How Does African Swine Fever Virus Evade the cGAS-STING Pathway?
Abstract
:1. Introduction
2. The Mechanisms of ASFV Suppress the cGAS-STING Pathway
2.1. ASFV Inhibits the cGAS-STING Pathway Through Impairing the Activity of cGAS
2.2. ASFV Dampens the cGAS-STING Pathway Through Disturbing the Activity of 2′3′-cGAMP
2.3. ASFV Negatively Regulates the cGAS-STING Pathway Through Interfering with the Activity of STING
2.4. ASFV Suppresses the cGAS-STING Pathway Through Affecting the Activity of TBK1 and IKKε
2.5. ASFV Suppresses the cGAS-STING Pathway Through Inhibiting the Activity of IRF3
2.6. ASFV Suppresses the cGAS-STING Pathway Through Inhibiting the Activity of NF-κB
3. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Wang, N.; Zhao, D.M.; Wang, J.L.; Zhang, Y.L.; Wang, M.; Gao, Y.; Li, F.; Wang, J.F.; Bu, Z.G.; Rao, Z.H.; et al. Architecture of African swine fever virus and implications for viral assembly. Science 2019, 366, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.J. Current research progress on the viral immune evasion mechanisms of African swine fever virus. Anim. Dis. 2024, 4, 18, Erratum in Anim. Dis. 2024, 4, 29. [Google Scholar] [CrossRef]
- Zheng, X.J.; Nie, S.M.; Feng, W.H. Regulation of antiviral immune response by African swine fever virus (ASFV). Virol. Sin. 2022, 37, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Penrith, M.L.; van Emmenes, J.; Hakizimana, J.N.; Heath, L.; Kabuuka, T.; Misinzo, G.; Odoom, T.; Wade, A.; Zerbo, H.L.; Luka, P.D. African Swine Fever Diagnosis in Africa: Challenges and Opportunities. Pathogens 2024, 13, 296. [Google Scholar] [CrossRef]
- Blome, S.; Franzke, K.; Beer, M. African swine fever-A review of current knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef]
- Andrés, G. African Swine Fever Virus Gets Undressed: New Insights on the Entry Pathway. J. Virol. 2017, 91, e01906. [Google Scholar] [CrossRef]
- Koltsov, A.; Krutko, S.; Kholod, N.; Sukher, M.; Belov, S.; Korotin, A.; Koltsova, G. Deletion of the CD2 Gene in the Virulent ASFV Congo Strain Affects Viremia in Domestic Swine, but Not the Virulence. Animals 2023, 13, 2002. [Google Scholar] [CrossRef]
- Yang, J.J.; Zhu, R.N.; Zhang, Y.Y.; Zhou, X.T.; Yue, H.X.; Li, Q.X.; Ke, J.N.; Wang, Y.; Miao, F.M.; Chen, T.; et al. Deleting the C84L Gene from the Virulent African Swine Fever Virus SY18 Does Not Affect Its Replication in Porcine Primary Macrophages but Reduces Its Virulence in Swine. Pathogens 2024, 13, 103. [Google Scholar] [CrossRef]
- Karki, R.; Kanneganti, T.D. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. J. Transl. Med. 2022, 20, 542. [Google Scholar] [CrossRef]
- Newton, K.; Dixit, V.M. Signaling in Innate Immunity and Inflammation. Cold Spring Harb. Perspect. Biol. 2012, 4, a006049. [Google Scholar] [CrossRef]
- Yu, Z.X.; Tong, L.; Ma, C.K.; Song, H.; Wang, J.; Chai, L.; Wang, C.W.; Wang, M.G.; Wang, C.Y.; Yan, R.Z.; et al. The UAF1-USP1 Deubiquitinase Complex Stabilizes cGAS and Facilitates Antiviral Responses. J. Immunol. 2024, 212, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.C.; Cai, H.; Li, T.; Franco, L.H.; Shiloh, M.U. Cyclic GMP-AMP Synthase (cGAS) Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host Microbe 2015, 17, 820–828. [Google Scholar] [CrossRef]
- Yin, Q.; Tian, Y.; Kabaleeswaran, V.; Jiang, X.M.; Tu, D.Q.; Eck, M.J.; Chen, Z.J.J.; Wu, H. Cyclic di-GMP Sensing via the Innate Immune Signaling Protein STING. Mol. Cell 2012, 46, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Luteijn, R.D.; van Terwisga, S.R.; Ver Eecke, J.E.; Onia, L.; Zaver, S.A.; Woodward, J.J.; Wubbolts, R.W.; Raulet, D.H.; van Kuppeveld, F.J.M. The activation of the adaptor protein STING depends on its interactions with the phospholipid PI4P. Sci. Signal. 2024, 17, eade3643. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Chen, N.A.; Li, Z.Y.; Xu, G.; Zhan, X.Y.; Tang, J.Y.; Xiao, X.H.; Bai, Z.F. The Cytosolic DNA-Sensing cGAS-STING Pathway in Liver Diseases. Front. Cell Dev. Biol. 2021, 9, 717610. [Google Scholar] [CrossRef] [PubMed]
- García-Belmonte, R.; Pérez-Núñez, D.; Pittau, M.; Richt, J.A.; Revilla, Y. African Swine Fever Virus Armenia/07 Virulent Strain Controls Interferon Beta Production through the cGAS-STING Pathway. J. Virol. 2019, 93, e02298-18. [Google Scholar] [CrossRef]
- Wu, Q.J.; Lei, Y.Y.; Zuo, Y.; Zhang, J.; Guo, F.L.; Xu, W.Z.; Xie, T.H.; Wang, D.; Peng, G.Q.; Wang, X.R.; et al. Interactome between ASFV and host immune pathway proteins. Msystems 2023, 8, e0047123. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Kanyema, M.M.; Sun, Y.; Zhao, W.H.; Lu, Y.Y.; Wang, J.H.; Li, X.X.; Shi, C.W.; Wang, J.Z.; Wang, N.; et al. African Swine Fever Virus L83L Negatively Regulates the cGAS-STING-Mediated IFN-I Pathway by Recruiting Tollip to Promote STING Autophagic Degradation. J. Virol. 2023, 97, e0192322. [Google Scholar] [CrossRef]
- Hao, S.Y.; Zheng, X.J.; Zhu, Y.Q.; Yao, Y.; Li, S.H.; Xu, Y.Y.; Feng, W.H. African swine fever virus QP383R dampens type I interferon production by promoting cGAS palmitoylation. Front. Immunol. 2023, 14, 1186916. [Google Scholar] [CrossRef]
- Ablasser, A.; Chen, Z.J.J. cGAS in action: Expanding roles in immunity and inflammation. Science 2019, 363, eaat8657. [Google Scholar] [CrossRef]
- Song, J.X.; Villagomes, D.; Zhao, H.C.; Zhu, M. cGAS in nucleus: The link between immune response and DNA damage repair. Front. Immunol. 2022, 13, 1076784. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, J.Y.; Liu, C.; Liu, R.J.; Liu, L.J.; Yu, Z.H.; Zhuang, J.; Sun, C.G. Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022, 11, 3043. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.R.; Yang, X.K.; Liu, Y.; Li, H.P.; Chu, H.Y.; Li, G.H.; Yin, H. ZDHHC18 negatively regulates cGAS-mediated innate immunity through palmitoylation. Embo J. 2022, 41, e109272. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Y.; Chen, M.M.; Meng, L.H. Second messenger 2′3′-cyclic GMP-AMP (2′3′-cGAMP): The cell autonomous and non-autonomous roles in cancer progression. Acta Pharmacol. Sin. 2024, 45, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Blest, H.T.W.; Chauveau, L. cGAMP the travelling messenger. Front. Immunol. 2023, 14, 1150705. [Google Scholar] [CrossRef]
- Pan, J.; Fei, C.J.; Hu, Y.; Wu, X.Y.; Nie, L.; Chen, J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool. Res. 2023, 44, 183–218. [Google Scholar] [CrossRef]
- Lu, D.F.; Shang, G.J.; Li, J.; Lu, Y.; Bai, X.C.; Zhang, X.W. Activation of STING by targeting a pocket in the transmembrane domain. Nature 2022, 604, 557–562. [Google Scholar] [CrossRef]
- Hirschenberger, M.; Lepelley, A.; Rupp, U.; Klute, S.; Hunszinger, V.; Koepke, L.; Merold, V.; Didry-Barca, B.; Wondany, F.; Bergner, T.; et al. ARF1 prevents aberrant type I interferon induction by regulating STING activation and recycling. Nat. Commun. 2023, 14, 6770. [Google Scholar] [CrossRef]
- Dodantenna, N.; Ranathunga, L.; Chathuranga, W.A.G.; Weerawardhana, A.; Cha, J.W.; Subasinghe, A.; Gamage, N.; Haluwana, D.K.; Kim, Y.; Jheong, W.; et al. African Swine Fever Virus EP364R and C129R Target Cyclic GMP-AMP To Inhibit the cGAS-STING Signaling Pathway. J. Virol. 2022, 96, e0102222. [Google Scholar] [CrossRef]
- Ranathunga, L.; Dodantenna, N.; Cha, J.W.; Chathuranga, K.; Chathuranga, W.A.G.; Weerawardhana, A.; Subasinghe, A.; Haluwana, D.K.; Gamage, N.; Lee, J.S. African swine fever virus B175L inhibits the type I interferon pathway by targeting STING and 2′3′-cGAMP. J. Virol. 2023, 97, e0079523. [Google Scholar] [CrossRef]
- Yang, K.D.; Huang, Q.T.; Wang, R.Y.; Zeng, Y.; Cheng, M.Y.; Xue, Y.; Shi, C.W.; Ye, L.P.; Yang, W.T.; Jiang, Y.L.; et al. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway. Vet. Microbiol. 2021, 263, 109265. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yang, W.P.; Li, L.L.; Li, P.; Ma, Z.; Zhang, J.; Qi, X.L.; Ren, J.J.; Ru, Y.; Niu, Q.L.; et al. African Swine Fever Virus MGF-505-7R Negatively Regulates cGAS-STING-Mediated Signaling Pathway. J. Immunol. 2021, 206, 1844–1857. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.Q.; Liu, H.Y.; Liu, X.H.; Chen, W.Y.; Li, J.N.; Zhao, D.M.; Wang, G.; Feng, C.Y.; Zhang, Z.X.; Zhou, Q.Q.; et al. African Swine Fever Virus H240R Protein Inhibits the Production of Type I Interferon Through Disrupting the Oligomerization of STING. J. Virol. 2023, 97, e0057723. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, W.; Liu, H.; Xue, M.; Dong, S.; Liu, X.; Feng, C.; Cao, S.; Ye, G.; Zhou, Q. African Swine Fever Virus HLJ/18 CD2v Suppresses Type I IFN Production and IFN-Stimulated Genes Expression through Negatively Regulating cGMP-AMP Synthase-STING and IFN Signaling Pathways. J. Immunol. Off. J. Am. Assoc. Immunol. 2023, 210, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.X.; Li, S.S.; Ma, C.A.; Yang, F.; Cao, W.J.; Liu, H.A.; Chen, X.; Feng, T.; Shi, Z.W.; Tian, H.; et al. African Swine Fever Virus E184L Protein Interacts with Innate Immune Adaptor STING to Block IFN Production for Viral Replication and Pathogenesis. J. Immunol. 2023, 210, 442–458. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.L.; Xia, N.W.; Zhang, J.J.; Cao, Q.; Jiang, S.; Luo, J.; Wang, H.; Chen, N.H.; Zhang, Q.; Meurens, F.; et al. African Swine Fever Virus Structural Protein p17 Inhibits cGAS-STING Signaling Pathway Through Interacting With STING. Front. Immunol. 2022, 13, 941579. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.D.; Xue, Y.; Niu, H.; Shi, C.W.; Cheng, M.Y.; Wang, J.Z.; Zou, B.S.; Wang, J.H.; Niu, T.M.; Bao, M.Y.; et al. African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production. Vet. Res. 2022, 53, 7. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.D.; Xue, Y.; Niu, T.M.; Li, X.Y.; Cheng, M.Y.; Bao, M.Y.; Zou, B.S.; Shi, C.W.; Wang, J.Z.; Yang, W.T.; et al. African swine fever virus MGF505-7R protein interacted with IRF7and TBK1 to inhibit type I interferon production. Virus Res. 2022, 322, 198931. [Google Scholar] [CrossRef]
- Huang, L.; Xu, W.J.; Liu, H.Y.; Xue, M.D.; Liu, X.H.; Zhang, K.L.; Hu, L.; Li, J.N.; Liu, X.M.; Xiang, Z.D.; et al. African Swine Fever Virus pI215L Negatively Regulates cGAS-STING Signaling Pathway through Recruiting RNF138 to Inhibit K63-Linked Ubiquitination of TBK1. J. Immunol. 2021, 207, 2754–2769. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Wu, Y.; Chen, H.; Zhang, S.; Li, J.; Xin, T.; Jia, H.; Hou, S.; Jiang, Y.; et al. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1. Biochem. Biophys. Res. Commun. 2018, 506, 437–443. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L.; Li, H.; Zhu, Y.Q.; Yu, Z.L.; Zheng, X.J.; Weng, C.J.; Feng, W.H. ASFV pA151R negatively regulates type I IFN production via degrading E3 ligase TRAF6. Front. Immunol. 2024, 15, 1339510. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, J.J.; Ni, J.H.; Jiang, S.; Xia, N.W.; Guo, Y.W.; Shao, Q.; Cao, Q.; Zheng, W.L.; Chen, N.H.; et al. The African swine fever virus protease pS273R inhibits DNA sensing cGAS-STING pathway by targeting IKKε. Virulence 2022, 13, 740–756. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, S.; Xin, T.; Wang, X.; Yu, H.; Chen, S.; Jiang, Y.; Gao, X.; Jiang, Y.; Guo, X.; et al. African Swine Fever Virus MGF360-14L Negatively Regulates Type I Interferon Signaling by Targeting IRF3. Front. Cell. Infect. Microbiol. 2022, 11, 818969. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Wang, Y.; Gao, X.; Xin, T.; Wang, X.; Yu, H.; Chen, S.; Jiang, Y.; Chen, Q.; Jiang, F. African swine fever virus M1249L protein antagonizes type I interferon production via suppressing phosphorylation of TBK1 and degrading IRF3. Virus Res. Int. J. Mol. Cell. Virol. 2022, 319, 198872. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Z.; Feng, T.; Ma, Z.; Zheng, H. African swine fever virus E120R protein inhibits interferon-β production by interacting with IRF3 to block its activation. J. Virol. 2021, 95, e0082421. [Google Scholar] [CrossRef]
- Li, H.; Zheng, X.J.; Li, Y.; Zhu, Y.Q.; Xu, Y.Y.; Yu, Z.L.; Feng, W.H. African swine fever virus S273R protein antagonizes type I interferon production by interfering with TBK1 and IRF3 interaction. Virol. Sin. 2023, 38, 911–921. [Google Scholar] [CrossRef]
- Zhang, K.H.; Ge, H.L.; Zhou, P.P.; Li, L.F.; Dai, J.W.; Cao, H.W.; Luo, Y.Z.; Sun, Y.A.; Wang, Y.J.; Li, J.Q.; et al. The D129L protein of African swine fever virus interferes with the binding of transcriptional coactivator p300 and IRF3 to prevent beta interferon induction. J. Virol. 2023, 97, e0082423. [Google Scholar] [CrossRef]
- Liu, X.H.; Liu, H.Y.; Ye, G.Q.; Xue, M.D.; Yu, H.B.; Feng, C.Y.; Zhou, Q.Q.; Liu, X.M.; Zhang, L.F.; Jiao, S.; et al. African swine fever virus pE301R negatively regulates cGAS-STING signaling pathway by inhibiting the nuclear translocation of IRF3. Vet. Microbiol. 2022, 274, 109556. [Google Scholar] [CrossRef]
- Dodantenna, N.; Cha, J.W.; Chathuranga, K.; Chathuranga, W.A.G.; Weerawardhana, A.; Ranathunga, L.; Kim, Y.; Jheong, W.; Lee, J.S. The African Swine Fever Virus Virulence Determinant DP96R Suppresses Type I IFN Production Targeting IRF3. Int. J. Mol. Sci. 2024, 25, 2099. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Kang, L.; Huang, L.; Zhou, S.; Hu, L.; Zheng, J.; Li, C.; Zhang, X.; He, X. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. Public Libr. Sci. 2021, 17, e1009733. [Google Scholar] [CrossRef]
- Hong, J.X.; Chi, X.J.; Yuan, X.; Wen, F.X.; Rai, K.R.; Wu, L.; Song, Z.B.; Wang, S.; Guo, G.J.; Chen, J.L. I226R Protein of African Swine Fever Virus Is a Suppressor of Innate Antiviral Responses. Viruses 2022, 14, 575. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Guo, Z.; Ba, T.; Zhang, C.; He, L.; Zeng, C.; Dai, H. African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin alpha and NF-kappaB Signaling Pathway. Virol. Sin. 2020, 36, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Ao, D.; Jiang, S.; Xia, N.W.; Xu, Y.L.; Shao, Q.; Luo, J.; Wang, H.; Zheng, W.L.; Chen, N.H.; et al. African Swine Fever Virus A528R Inhibits TLR8 Mediated NF-κB Activity by Targeting p65 Activation and Nuclear Translocation. Viruses 2021, 13, 2046. [Google Scholar] [CrossRef] [PubMed]
- Barrado-Gil, L.; del Puerto, A.; Galindo, I.; Cuesta-Geijo, M.A.; García-Dorival, I.; de Motes, C.M.; Alonso, C. African Swine Fever Virus Ubiquitin-Conjugating Enzyme Is an Immunomodulator Targeting NF-κB Activation. Viruses 2021, 13, 1160. [Google Scholar] [CrossRef] [PubMed]
- Silk, R.N.; Bowick, G.C.; Abrams, C.C.; Dixon, L.K. African swine fever virus A238L inhibitor of NF-κB and of calcineurin phosphatase is imported actively into the nucleus and exported by a CRM1-mediated pathway. J. Gen. Virol. 2007, 88, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.X.; Carlson, R.J.; Pires, I.S.; Gentili, M.; Feng, E.L.; Hellier, Q.; Schwartz, M.A.; Blainey, P.C.; Irvine, D.J.; Hacohen, N. Human STING is a proton channel. Science 2023, 381, 508–514. [Google Scholar] [CrossRef]
- Elmanfi, S.; Yilmaz, M.; Ong, W.W.S.; Yeboah, K.S.; Sintim, H.O.; Gürsoy, M.; Könönen, E.; Gürsoy, U.K. Bacterial Cyclic Dinucleotides and the cGAS-cGAMP-STING Pathway: A Role in Periodontitis? Pathogens 2021, 10, 675. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Chen, X.L.; Zhang, K.Y.; Yu, B.; Mao, X.B.; Zhao, Y.; Chen, D.W. Molecular Cloning and Functional Characterization of Tibetan Porcine STING. Int. J. Mol. Sci. 2012, 13, 506–515. [Google Scholar] [CrossRef]
- Smith, J.A. STING, the Endoplasmic Reticulum, and Mitochondria: Is Three a Crowd or a Conversation? Front. Immunol. 2021, 11, 611347. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, M.; Zhou, J.M. Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discov. Today 2023, 28, 103694. [Google Scholar] [CrossRef]
- Cong, X.Y.; Yuan, Z.L.; Du, Y.J.; Wu, B.; Lu, D.F.; Wu, X.J.; Zhang, Y.J.; Li, F.; Wei, B.; Li, J.; et al. Crystal structures of porcine STING-CDN complexes reveal the mechanism of ligand recognition and discrimination of STING proteins. J. Biol. Chem. 2019, 294, 11420–11432. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, P.D. Cytosolic DNA sensing by cGAS: Regulation, function, and human diseases. Signal Transduct. Target. Ther. 2021, 6, 170. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Cao, H.X.; Zeng, F.L.; Lin, S.Z.; Chen, J.L.; Luo, Y.; You, J.Y.; Kong, C.Y.; Mai, Z.Z.; Deng, J.; et al. African Swine Fever Virus MGF505-7R Interacts with Interferon Regulatory Factor 9 to Evade the Type I Interferon Signaling Pathway and Promote Viral Replication. J. Virol. 2023, 97, e0197722. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.W.; Wang, H.; Liu, X.L.; Shao, Q.; Ao, D.; Xu, Y.L.; Jiang, S.; Luo, J.; Zhang, J.J.; Chen, N.H.; et al. African Swine Fever Virus Structural Protein p17 Inhibits Cell Proliferation through ER Stress-ROS Mediated Cell Cycle Arrest. Viruses 2021, 13, 21. [Google Scholar] [CrossRef]
- Xiao, Q.A.; He, Q.; Li, L.; Song, Y.H.; Chen, Y.R.; Zeng, J.; Xia, X. Role of IKKe in the Metabolic Diseases: Physiology, Pathophysiology, and Pharmacology. Front. Pharmacol. 2022, 13, 888588. [Google Scholar] [CrossRef]
- Luo, J.; Cao, Q.; Zhang, J.J.; Jiang, S.; Xia, N.W.; Sun, S.H.; Zheng, W.L.; Chen, N.H.; Meurens, F.; Zhu, J.Z. Porcine IKKε is involved in the STING-induced type I IFN antiviral response of the cytosolic DNA signaling pathway. J. Biol. Chem. 2023, 299, 105213. [Google Scholar] [CrossRef]
- Eren, R.O.; Kaya, G.G.; Schwarzer, R.; Pasparakis, M. IKKε and TBK1 prevent RIPK1 dependent and independent inflammation. Nat. Commun. 2024, 15, 130. [Google Scholar] [CrossRef]
- Venkatraman, R.; Balka, K.R.; Wong, W.L.; Sivamani, J.; Magill, Z.; Tullett, K.M.; Lane, R.M.; Saunders, T.L.; Tailler, M.; Crack, P.J.; et al. IKKinduces STING non-IFN immune responses via a mechanism analogous to TBK1. iScience 2024, 27, 110693. [Google Scholar] [CrossRef]
- Herhaus, L. TBK1 (TANK-binding kinase 1)-mediated regulation of autophagy in health and disease. Matrix Biol. 2021, 100, 84–98. [Google Scholar] [CrossRef]
- Wu, L.; Yang, B.C.; Yuan, X.; Hong, J.X.; Peng, M.; Chen, J.L.; Song, Z.B. Regulation and Evasion of Host Immune Response by African Swine Fever Virus. Front. Microbiol. 2021, 12, 698001. [Google Scholar] [CrossRef]
- Huang, J.W.; Niu, D.; Liu, K.; Wang, Q.; Ma, L.X.; Chen, C.C.; Zhang, L.L.; Liu, W.D.; Zhou, S.Y.; Min, J.; et al. Structure basis of non-structural protein pA151R from African Swine Fever Virus. Biochem. Biophys. Res. Commun. 2020, 532, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, R.; Sciortino, M.T. HSV-1 Triggers an Antiviral Transcriptional Response during Viral Replication That Is Completely Abrogated in PKR Cells. Pathogens 2023, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.N.; Jiang, D.S.; Li, H.L. Interferon regulatory factors: At the crossroads of immunity, metabolism, and disease. BBA-Mol. Basis Dis. 2015, 1852, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Wang, X.M.; Sun, J.H.; Lin, W.L.; Chen, L.M.; Liu, S.D.; Wu, X.M.; Shi, L.Y.; Xu, P.L.; Cai, X.J.; et al. IRF3 prevents colorectal tumorigenesis via inhibiting the nuclear translocation of β-catenin. Nat. Commun. 2020, 11, 5762. [Google Scholar] [CrossRef]
- Bowie, A. The STING in the Tail for Cytosolic DNA-Dependent Activation of IRF3. Sci. Signal. 2012, 5, pe9. [Google Scholar] [CrossRef]
- Decout, A.; Katz, J.D.; Venkatraman, S.; Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 2021, 21, 548–569. [Google Scholar] [CrossRef]
- Cackett, G.; Matelska, D.; Sykora, M.; Portugal, R.; Malecki, M.; Bähler, J.; Dixon, L.; Werner, F. The African Swine Fever Virus Transcriptome. J. Virol. 2020, 94, e00119-20. [Google Scholar] [CrossRef]
- Ortega, E.; Rengachari, S.; Ibrahim, Z.; Hoghoughi, N.; Gaucher, J.; Holehouse, A.S.; Khochbin, S.; Panne, D. Transcription factor dimerization activates the p300 acetyltransferase. Nature 2018, 562, 538–544. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ke, J.N.; Zhang, J.Y.; Yang, J.J.; Yue, H.X.; Zhou, X.T.; Qi, Y.; Zhu, R.N.; Miao, F.M.; Li, Q.; et al. African Swine Fever Virus Bearing an I226R Gene Deletion Elicits Robust Immunity in Pigs to African Swine Fever. J. Virol. 2021, 95, e01199-21. [Google Scholar] [CrossRef]
- Zhang, K.L.; Huang, Q.Y.; Li, X.M.; Zhao, Z.Q.; Hong, C.; Sun, Z.Y.; Deng, B.; Li, C.L.; Zhang, J.F.; Wang, S.T. The cGAS-STING pathway in viral infections: A promising link between inflammation, oxidative stress and autophagy. Front. Immunol. 2024, 15, 1352479. [Google Scholar] [CrossRef]
- Balka, K.R.; Louis, C.; Saunders, T.L.; Smith, A.M.; Nardo, D.D. TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Rep. 2020, 31, 107492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Wei, X.B.; Wang, Z.M.; Liu, P.Y.; Hou, Y.F.; Xu, Y.F.; Su, H.L.; Koci, M.D.; Yin, H.; Zhang, C.G. NF-KB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Rep. 2023, 42, 112185. [Google Scholar] [CrossRef] [PubMed]
- Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat. Struct. Biol. 1999, 6, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.M.; Sun, E.C.; Huang, L.Y.; Ding, L.L.; Zhu, Y.M.; Zhang, J.W.; Shen, D.D.; Zhang, X.F.; Zhang, Z.J.; Ren, T.; et al. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nat. Commun. 2023, 14, 3096. [Google Scholar] [CrossRef]
- Gao, P.; Zhou, L.; Wu, J.J.; Weng, W.L.; Wang, H.; Ye, M.M.; Qu, Y.J.; Hao, Y.X.; Zhang, Y.N.; Ge, X.N.; et al. Riding apoptotic bodies for cell-cell transmission by African swine fever virus. Proc. Natl. Acad. Sci. USA 2023, 120, e2309506120. [Google Scholar] [CrossRef]
- Shirafuji, H.; Nishi, T.; Kokuho, T.; Dang, H.V.; Truong, A.D.; Kitamura, T.; Watanabe, M.; Tran, H.T.; Masujin, K. Validation of a direct multiplex real-time reverse transcription PCR assay for rapid detection of African swine fever virus using swine field samples in Vietnam. Bmc Res. Notes 2024, 17, 240. [Google Scholar] [CrossRef]
- Igolkin, A.; Mazloum, A.; Zinyakov, N.; Chernyshev, R.; Schalkwyk, A.V.; Shotin, A.; Lavrentiev, I.; Gruzdev, K.; Chvala, I. Detection of the first recombinant African swine fever virus (genotypes I and II) in domestic pigs in Russia. Mol. Biol. Rep. 2024, 51, 1011. [Google Scholar] [CrossRef]
- Zheng, W.L.; Chen, N.H.; Meurens, F.; Zheng, W.L.; Zhu, J.Z. How Does cGAS Avoid Sensing Self-DNA under Normal Physiological Conditions? Int. J. Mol. Sci. 2023, 24, 14738. [Google Scholar] [CrossRef]
- Luo, J.J.; Lu, C.J.; Chen, Y.; Wu, X.W.; Zhu, C.C.; Cui, W.; Yu, S.C.; Li, N.N.; Pan, Y.H.; Zhao, W.J.; et al. Nuclear translocation of cGAS orchestrates VEGF-A-mediated angiogenesis. Cell Rep. 2023, 42, 112328. [Google Scholar] [CrossRef]
- Briard, B.; Place, D.E.; Kanneganti, T.D. DNA Sensing in the Innate Immune Response. Physiology 2020, 35, 112–124. [Google Scholar] [CrossRef]
No. | Gene/Protein | Target | Molecular Mechanism | Ref |
---|---|---|---|---|
1 | QP383R | cGAS | Promoting the palmitoylation of cGAS | [19] |
2 | EP364R | cGAMP | Competing with STING to bind cGAMP | [29] |
3 | C129R | cGAMP | Reducing the cellular level of cGAMP | [29] |
4 | B175L | cGAMP | Disturbing the interaction between cGAMP and STING | [30] |
5 | L83L | STING | Promoting the degradation of STING | [18] |
6 | MGF 505-11L | STING | Promoting the degradation of STING | [31] |
7 | MGF-505-7R | STING | Promoting the degradation of STING | [32] |
8 | H240R | STING | Inhibiting the transportation of STING | [33] |
9 | CD2v | STING | Inhibiting the transportation of STING | [34] |
10 | E184L | STING | Impairing the dimerization and oligomerization of STING | [35] |
11 | B175L | STING | Impairing the dimerization and oligomerization of STING | [30] |
12 | p17(D117L) | STING | Interfering with STING’s ability to recruit TBK1 and IKKε | [36] |
13 | MGF360-11L | TBK1 | Promoting the degradation of TBK1 | [37] |
14 | MGF505-7R | TBK1 | Promoting the degradation of TBK1 | [38] |
15 | A238L(I215L) | TBK1 | Reducing the K63-linked polyubiquitination of TBK1 | [39] |
16 | DP96R | TBK1 | Inhibiting the phosphorylation of TBK1 | [40] |
17 | A151R | TBK1 | Suppressing the polyubiquitination and phosphorylation of TBK1 | [41] |
18 | S273R | IKKε | Affecting the sumoylation of IKKε | [42] |
19 | MGF360-14L | IRF3 | Promoting the degradation of IRF3 | [43] |
20 | M1249L | IRF3 | Promoting the degradation of IRF3 | [44] |
21 | E120R | IRF3 | Impairing the interaction between IRF3 and TBK1 | [45] |
22 | S273R | IRF3 | Disrupting the association between TBK1 and IRF3 | [46] |
23 | D129L | IRF3 | Interfering with the interaction between the IRF3 and p300 | [47] |
24 | E301R | IRF3 | Blocking the nuclear translocation of IRF3 | [48] |
25 | DP96R | IRF3 | Blocking the nuclear translocation of IRF3 | [49] |
26 | MGF505-7R | IRF3 | Blocking the nuclear translocation of IRF3 | [50] |
27 | I226R | IRF3 | Impairing the activation of IRF3 | [51] |
28 | MGF360-12L | NF-κB | Blocking the nuclear translocation of NF-κB | [52] |
29 | MGF505-7R | NF-κB | Blocking the phosphorylation and nuclear translocation of p65 | [53] |
30 | UBCv1 | NF-κB | Blocking the nuclear translocation of p65 | [54] |
31 | A238L(I215L) | NF-κB | Inhibiting NF-κB’s ability to bind DNA | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Zhang, C.; Chen, N.; Meurens, F.; Zhu, J.; Zheng, W. How Does African Swine Fever Virus Evade the cGAS-STING Pathway? Pathogens 2024, 13, 957. https://doi.org/10.3390/pathogens13110957
Lin C, Zhang C, Chen N, Meurens F, Zhu J, Zheng W. How Does African Swine Fever Virus Evade the cGAS-STING Pathway? Pathogens. 2024; 13(11):957. https://doi.org/10.3390/pathogens13110957
Chicago/Turabian StyleLin, Can, Chenyang Zhang, Nanhua Chen, François Meurens, Jianzhong Zhu, and Wanglong Zheng. 2024. "How Does African Swine Fever Virus Evade the cGAS-STING Pathway?" Pathogens 13, no. 11: 957. https://doi.org/10.3390/pathogens13110957
APA StyleLin, C., Zhang, C., Chen, N., Meurens, F., Zhu, J., & Zheng, W. (2024). How Does African Swine Fever Virus Evade the cGAS-STING Pathway? Pathogens, 13(11), 957. https://doi.org/10.3390/pathogens13110957