, B.; Mohr, H.; Knuver-Hopf, J.; Schmitt, H. Photoinactivation of viruses in human fresh plasma by phenothiazine dyes in combination with visible light. Vox Sang. 1991, 60, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ren, K.; Liao, X.; Luo, G.; Kumthip, K.; Leetrakool, N.; Li, S.; Chen, L.; Yang, C.; Chen, Y. Inactivation of Zika virus in plasma and derivatives by four different methods. J. Med. Virol. 2019, 91, 2059–2065. [Google Scholar] [CrossRef] [PubMed]
- Eickmann, M.; Gravemann, U.; Handke, W.; Tolksdorf, F.; Reichenberg, S.; Muller, T.H.; Seltsam, A. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion 2018, 58, 2202–2207. [Google Scholar] [CrossRef] [PubMed]
- Svyatchenko, V.A.; Nikonov, S.D.; Mayorov, A.P.; Gelfond, M.L.; Loktev, V.B. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis Photodyn. Ther. 2021, 33, 102112. [Google Scholar] [CrossRef] [PubMed]
- Howland, M.A. Methylene blue. In History of Modern Clinical Toxicology; Woolf, A.D., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 231–241. [Google Scholar]
- Seitkazina, A.; Yang, J.-K.; Kim, S. Clinical effectiveness and prospects of methylene blue: A systematic review. Precis. Future Med. 2022, 6, 193–208. [Google Scholar] [CrossRef]
- Chuang, S.T.; Papp, H.; Kuczmog, A.; Eells, R.; Condor Capcha, J.M.; Shehadeh, L.A.; Jakab, F.; Buchwald, P. Methylene Blue Is a Nonspecific Protein-Protein Interaction Inhibitor with Potential for Repurposing as an Antiviral for COVID-19. Pharmaceuticals 2022, 15, 621. [Google Scholar] [CrossRef] [PubMed]
- Bojadzic, D.; Alcazar, O.; Buchwald, P. Methylene Blue Inhibits the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction-a Mechanism that can Contribute to its Antiviral Activity Against COVID-19. Front. Pharmacol. 2020, 11, 600372. [Google Scholar] [CrossRef] [PubMed]
- Gendrot, M.; Andreani, J.; Duflot, I.; Boxberger, M.; Le Bideau, M.; Mosnier, J.; Jardot, P.; Fonta, I.; Rolland, C.; Bogreau, H.; et al. Methylene blue inhibits replication of SARS-CoV-2 in vitro. Int. J. Antimicrob. Agents 2020, 56, 106202. [Google Scholar] [CrossRef] [PubMed]
- Cagno, V.; Medaglia, C.; Cerny, A.; Cerny, T.; Zwygart, A.C.; Cerny, E.; Tapparel, C. Methylene Blue has a potent antiviral activity against SARS-CoV-2 and H1N1 influenza virus in the absence of UV-activation in vitro. Sci. Rep. 2021, 11, 14295. [Google Scholar] [CrossRef] [PubMed]
- Gendrot, M.; Jardot, P.; Delandre, O.; Boxberger, M.; Andreani, J.; Duflot, I.; Le Bideau, M.; Mosnier, J.; Fonta, I.; Hutter, S.; et al. In Vitro Evaluation of the Antiviral Activity of Methylene Blue Alone or in Combination against SARS-CoV-2. J. Clin. Med. 2021, 10, 3007. [Google Scholar] [CrossRef] [PubMed]
- Dabholkar, N.; Gorantla, S.; Dubey, S.K.; Alexander, A.; Taliyan, R.; Singhvi, G. Repurposing methylene blue in the management of COVID-19: Mechanistic aspects and clinical investigations. Biomed. Pharmacother. 2021, 142, 112023. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.H.; Wang, L.Q.; Liu, W.L.; An, X.P.; Liu, Z.D.; He, X.Q.; Song, L.H.; Tong, Y.G. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin. Med. J. 2020, 133, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Luo, S.; Liu, C.; Li, M.; An, X.; Li, M.; Hou, J.; Fan, H.; Mao, P.; Tong, Y.; et al. Induction of significant neutralizing antibodies against SARS-CoV-2 by a highly attenuated pangolin coronavirus variant with a 104nt deletion at the 3’-UTR. Emerg. Microbes Infect. 2023, 12, 2151383. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Liu, S.; Lu, S.; Luo, S.; An, X.; Fan, H.; Li, E.; Song, L. An infection and pathogenesis mouse model of SARS-CoV-2 related pangolin coronavirus GX_P2V(short_3UTR). mLife 2024. [Google Scholar] [CrossRef]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Song, L.; Dunker, A.K.; Foster, J.A.; Uversky, V.N.; Goh, G.K.-M. A Comparative Experimental and Computational Study on the Nature of the Pangolin-CoV and COVID-19 Omicron. Int. J. Mol. Sci. 2024, 25, 7537. [Google Scholar] [CrossRef] [PubMed]
- Arentz, J.; von der Heide, H.J. Evaluation of methylene blue based photodynamic inactivation (PDI) against intracellular B-CoV and SARS-CoV2 viruses under different light sources in vitro as a basis for new local treatment strategies in the early phase of a Covid19 infection. Photodiagnosis Photodyn. Ther. 2022, 37, 102642. [Google Scholar] [CrossRef] [PubMed]
- Law, S.K.; Leung, A.W.N.; Xu, C. Photodynamic Action of Curcumin and Methylene Blue against Bacteria and SARS-CoV-2—A Review. Pharmaceuticals 2024, 17, 34. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Ma, Y.; Ren, Y.; Lu, S.; Xiao, X.; Luo, S.; An, X.; Li, E.; Fan, H.; Song, L. Methylene Blue Has Strong Extracellular Virucidal Activity Against a SARS-CoV-2-Related Pangolin Coronavirus with No Intracellular or In Vivo Efficacy. Pathogens 2024, 13, 958. https://doi.org/10.3390/pathogens13110958
Wei L, Ma Y, Ren Y, Lu S, Xiao X, Luo S, An X, Li E, Fan H, Song L. Methylene Blue Has Strong Extracellular Virucidal Activity Against a SARS-CoV-2-Related Pangolin Coronavirus with No Intracellular or In Vivo Efficacy. Pathogens. 2024; 13(11):958. https://doi.org/10.3390/pathogens13110958
Chicago/Turabian StyleWei, Lai, Yuezhen Ma, Yuhao Ren, Shanshan Lu, Xiumei Xiao, Shengdong Luo, Xiaoping An, Erguang Li, Huahao Fan, and Lihua Song. 2024. "Methylene Blue Has Strong Extracellular Virucidal Activity Against a SARS-CoV-2-Related Pangolin Coronavirus with No Intracellular or In Vivo Efficacy" Pathogens 13, no. 11: 958. https://doi.org/10.3390/pathogens13110958
APA StyleWei, L., Ma, Y., Ren, Y., Lu, S., Xiao, X., Luo, S., An, X., Li, E., Fan, H., & Song, L. (2024). Methylene Blue Has Strong Extracellular Virucidal Activity Against a SARS-CoV-2-Related Pangolin Coronavirus with No Intracellular or In Vivo Efficacy. Pathogens, 13(11), 958. https://doi.org/10.3390/pathogens13110958