Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemase-Encoding Genes in Pseudomonas aeruginosa Isolates from Nosocomial Patients in Aguascalientes, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Bacterial Isolation
2.2. Ethics Statement
2.3. Data Collection
2.4. Antibiotic Susceptibility Testing
2.5. Screening and Identification of PMQR and Carbapenemase-Encoding Genes
2.6. Statistical Analysis
3. Results
3.1. Identification of the Isolates and Clinical Characteristics
3.2. Antimicrobial Susceptibility
3.3. Occurrence of Carbapenemase Encoding-Genes
3.4. Screening for Plasmid-Mediated Colistin-Resistant mcr-1 Gene
3.5. Presence of PMQR Determinants
3.6. Co-Occurrence of Carbapenemase-Encoding Genes and PMQR Determinants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef]
- Bonomo, R.A.; Szabo, D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis. 2006, 43, S49–S56. [Google Scholar] [CrossRef]
- Ramanathan, S.; Fitzpatrick, M.A.; Suda, K.J.; Burns, S.P.; Jones, M.M.; LaVela, S.L.; Evans, C.T. Multidrug-resistant Gram-negative organisms and association with 1-year mortality, readmission, and length of stay in Veterans with spinal cord injuries and disorders. Spinal Cord 2020, 58, 596–608. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Avakh, A.; Grant, G.D.; Cheesman, M.J.; Kalkundri, T.; Hall, S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics 2023, 12, 1304. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huan, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infct. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Wieland, K.; Chhatwal, P.; Vonberg, R.P. Nosocomial outbreaks caused by Acinetobacter baumannii and Pseudomonas aeruginosa: Results of a systematic review. Am. J. Infect. Control. 2018, 46, 643–648. [Google Scholar] [CrossRef]
- Huang, W.; Wei, X.; Xu, G.; Zhang, X.; Wang, X. Carbapenem-resistant Pseudomonas aeruginosa infections in critically ill children: Prevalence, risk factors, and impact on outcome in a large tertiary pediatric hospital of China. Front. Public Heal. 2023, 11, 1088262. [Google Scholar] [CrossRef]
- Pai, H.; Kim, J.; Kim, J.; Lee, J.H.; Choe, K.W.; Gotoh, N. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 2001, 45, 480–484. [Google Scholar] [CrossRef]
- Cornaglia, G.; Giamarellou, H.; Rossolini, G.M. Metallo-β-lactamases: A last frontier for β-lactams? Lancet Infect. Dis. 2011, 11, 381–393. [Google Scholar] [CrossRef]
- Garza-Ramos, U.; Silva-Sánchez, J.; López-Jácome, L.E.; Hernández-Durán, M.; Colín-Castro, C.A.; Sánchez-Pérez, A.; Rodríguez-Santiago, J.; Morfín-Otero, R.; Rodríguez-Noriega, E.; Velázquez-Acosta, M.D.; et al. Carbapenemase-Encoding Genes and Colistin Resistance in Gram-Negative Bacteria During the COVID-19 Pandemic in Mexico: Results from the Invifar Network. Microb. Drug. Resist. 2023, 29, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Garza-Ramos, U.; Morfin-Otero, R.; Sader, H.S.; Jones, R.N.; Hernández, E.; Rodríguez-Noriega, E.; Sánchez, A.; Carrillo, B.; Esparza-Ahumada, S.; Silva-Sánchez, J. Metallo-beta-lactamase gene bla (IMP-15) in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob. Agents Chemother. 2008, 52, 2943–2946. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Saucedo, J.R.; López-Jacome, L.E.; Franco-Cendejas, R.; Colín-Castro, C.A.; Hernández-Duran, M.; Rivera-Garay, L.R.; Zamarripa-Martinez, K.S.; Mosqueda-Gómez, J.L. Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico. Antibiotics 2023, 12, 1295. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martínez, J.M.; Machuca, J.; Cano, M.E.; Calvo, J.; Martínez-Martínez, L.; Pascual, A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist. Updates 2016, 29, 13–29. [Google Scholar] [CrossRef]
- Saki, M.; Farajzadeh Sheikh, A.; Seyed-Mohammadi, S.; Asareh Zadegan Dezfuli, A.; Shanin, M.; Tabasi, M.; Veisi, H.; Keshavarzi, R.; Khani, P. Occurrence of plasmid-mediated quinolone resistance genes in Pseudomonas aeruginosa strains isolated from clinical specimens in southwest Iran: A multicentral study. Sci Rep. 2022, 12, 2296. [Google Scholar] [CrossRef]
- Al-Marjani, M.F. Presence of qnr gene in environmental and clinical Pseudomonas aeruginosa isolates in Baghdad. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 853–857. [Google Scholar]
- Yang, X.; Xing, B.; Liang, C.; Ye, Z.; Zhang, Y. Prevalence and fluoroquinolone resistance of Pseudomonas aeruginosa in a hospital of South China. Int. J. Clin. Exp. Med. 2015, 8, 1386–1390. [Google Scholar]
- Liu, J.; Yang, L.; Li, L.; Li, B.; Chen, D.; Xu, Z. Comparative genomic analyses of two novel qnrVC6 carrying multidrug-resistant Pseudomonas. spp strains, Microb. Pathog. 2018, 123, 269–274. [Google Scholar] [CrossRef]
- Venkataramana, G.P.; Lalitha, A.K.V.; Mariappan, S.; Sekar, U. Plasmid-Mediated Fluoroquinolone Resistance in Pseudomonas aeruginosa and Acinetobacter baumannii. J. Lab. Physicians 2022, 14, 271–277. [Google Scholar] [CrossRef]
- Lin, J.; Chen, D.Q.; Hong, J.; Huang, H.; Xu, X. Prevalence of qnrVC Genes in Pseudomonas aeruginosa Clinical Isolates from Guangdong, China. Curr. Microbiol. 2020, 77, 1532–1539. [Google Scholar] [CrossRef]
- Taha, S.A.; Omar, H.H. Characterization of plasmid-mediated qnrA and qnrB genes among Enterobacteriaceae strains: Quinolone resistance and ESBL production in Ismailia, Egypt. Egypt. J. Med. Hum. Genet. 2019, 20, 1–7. [Google Scholar] [CrossRef]
- Elena, A.; Quinteros, M.; Di Conza, J.; Gutkind, G.; Cejas, D.; Radice, M.A. Full characterization of an IncR plasmid harboring qnrS1 recovered from a VIM-11-producing Pseudomonas aeruginosa. Rev. Argent. Microbiol. 2020, 52, 298–304. [Google Scholar] [CrossRef]
- Araujo, B.F.; Ferreira, M.L.; Campos, P.A.; Royer, S.; Batistão, D.W.; Dantas, R.C.; Gonçalves, I.R.; Faria, A.L.; Brito, C.S.; Yokosawa, J.; et al. Clinical and Molecular Epidemiology of Multidrug-Resistant P. aeruginosa Carrying aac (6′)-Ib-cr, qnrS1 and blaSPM Genes in Brazil. PLoS ONE 2016, 11, e0155914. [Google Scholar] [CrossRef]
- Kocsis, B.; Toth, A.; Gulyas, D.; Ligeti, B.; Katona, K.; Rokusz, L.; Szabo, D. Acquired qnrVC1 and blaNDM-1 resistance markers in an international high-risk Pseudomonas aeruginosa ST773 clone. J. Med. Microbiol. 2019, 68, 336–338. [Google Scholar] [CrossRef]
- Domokos, J.; Kristóf, K.; Szabó, D. Plasmid-mediated quinolone resistance among extended spectrum beta lactase producing Enterobacteriaceae from bloodstream infections. Acta Microbiol. Immunol. Hung. 2016, 63, 313–323. [Google Scholar] [CrossRef]
- Oliver, A.; Rojo-Molinero, E.; Arca-Suarez, J.; Beşli, Y.; Bogaerts, P.; Cantón, R.; Cimen, C.; Croughs, P.D.; Denis, O.; Giske, C.G.; et al. Pseudomonas aeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: Update from ESGARS-ESCMID/ISARPAE Group. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2023, 30, 469–480. [Google Scholar] [CrossRef]
- Ruiz, J. Transferable mechanisms of Quinolone Resistance from 1998 onward. Clin. Microbiol. Rev. 2019, 32, e00007–19. [Google Scholar] [CrossRef]
- Liao, C.H.; Hsueh, P.R.; Jacoby, G.A.; Hooper, D.C. Risk factors and clinical characteristics of patients with qnr-positive Klebsiella pneumoniae bacteraemia. J. Antimicrob. Chemother. 2013, 68, 2907–2914. [Google Scholar] [CrossRef]
- Hoseinzadeh, M.; Sedighi, M.; Yahyapour, Y.; Javanian, M.; Beiranvand, M.; Mohammadi, M.; Zarei, S.; Pournajaf, A.; Ebrahimzadeh Namvar, A. Prevalence of plasmid-mediated quinolone resistance genes in extended-spectrum beta-lactamase producing Klebsiella pneumoniae isolates in northern Iran. Heliyon 2024, 10, e37534. [Google Scholar] [CrossRef]
- Yuan, F.; Xiao, W.; Wang, X.; Fu, Y.; Wei, X. Clinical characteristics and prognosis of bloodstream infection with carbapenem-resistant pseudomonas aeruginosa in patients with hematologic malignancies. Infect. Drug Resist. 2023, 16, 4943–4952. [Google Scholar] [CrossRef]
- Aslan, A.T.; Akova, M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev. Anti Infect. Ther. 2024, 1–17. [Google Scholar] [CrossRef] [PubMed]
- López-García, A.; Del Carmen Rocha-Gracia, R.; Bello-López, E.; Juárez-Zelucualtecalt, C.; Sáenz, Y.; Castañeda-Lucio, M.; López-Piego, L.; González-Vázquez, M.C.; Torres, C.; Ayala-Nuñez, T.; et al. Characterization of antimicrobial resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa carrying IMP variants recovered form a Mexican Hospital. Infect. Drug. Resist. 2018, 11, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Spilker, T.; Coenye, T.; Vandamme, P.; LiPuma, J.J. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004, 42, 2074–2079. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Clinical Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI document M100-ED30; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liligequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning, A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Maynard, C.; Fairbrother, J.M.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Lariviere, S.; Harel, J. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 2003, 47, 3214–3221. [Google Scholar] [CrossRef]
- Cerezales, M.; Biniossek, L.; Gerson, S.; Xanthopoulou, K.; Wille, J.; Wohlfarth, E.; Kaase, M.; Seifert, H.; Higgins, P.G. Novel multiplex PCRs for detection of the most prevalent carbapenemase genes in Gram-negative bacteria within Germany. J. Med. Microbiol. 2021, 70, 3214–3221. [Google Scholar] [CrossRef]
- Robicsek, A.; Strahilevitz, J.; Sahm, D.F.; Jacoby, G.A.; Hooper, D.C. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother. 2006, 50, 2872–2874. [Google Scholar] [CrossRef]
- Wang, M.; Guo, Q.; Xu, X.; Wang, X.; Ye, X.; Wu, S.; Hooper, D.C.; Wang, M. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolates of Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 1892–1897. [Google Scholar] [CrossRef]
- Cavaco, L.M.; Hasman, H.; Xia, S.; Aarestrup, F.M. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob. Agents Chemother. 2009, 53, 603–608. [Google Scholar] [CrossRef]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac (6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Pan, W.; Yin, J.; Pan, Z.; Gao, S.; Jiao, X. Prevalence of qnr, aac (6′)-Ib-cr, qepA, and oqxAB in Escherichia coli Isolates from Humans, Animals, and the Environment. Antimicrob. Agents Chemother. 2012, 56, 3423–3427. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Echols, R.; Magee, G.; Arjona Ferreira, J.C.; Morgan, G.; Ariyasu, M.; Sawada, T.; Nagata, T.D. Prevalence of Carbapenem-Resistant Gram-Negative Infections in the United States Predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect. Dis. 2017, 4, ofx176. [Google Scholar] [CrossRef] [PubMed]
- Palavutitotai, N.; Jitmuang, A.; Tongsai, S.; Kiratisin, P.; Angkasekwinai, N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS ONE 2018, 13, e0193431. [Google Scholar] [CrossRef]
- Kim, Y.J.; Jun, Y.H.; Kim, Y.R.; Park, K.G.; Park, Y.J.; Kang, J.Y.; Kim, S.I. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect. Dis. 2014, 14, 161. [Google Scholar] [CrossRef] [PubMed]
- Frem, J.A.; Doumat, G.; Kazma, J.; Gharamti, A.; Kanj, S.S.; Fayad, A.G.A.; Matar, G.M.; Kanafani, Z.A. Clinical predictors of mortality in patients with Pseudomonas aeruginosa infection. PLoS ONE 2013, 18, e0282276. [Google Scholar] [CrossRef]
- Martínez-Zavaleta, M.G.; Fernández-Rodríguez, D.; Hernández-Durán, M.; Colín-Castro, C.A.; García-Hernández, M.d.L.; Becerra-Lobato, N.; Franco-Cendejas, R.; López-Jácome, L.E. Acquired blaVIM and blaGES Carbapenemase-Encoding Genes in Pseudomonas aeruginosa: A Seven-Year Survey Highlighting an Increasing Epidemiological Threat. Pathogens 2023, 12, 1256. [Google Scholar] [CrossRef]
- Kawa, D.E.; Tickler, I.A.; Tenover, F.C.; Shettima, S.A. Characterization of Beta-Lactamase and Fluoroquinolone Resistance Determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa Isolates from a Tertiary Hospital in Yola, Nigeria. Trop. Med. Infect. Dis. 2023, 8, 500. [Google Scholar] [CrossRef]
- Yano, H.; Hayashi, W.; Kawakami, S.; Aoki, S.; Anzai, E.; Zuo, H.; Kitamura, N.; Hirabayashi, A.; Kajihara, T.; Kayama, S.; et al. Nationwide genome surveillance of carbapenem-resistant Pseudomonas aeruginosa in Japan. Antimicrob. Agents Chemother. 2024, 68, e0166923. [Google Scholar] [CrossRef]
- Galindo-Méndez, M.; Navarrete-Salazar, H.; Pacheco-Vásquez, R.; Quintas-de la Paz, D.; Baltazar-Jiménez, I.; Santiago-Luna, J.D.; Guadarrama-Monroy, L. Detection of Plasmid-Mediated Resistance against Colistin in Multi-Drug-Resistant Gram-Negative Bacilli Isolated from a Tertiary Hospital. Microorganisms 2023, 11, 1996. [Google Scholar] [CrossRef]
- Xiao, S.Z.; Chu, H.Q.; Han, L.Z.; Zhang, Z.M.; Li, B.; Zhao, L.; Xu, L. Resistant mechanisms and molecular epidemiology of imipenem-resistant Acinetobacter baumannii. Mol. Med. Rep. 2016, 14, 2483–2488. [Google Scholar] [CrossRef]
- Uwingabiye, J.; Lemnouer, A.; Roca, I.; Alouane, T.; Frikh, M.; Belefquih, B.; Bssaibis, F.; Maleb, A.; Benlahlou, Y.; Kassouati, J.; et al. Clonal diversity and detection of carbapenem resistance encoding genes among multidrug-resistant Acinetobacter baumannii isolates recovered from patients and environment in two intensive care units in a Moroccan hospital. Antimicrob. Resist. Infect. Control. 2017, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Nitz, F.; de Melo, B.O.; da Silva, L.C.N.; de Souza Monteiro, A.; Marques, S.G.; Monteiro-Neto, V.; de Jesus Gomes Turri, R.; Junior, A.D.S.; Conceição, P.C.R.; Magalhães, H.J.C.; et al. Molecular Detection of Drug-Resistance Genes of blaOXA-23-blaOXA-51 and mcr-1 in Clinical Isolates of Pseudomonas aeruginosa. Microorganisms 2021, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Gondal, A.J.; Choudhry, N.; Niaz, A.; Yasmin, N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics 2024, 13, 191. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, F.; Jafari, B.; Azimi, T. Evaluating the antimicrobial resistance patterns and molecular frequency of blaOXA-48 and blaGES-2 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from burn wound infection in Tehran, Iran. New Microbes New Infect. 2020, 37, 100686. [Google Scholar] [CrossRef] [PubMed]
- Wolter, D.J.; Hanson, N.D.; Lister, P.D. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol. Lett. 2004, 236, 137–143. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection 2020, 48, 835–851. [Google Scholar] [CrossRef]
- Galani, I.; Papoutsaki, V.; Karantani, I.; Karaiskos, I.; Galani, L.; Adamou, P.; Deliolais, I.; Kodonaki, A.; Papadogeogarki, E.; Markopoulou, M.; et al. In vitro activity of ceftolozane/tazobactam alone and in combination with amikacin against MDR/XDR Pseudomonas aeruginosa isolates from Greece. J. Antimicrob. Chemother. 2020, 75, 2164–2172. [Google Scholar] [CrossRef]
- Nang, S.C.; Li, J.; Velkov, T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit. Rev. Microbiol. 2019, 45, 131–161. [Google Scholar] [CrossRef]
- El-Baky, R.M.A.; Masoud, S.M.; Mohamed, D.S.; Waly, N.G.; Shafik, E.; A Mohareb, D.; Elkady, A.; Elbadr, M.M.; Hetta, H.F. Prevalence and Some Possible Mechanisms of Colistin Resistance among Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 323–332. [Google Scholar] [CrossRef]
- Snesrud, E.; Maybank, R.; Kwak, Y.I.; Jones, A.R.; Hinkle, M.K.; McGann, P. Chromosomally Encoded mcr-5 in Colistin-Nonsusceptible Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2018, 62, e00679-e18. [Google Scholar] [CrossRef]
- Abdelrahim, S.S.; Hassuna, N.A.; Waly, N.G.F.M.; Kotb, D.N.; Abdelhamid, H.; Zaki, S. Coexistence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum beta-lactamase (ESBL) genes among clinical Pseudomonas aeruginosa isolates in Egypt. BMC Microbiol. 2024, 24, 175. [Google Scholar] [CrossRef] [PubMed]
- Nouri, R.; Ahangarzadeh Rezaee, M.; Hasani, A.; Aghazadeh, M.; Asgharzadeh, M. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Braz. J. Microbiol. 2016, 47, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Andres, P.; Lucero, C.; Soler-Bistué, A.; Guerriero, L.; Albornoz, E.; Tran, T.; Zorreguieta, A.; PMQR Group; Galas, M.; Corso, A.; et al. Differential distribution of plasmid-mediated quinolone resistance genes in clinical enterobacteria with unusual phenotypes of quinolone susceptibility from Argentina. Antimicrob. Agents Chemother. 2013, 57, 2467–2475. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Azad, M.; Seyedjavadi, S.S. Prevalence of plasmid-mediated quinolone resistance determinants and oqxab efflux pumps among extended-spectrum β-lactamase producing Klebsiella pneumoniae isolated from patients with nosocomial urinary tract infection in Tehran, Iran. Scientifica 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Amoako, D.G.; Allam, M.; Janice, J.; Pedersen, T.; Sundsfjord, A.; Essack, S. Genomic characterization of multidrug-resistant ESBL-producing Klebsiella pneumoniae isolated from a Ghanaian teaching hospital. Int. J. Infect. Dis. 2019, 85, 117–123. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Ning, J.; Sajid, A.; Cheng, G.; Yuan, Z.; Hao, H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob. Resist. Infect. Control. 2019, 8, 44. [Google Scholar] [CrossRef]
- Amereh, F.; Arabestani, M.R.; Shokoohizadeh, L. Relationship of OqxAB efflux pump to antibiotic resistance, mainly fluoroquinolones in Klebsiella pneumoniae, isolated from hospitalized patients. Iran. J. Basic Med. Sci. 2023, 26, 93–98. [Google Scholar] [CrossRef]
- Nazik, H.; Ongen, B.; Kuvat, N. Investigation of plasmid-mediated quinolone resistance among isolates obtained in a Turkish intensive care unit. Jpn. J. Infect. Dis. 2008, 61, 310–312. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother. 2005, 56, 463–469. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, T.; Jiang, X.; Zhang, W.; Zhang, L.; Ma, J. Emergence of plasmid-mediated quinolone resistance genes in clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa in Henan, China. Diagn. Micr. Infec. Dis. 2014, 79, 381–383. [Google Scholar] [CrossRef]
- Belotti, P.T.; Thabet, L.; Laffargue, A.; André, C.; Coulange-Mayonnove, L.; Arpin, C.; Messadi, A.; M’ Zali, F.; Quentin, C.; Dubois, V. Description of an original integron encompassing blaVIM-2, qnrVC1 and genes encoding bacterial group II intron proteins in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2015, 70, 2237–2240. [Google Scholar] [CrossRef] [PubMed]
- Sarjana Safain, K.; Bhuyan, G.S.; Hassan Hasib, S.; Islam, M.S.; Mahmud-Un-Nabi, M.A.; Sultana, R.; Tasnim, S.; Noor, F.A.; Sarker, S.K.; Islam, M.T.; et al. Genotypic and phenotypic profiles of antibiotic-resistant bacteria isolated from hospitalised patients in Bangladesh. Trop. Med. Int. Health 2021, 26, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Pachori, P.; Gothalwal, R.; Gandhi, P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019, 6, 109–119. [Google Scholar] [CrossRef] [PubMed]
Variables | Total n, (%) | Death 30-Day After Culture (%), [n = 13] | Non-Death 30 Days After Culture (%), [n = 39] | a Odds Ratios (95% CI) | b p Value |
---|---|---|---|---|---|
Clinical characteristics | |||||
Female | 24 (46.2) | 5 (38.5) | 19 (48.7) | Reference | |
Male | 28 (53.8) | 8 (61.5) | 20 (51.3) | 0.66 (0.18–2.37) | 0.522 |
Age category | |||||
20–49 | 19 (36.5) | 4 (30.8) | 15 (38.5) | 1.41 (0.37–5.39) | 0.619 |
50–64 | 16 (30.8) | 4 (30.8) | 12 (30.8) | 1 (0.26–3.9) | 1.000 |
≥65 | 17 (32.7) | 5 (38.5) | 12 (30.8) | 1.41 (0.38–5.2) | 0.609 |
Specimen type | |||||
Respiratory | 34 (65.4) | 10 (76.9) | 24 (61.5) | 0.48 (0.11–2.03) | 0.319 |
Urine | 13 (25.0) | 1 (7.7) | 12 (30.8) | 0.19 (0.02–1.61) | 0.127 |
Blood | 2 (3.8) | 1 (7.7) | 1 (2.6) | 0.32 (0.02–5.44) | 0.427 |
Biopsy | 3 (5.8) | 1 (7.7) | 2 (5.1) | 0.65 (0.05–7.8) | 0.733 |
Co-morbidities | |||||
Diabetes mellitus | 27 (51.9) | 8 (61.5) | 19 (48.7) | 0.59 (0.16–2.14) | 0.425 |
Systemic arterial hypertension | 30 (57.7) | 8 (61.5) | 22 (56.4) | 1.24 (0.34–4.47) | 0.746 |
Chronic kidney disease | 3 (5.8) | 0 (0) | 3 (7.7) | - | - |
Congestive heart failure | 4 (7.7) | 2 (15.4) | 2 (5.1) | 0.3 (0.04–2.36) | 0.251 |
Hypothyroidism | 7 (13.5) | 0 (0) | 7 (17.9) | - | - |
Obesity | 33 (63.5) | 8 (61.5) | 25 (64.1) | 1.12 (0.31–4.07) | 0.868 |
COVID-19 | 35 (67.3) | 10 (76.9) | 25 (64.1) | 0.54 (0.13–2.28) | 0.398 |
Charlson Comorbidity Index | |||||
<3 | 28 (53.8) | 4 (30.8) | 24 (61.5) | Reference | |
≥3 | 24 (46.2) | 9 (69.2) | 15 (38.5) | 0.8 (0.54–1.18) | 0.1063 |
Complication | |||||
Mechanical ventilation | 43 (82.7) | 12 (92.3) | 31 (79.5) | 0.32 (0.04–2.87) | 0.310 |
Pneumonia associated with mechanical ventilation | 43 (82.7) | 12 (92.3) | 31 (79.5) | 0.32 (0.04–2.87) | 0.310 |
Tracheostomy | 28 (53.8) | 6 (46.2) | 22 (56.4) | 1.51(0.43–5.33) | 0.522 |
Septic shock | 25 (48.1) | 10 (76.9) | 15 (38.5) | 0.19 (0.04–0.79) | 0.023 |
ICU | 21 (40.4) | 6 (46.2) | 15 (38.5) | 0.73 (0.21–2.59) | 0.625 |
Antibiotic exposure in the previous 90 days | |||||
Any antibiotics | |||||
Yes | 40 (76.9) | 10 (76.9) | 30 (76.9) | 1.0 (0.23–4.44) | 1.000 |
No | 12 (23.1) | 3 (23.1) | 9 (23.1) | ||
Adequate treatment | |||||
Yes | 34 (65.4) | 8 (61.5) | 26 (66.7) | 0.8 (0.22–2.94) | 0.737 |
No | 18 (34.6) | 5 (38.5) | 13 (33.3) | ||
Antimicrobial resistance | |||||
b MDR | 15 (28.8) | 1 (7.7) | 14 (35.9) | 0.15 (0.02–1.27) | 0.081 |
XDR | 30 (57.7) | 11 (84.6) | 19 (48.7) | 0.17 (0.03–0.88) | c 0.035 |
PDR | 7 (13.5) | 1 (7.7) | 6 (15.4) | 2.18 (0.24–20.44) | 0.491 |
Antimicrobial Class | Antimicrobial Agent | Susceptibility (%) | ||
---|---|---|---|---|
Susceptible | Intermediate | Resistant | ||
Quinolones | Ciprofloxacin (n = 52) | 6 (11.5) | 0 (0) | 46 (88.5) |
Carbapenems | Imipenem (n = 44) | 0 (0) | 0 (0) | 44 (100) |
Meropenem (n = 51) | 0 (0) | 0 (0) | 51 (100) | |
Doripenem (n = 44) | 0 (0) | 0 (0) | 44 (100) | |
Polymyxin E | Colistin (n = 44) | 36 (81.8) | 5 (11.4) | 3 (6.8) |
Glycylcline | Tigecycline (n = 42) | 0 (0) | 0 (0) | 42 (100) |
Penicillin and beta-lactamase inhibitors | Piperacillin/tazobactam (n = 39) | 3 (7.7) | 8 (20.5) | 28 (71.8) |
Cephalosporins | Cefepime (n = 52) | 7 (13.5) | 5 (9.6) | 40 (76.9) |
Ceftazidime (n = 48) | 4 (8.3) | 4 (8.3) | 40 (83.3) | |
Ceftriaxone (n = 48) | 0 (0) | 0 (0) | 48 (100) | |
Aminoglycosides | Amikacin (n = 52) | 14 (26.9) | 0 (0) | 38 (73.1) |
Gentamicin (n = 52) | 9 (17.3) | 4 (7.7) | 39 (75.0) |
a Antibiotics | Ciprofloxacin-Resistant | Ciprofloxacin-Susceptible | * p-Value | ||||
---|---|---|---|---|---|---|---|
R, n (%) | I, n (%) | S, n (%) | R, n (%) | I, n (%) | S, n (%) | ||
Colistin (n = 44) CIP-R (n = 38), CIP-S (n = 6) | 2 (5.3) | 4 (10.5) | 32 (84.2) | 1 (16.65) | 1 (16.65) | 4 (66.7) | 0.2968 |
Tigecycline (n = 42) CIP-R (n = 36), CIP-S (n = 6) | 36 (100) | 0 (0) | 0 (0) | 6 (100) | 0 (0) | 0 (0) | >0.9999 |
Piperacillin/tazobactam (n = 39) CIP-R (n = 34), CIP-S (n = 5) | 26 (76.5) | 5 (14.7) | 3 (8.8) | 2 (40) | 3 (60) | 0 (0) | 0.0871 |
Cefepime (n = 52) CIP-R (n = 46), CIP-S (n = 6) | 39 (84.8) | 3 (6.5) | 4 (8.7) | 1 (16.7) | 2 (33.3) | 3 (50) | 0.0018 |
Ceftazidime (n = 48) CIP-R (n = 42), CIP-S (n = 6) | 38 (90.4) | 2 (4.8) | 2 (4.8) | 2 (33.33) | 2 (33.33) | 2 (33.33) | 0.0046 |
Ceftriaxone (n = 48) CIP-R (n = 43), CIP-S (n = 5) | 43 (100) | 0 (0) | 0 (0) | 5 (100) | 0 (0) | 0 (0) | >0.9999 |
Amikacin (n = 52) CIP-R (n = 46), CIP-S (n = 6) | 40 (87.0) | 0 (0) | 6 (13.0) | 0 (0) | 0 (0) | 6 (100) | <0.0001 |
Gentamicin (n = 52) CIP-R (n = 46), CIP-S (n = 6) | 39 (84.8) | 4 (8.7) | 3 (6.5) | 0 (0) | 0 (0) | 6 (100) | <0.0001 |
Carbapenemase-Encoding Genes | PMQR Genes | PMCR a | CIP-Susceptibility b | Total Prevalence (N = 52) | |||||
---|---|---|---|---|---|---|---|---|---|
MBL | OXA | SBL | Qnr Variants | Efflux Pumps | Aminoglycoside Variant | mcr-1 | R c n = 46, (%) | S d n = 6, (%) | |
blaIMP | blaOXA-51 | qnrC | oqxA | aac-(6´)-lb | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||
blaIMP | blaOXA-51 | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||||
blaNDM | blaOXA-1 | aac-(6´)-lb | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||
blaNDM | blaOXA-1 | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||||
blaNDM | oqxA | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||||
blaVIM | blaOXA-51 | aac-(6´)-lb | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||
blaVIM | blaOXA-51 | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||||
blaVIM | blaOXA-51 | oqxA | 0 (0.0) | 1 (16.7) | 1 (1.9) | ||||
blaVIM | blaKPC | qnrB, qnrC, qnrS | oqxA | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||
blaVIM | blaOXA-48 | qnrS | mcr-1 | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||
blaVIM | blaOXA-51, blaOXA-1 | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||||
blaVIM | aac-(6´)-lb | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||||
blaVIM | 0 (0.0) | 1 (16.7) | 1 (1.9) | ||||||
blaOXA-1 | 2 (4.3) | 0 (0.0) | 2 (3.8) | ||||||
blaOXA-1 | qnrS | aac-(6´)-lb | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||
blaGES | qnrB, qnrS | oqxA | 0 (0.0) | 1 (16.7) | 1 (1.9) | ||||
blaOXA-48 | blaKPC | qnrS | oqxA | 0 (0.0) | 1 (16.7) | 1 (1.9) | |||
blaOXA-48 | qnrS | oqxA | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||
blaOXA-51 | blaKPC | oqxA | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||
blaOXA-51, blaOXA-1 | oqxA | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||||
blaOXA-51, blaOXA-1 | oqxA | aac-(6´)-lb | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||
blaOXA-51, blaOXA-48 | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||||
blaOXA-51 | aac-(6´)-lb | 2 (4.3) | 0 (0.0) | 2 (3.8) | |||||
blaOXA-51 | oqxA | 4 (8.7) | 0 (0.0) | 4 (7.7) | |||||
blaOXA-51 | 4 (8.7) | 0 (0.0) | 4 (7.7) | ||||||
blaOXA-51 | qnrC | oqxA | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||
blaOXA-51 | oqxA | aac-(6´)-lb | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||
qnrC, qnrS | oqxA | 2 (4.3) | 1 (16.7) | 3 (5.8) | |||||
qnrC | 1 (2.2) | 0 (0.0) | 1 (1.9) | ||||||
oqxA | aac-(6´)-lb | 1 (2.2) | 0 (0.0) | 1 (1.9) | |||||
oqxA | 3 (6.5) | 1 (16.7) | 4 (7.7) | ||||||
aac-(6´)-lb | 3 (6.5) | 0 (0.0) | 3 (5.8) | ||||||
- | - | - | - | - | - | 5 (10.9) | 0 (0.0) | 5 (9.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapia-Cornejo, A.S.; Ramírez-Castillo, F.Y.; Guerrero-Barrera, A.L.; Guillen-Padilla, D.E.; Arreola-Guerra, J.M.; González-Gámez, M.; Avelar-González, F.J.; Loera-Muro, A.; Hernández-Cuellar, E.; Ramos-Medellín, C.L.; et al. Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemase-Encoding Genes in Pseudomonas aeruginosa Isolates from Nosocomial Patients in Aguascalientes, Mexico. Pathogens 2024, 13, 992. https://doi.org/10.3390/pathogens13110992
Tapia-Cornejo AS, Ramírez-Castillo FY, Guerrero-Barrera AL, Guillen-Padilla DE, Arreola-Guerra JM, González-Gámez M, Avelar-González FJ, Loera-Muro A, Hernández-Cuellar E, Ramos-Medellín CL, et al. Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemase-Encoding Genes in Pseudomonas aeruginosa Isolates from Nosocomial Patients in Aguascalientes, Mexico. Pathogens. 2024; 13(11):992. https://doi.org/10.3390/pathogens13110992
Chicago/Turabian StyleTapia-Cornejo, Ana S., Flor Y. Ramírez-Castillo, Alma L. Guerrero-Barrera, Diana E. Guillen-Padilla, José M. Arreola-Guerra, Mario González-Gámez, Francisco J. Avelar-González, Abraham Loera-Muro, Eduardo Hernández-Cuellar, Carmen L. Ramos-Medellín, and et al. 2024. "Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemase-Encoding Genes in Pseudomonas aeruginosa Isolates from Nosocomial Patients in Aguascalientes, Mexico" Pathogens 13, no. 11: 992. https://doi.org/10.3390/pathogens13110992
APA StyleTapia-Cornejo, A. S., Ramírez-Castillo, F. Y., Guerrero-Barrera, A. L., Guillen-Padilla, D. E., Arreola-Guerra, J. M., González-Gámez, M., Avelar-González, F. J., Loera-Muro, A., Hernández-Cuellar, E., Ramos-Medellín, C. L., Adame-Álvarez, C., García-Romo, R., Galindo-Guerrero, F., & Moreno-Flores, A. C. (2024). Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemase-Encoding Genes in Pseudomonas aeruginosa Isolates from Nosocomial Patients in Aguascalientes, Mexico. Pathogens, 13(11), 992. https://doi.org/10.3390/pathogens13110992