A Comparative Study of Genetic Diversity and Multiplicity of Infection in Uncomplicated Plasmodium falciparum Infections in Selected Regions of Pre-Elimination and High Transmission Settings Using MSP1 and MSP2 Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Clearance
2.2. Study Sites
2.3. Study Design and Participants Inclusion
2.4. Microscopy
2.5. Parasite Genomic DNA Extraction
2.6. Confirmation of P. falciparum
2.7. Typing of Msp1 and Msp2 Alleles
2.8. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Allelic Proportion of Msp1 and Msp2 Genes in South Africa and Nigeria
3.3. Allelic Diversity in Msp1 and Msp2 of P. falciparum in South African and Nigerian Isolates
3.4. Multiplicity of Infection and Expected Heterozygosity (He)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oboh, M.A.; Ndiaye, T.; Diongue, K.; Ndiaye, Y.D.; Sy, M.; Deme, A.B.; Diallo, M.A.; Yade, M.S.; Volkman, S.K.; Badiane, A.S.; et al. Allelic diversity of MSP1 and MSP2 repeat loci correlate with levels of malaria endemicity in Senegal and Nigerian populations. Malar. J. 2021, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. World Malaria Report 2022; Newsletter: Geneva, Switzerland, 2022; Volume 131. [Google Scholar]
- Gao, L.; Shi, Q.; Liu, Z.; Li, Z.; Dong, X. Impact of the COVID-19 Pandemic on Malaria Control in Africa: A Preliminary Analysis. Trop. Med. Infect. Dis. 2023, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kang, S.; Seok, D.; Baek, Y.J.; An, S.Y.; Lee, J.; Jun, A.; Kim, S.-Y. Barriers against and strategies for malaria control during the COVID-19 pandemic in low- and middle-income countries: A systematic review. Malar. J. 2023, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- Adeola, A.; Ncongwane, K.; Abiodun, G.; Makgoale, T.; Rautenbach, H.; Botai, J.; Adisa, O.; Botai, C. Rainfall Trends and Malaria Occurrences in Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 5156. [Google Scholar] [CrossRef]
- Maharaj, R.; Seocharan, I.; Qwabe, B.; Mkhabela, M.; Kissoon, S.; Lakan, V. Decadal epidemiology of malaria in KwaZulu-Natal, a province in South Africa targeting elimination. Malar. J. 2019, 18, 368. [Google Scholar] [CrossRef]
- Tsoka-Gwegweni, J.M. Status of malaria and its implications for elimination in an endemic province of South Africa: Retrospective analysis. Pan Afr. Med. J. 2022, 41, 275. [Google Scholar] [CrossRef]
- Patrick, S.M.; Bendiane, M.-K.; Kruger, T.; Harris, B.N.; Riddin, M.A.; Trehard, H.; de Jager, C.; Bornman, R.; Gaudart, J. Household living conditions and individual behaviours associated with malaria risk: A community-based survey in the Limpopo River Valley, 2020, South Africa. Malar. J. 2023, 22, 156. [Google Scholar] [CrossRef]
- Dawaki, S.; Al-Mekhlafi, H.M.; Ithoi, I.; Ibrahim, J.; Atroosh, W.M.; Abdulsalam, A.M.; Sady, H.; Elyana, F.N.; Adamu, A.U.; Yelwa, S.I.; et al. Is Nigeria winning the battle against malaria? Prevalence, risk factors and KAP assessment among Hausa communities in Kano State. Malar. J. 2016, 15, 351. [Google Scholar] [CrossRef]
- DHS. 2021 Nigeria Malaria Indicator Survey: Atlas of Key Indicators. Natl. Malar. Elimin. Programme 2023, pp21. [Google Scholar]
- Okunlola, O.A.; Oyeyemi, O.T. Spatio-temporal analysis of association between incidence of malaria and environmental predictors of malaria transmission in Nigeria. Sci. Rep. 2019, 9, 17500. [Google Scholar] [CrossRef]
- Brown, C. Malaria vaccine not perfect, but still useful. Can. Med. Assoc. J. 2015, 187, 954–955. [Google Scholar] [CrossRef]
- Thu, A.M.; Phyo, A.P.; Landier, J.; Parker, D.M.; Nosten, F.H. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J. 2017, 284, 2569–2578. [Google Scholar] [CrossRef]
- Funwei, R.I.; Thomas, B.N.; Falade, C.O.; Ojurongbe, O. Extensive diversity in the allelic frequency of Plasmodium falciparum merozoite surface proteins and glutamate-rich protein in rural and urban settings of southwestern Nigeria. Malar. J. 2018, 17, 1. [Google Scholar] [CrossRef]
- Anderson, T.J.C.; Haubold, B.; Williams, J.T.; Estrada-Franco, J.G.; Richardson, L.; Mollinedo, R.; Bockarie, M.; Mokili, J.; Mharakurwa, S.; French, N.; et al. Microsatellite Markers Reveal a Spectrum of Population Structures in the Malaria Parasite Plasmodium falciparum. Mol. Biol. Evol. 2000, 17, 1467–1482. [Google Scholar] [CrossRef]
- Escalante, A.A.; Ferreira, M.U.; Vinetz, J.M.; Volkman, S.K.; Cui, L.; Gamboa, D.; Krogstad, D.J.; Barry, A.E.; Carlton, J.M.; van Eijk, A.M.; et al. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. Am. J. Trop. Med. Hyg. 2015, 93, 79–86. [Google Scholar] [CrossRef]
- Oyedeji, S.I.; Bassi, P.U.; Oyedeji, S.A.; Ojurongbe, O.; Awobode, H.O. Genetic diversity and complexity of Plasmodium falciparum infections in the microenvironment among siblings of the same household in North-Central Nigeria. Malar. J. 2020, 19, 338. [Google Scholar] [CrossRef] [PubMed]
- Waisberg, M.; Cerqueira, G.C.; Yager, S.B.; Francischetti, I.M.B.; Lu, J.; Gera, N.; Srinivasan, P.; Miura, K.; Rada, B.; Lukszo, J.; et al. Plasmodium falciparum merozoite surface protein 1 blocks the proinflammatory protein S100P. Proc. Natl. Acad. Sci. USA 2012, 109, 5429–5434. [Google Scholar] [CrossRef] [PubMed]
- Beeson, J.G.; Drew, D.R.; Boyle, M.J.; Feng, G.; Fowkes, F.J.; Richards, J.S. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol. Rev. 2016, 40, 343–372. [Google Scholar] [CrossRef] [PubMed]
- Eacret, J.S.; Gonzales, D.M.; Franks, R.G.; Burns, J.M. Immunization with merozoite surface protein 2 fused to a Plasmodium-specific carrier protein elicits strain-specific and strain-transcending, opsonizing antibody. Sci. Rep. 2019, 9, 9022. [Google Scholar] [CrossRef]
- Somé, A.F.; Bazié, T.; Zongo, I.; Yerbanga, R.S.; Nikiéma, F.; Neya, C.; Taho, L.K.; Ouédraogo, J.-B. Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso. Parasites Vectors 2018, 11, 323. [Google Scholar] [CrossRef]
- Lin, C.S.; Uboldi, A.D.; Marapana, D.; Czabotar, P.E.; Epp, C.; Bujard, H.; Taylor, N.L.; Perugini, M.A.; Hodder, A.N.; Cowman, A.F. The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J. Biol. Chem. 2014, 289, 25655–25669. [Google Scholar] [CrossRef]
- Moss, D.K.; Remarque, E.J.; Faber, B.W.; Cavanagh, D.R.; Arnot, D.E.; Thomas, A.W.; Holder, A.A. Plasmodium falciparum 19-Kilodalton Merozoite Surface Protein 1 (MSP1)-Specific Antibodies That Interfere with Parasite Growth In Vitro Can Inhibit MSP1 Processing, Merozoite Invasion, and Intracellular Parasite Development. Infect. Immun. 2012, 80, 1280–1287. [Google Scholar] [CrossRef]
- Takala, S.; Escalante, A.; Branch, O.; Kariuki, S.; Biswas, S.; Chaiyaroj, S.; Lal, A. Genetic diversity in the Block 2 region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum: Additional complexity and selection and convergence in fragment size polymorphism. Infect. Genet. Evol. 2006, 6, 417–424. [Google Scholar] [CrossRef]
- Patel, P.; Bharti, P.K.; Bansal, D.; Raman, R.K.; Mohapatra, P.K.; Sehgal, R.; Mahanta, J.; Sultan, A.A.; Singh, N. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: Implication for vaccine development. PLoS ONE 2017, 12, e0182674. [Google Scholar] [CrossRef]
- Mohammed, H.; Mindaye, T.; Belayneh, M.; Kassa, M.; Assefa, A.; Tadesse, M.; Woyessa, A.; Mengesha, T. Genetic diversity of Plasmodium falciparum isolates based on MSP1 and MSP2 genes from Kolla-Shele area, Arbaminch Zuria District, southwest Ethiopia. Malar. J. 2015, 14, 73. [Google Scholar] [CrossRef]
- Jamil, K.F.; Pratama, N.R.; Marantina, S.S.; Harapan, H.; Kurniawan, M.R.; Zanaria, T.M.; Hutagalung, J.; Rozi, I.E.; Asih, P.B.S.; Supargiyono; et al. Allelic diversity of merozoite surface protein genes (msp1 and msp2) and clinical manifestations of Plasmodium falciparum malaria cases in Aceh, Indonesia. Malar. J. 2021, 20, 182. [Google Scholar] [CrossRef] [PubMed]
- Tusting, L.S.; Bousema, T.; Smith, D.L.; Drakeley, C. Chapter Three—Measuring Changes in Plasmodium falciparum Transmission: Precision, Accuracy and Costs of Metrics. In Advances in Parasitology; Rollinson, D., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 84, pp. 151–208. [Google Scholar]
- Awosolu, O.B.; Yahaya, Z.S.; Haziqah, M.T.F.; Simon-Oke, I.A.; Fakunle, C. A cross-sectional study of the prevalence, density, and risk factors associated with malaria transmission in urban communities of Ibadan, Southwestern Nigeria. Heliyon 2021, 7, e05975. [Google Scholar] [CrossRef] [PubMed]
- Ogolo, E.; Adeyemi, B. Variations and trends of some meteorological parameters at Ibadan, Nigeria. Pac. J. Sci. Technol. 2009, 10, 981–987. [Google Scholar]
- Abdulraheem, M.A.; Ernest, M.; Ugwuanyi, I.; Abkallo, H.M.; Nishikawa, S.; Adeleke, M.; Orimadegun, A.E.; Culleton, R. High prevalence of Plasmodium malariae and Plasmodium ovale in co-infections with Plasmodium falciparum in asymptomatic malaria parasite carriers in southwestern Nigeria. Int. J. Parasitol. 2022, 52, 23–33. [Google Scholar] [CrossRef]
- Kassegne, K.; Fei, S.-W.; Ananou, K.; Noussougnon, K.S.; Koukoura, K.K.; Abe, E.M.; Guo, X.-K.; Chen, J.-H.; Zhou, X.-N. A Molecular Investigation of Malaria Infections From High-Transmission Areas of Southern Togo Reveals Different Species of Plasmodium Parasites. Front. Microbiol. 2021, 12, 732923. [Google Scholar] [CrossRef] [PubMed]
- Snounou, G.; Viriyakosol, S.; Zhu, X.P.; Jarra, W.; Pinheiro, L.; Rosario, V.E.D.; Thaithong, S.; Brown, K. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 1993, 61, 315–320. [Google Scholar] [CrossRef]
- Ndiaye, T.; Sy, M.; Gaye, A.; Ndiaye, D. Genetic polymorphism of Merozoite Surface Protein 1 (msp1) and 2 (msp2) genes and multiplicity of Plasmodium falciparum infection across various endemic areas in Senegal. Afr. Health Sci. 2019, 19, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-T.; Li, J.; Zha, G.-C.; Huang, G.; Huang, Z.-X.; Xie, D.-D.; Zhou, X.; Mo, H.-T.; Eyi, J.U.M.; Matesa, R.A.; et al. Genetic diversity and allele frequencies of Plasmodium falciparum msp1 and msp2 in parasite isolates from Bioko Island, Equatorial Guinea. Malar. J. 2018, 17, 458. [Google Scholar] [CrossRef]
- Earland, D.; Buchwald, A.G.; Sixpence, A.; Chimenya, M.; Damson, M.; Seydel, K.B.; Mathanga, D.P.; Taylor, T.E.; Laufer, M.K. Impact of Multiplicity of Plasmodium falciparum Infection on Clinical Disease in Malawi. Am. J. Trop. Med. Hyg. 2019, 101, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Oyebola, M.K.; Idowu, E.T.; A Olukosi, Y.; A Iwalokun, B.; O Agomo, C.; O Ajibaye, O.; Tola, M.; O Otubanjo, A. Genetic diversity and complexity of Plasmodium falciparum infections in Lagos, Nigeria. Asian Pac. J. Trop. Biomed. 2014, 4 (Suppl. S1), S87–S91. [Google Scholar] [CrossRef]
- Mayengue, P.I.; Ndounga, M.; Malonga, F.V.; Bitemo, M.; Ntoumi, F. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum isolates from Brazzaville, Republic of Congo. Malar. J. 2011, 10, 276. [Google Scholar] [CrossRef]
- Ogouyèmi-Hounto, A.; Gazard, D.K.; Ndam, N.; Topanou, E.; Garba, O.; Elegbe, P.; Hountohotegbe, T.; Massougbodji, A. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum isolates from children in South of Benin. Parasite 2013, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Lagnika, H.O.; Moussiliou, A.; Agonhossou, R.; Sovegnon, P.; Djihinto, O.Y.; Medjigbodo, A.A.; Djossou, L.; Amoah, L.E.; Ogouyemi-Hounto, A.; Djogbenou, L.S. Plasmodium falciparum msp1 and msp2 genetic diversity in parasites isolated from symptomatic and asymptomatic malaria subjects in the South of Benin. Parasitol. Res. 2022, 121, 167–175. [Google Scholar] [CrossRef]
- Khan, S.N.; Ali, R.; Khan, S.; Rooman, M.; Norin, S.; Zareen, S.; Ali, I.; Ayaz, S. Genetic Diversity of Polymorphic Marker Merozoite Surface Protein 1 (Msp-1) and 2 (Msp-2) Genes of Plasmodium falciparum Isolates From Malaria Endemic Region of Pakistan. Front. Genet. 2021, 12, 751552. [Google Scholar] [CrossRef]
- Yavo, W.; Konaté, A.; Mawili-Mboumba, D.P.; Kassi, F.K.; Tshibola Mbuyi, M.L.; Angora, E.K.; Menan, E.I.H.; Bouyou-Akotet, M.K. Genetic Polymorphism of msp1 and msp2 in Plasmodium falciparum Isolates from Côte d’Ivoire versus Gabon. J. Parasitol. Res. 2016, 2016, 3074803. [Google Scholar] [CrossRef]
- Ralinoro, F.; Rakotomanga, T.A.; Rakotosaona, R.; Rakoto, D.A.D.; Menard, D.; Jeannoda, V.; Ratsimbasoa, A. Genetic diversity of Plasmodium falciparum populations in three malaria transmission settings in Madagascar. Malar. J. 2021, 20, 239. [Google Scholar] [CrossRef]
- Pumpaibool, T.; Arnathau, C.; Durand, P.; Kanchanakhan, N.; Siripoon, N.; Suegorn, A.; Sitthi-Amorn, C.; Renaud, F.; Harnyuttanakorn, P. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country. Malar. J. 2009, 8, 155. [Google Scholar] [CrossRef]
- Agonhossou, R.; Akoton, R.; Lagnika, H.; Djihinto, O.Y.; Sovegnon, P.M.; Saizonou, H.D.; Ntoumi, F.; Wondji, C.S.; Borrmann, S.; Adegnika, A.A.; et al. P. falciparum msp1 and msp2 genetic diversity in P. falciparum single and mixed infection with P. malariae among the asymptomatic population in Southern Benin. Parasitol. Int. 2022, 89, 102590. [Google Scholar] [CrossRef]
- Olasehinde, G.; Yah, C.; Singh, R.; Ojuronbge, O.; Ajayi, A.; Valecha, N.; Abolaji, A.; Adeyeba, A. Genetic diversity of Plasmodium falciparum field isolates from south western Nigeria. Afr. Health Sci. 2012, 12, 355–361. [Google Scholar] [CrossRef]
- Al-Yaman, F.; Reeder, J.C.; Genton, B.; Mokela, D.; Anders, R.F.; Alpers, M.P. Humoral response to defined Plasmodium falciparum antigens in cerebral and uncomplicated malaria and their relationship to parasite genotype. Am. J. Trop. Med. Hyg. 1997, 56, 430–435. [Google Scholar] [CrossRef]
- Mohammed, H.; Kassa, M.; Mekete, K.; Assefa, A.; Taye, G.; Commons, R.J. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates in Northwest Ethiopia. Malar. J. 2018, 17, 386. [Google Scholar] [CrossRef]
- Moonasar, D.; Nuthulaganti, T.; Kruger, P.S.; Mabuza, A.; Rasiswi, E.S.; Benson, F.G.; Maharaj, R. Malaria control in South Africa 2000–2010: Beyond MDG6. Malar. J. 2012, 11, 294. [Google Scholar] [CrossRef]
- Moonasar, D.; Maharaj, R.; Kunene, S.; Candrinho, B.; Saute, F.; Ntshalintshali, N.; Morris, N. Towards malaria elimination in the MOSASWA (Mozambique, South Africa and Swaziland) region. Malar. J. 2016, 15, 419. [Google Scholar] [CrossRef]
- Mwingira, F.; Nkwengulila, G.; Schoepflin, S.; Sumari, D.; Beck, H.-P.; Snounou, G.; Felger, I.; Olliaro, P.; Mugittu, K. Plasmodium falciparum msp1, msp2 and glurp allele frequency and diversity in sub-Saharan Africa. Malar. J. 2011, 10, 79. [Google Scholar] [CrossRef]
- Oyegoke, O.O.; Adewumi, T.S.; Aderoju, S.A.; Tsundzukani, N.; Mabunda, E.; Adeleke, M.A.; Maharaj, R.; Okpeku, M. Towards malaria elimination: Analysis of travel history and case forecasting using the SARIMA model in Limpopo Province. Parasitol. Res. 2023, 122, 1775–1785. [Google Scholar] [CrossRef]
- Bushman, M.; Antia, R.; Udhayakumar, V.; de Roode, J.C. Within-host competition can delay evolution of drug resistance in malaria. PLoS Biol. 2018, 16, e2005712. [Google Scholar] [CrossRef]
- Talisuna, A.O.; Okello, P.E.; Erhart, A.; Coosemans, M.; D’alessandro, U. Intensity of Malaria Transmission and the Spread of Plasmodium falciparum–Resistant Malaria: A Review of Epidemiologic Field Evidence. Am. J. Trop. Med. Hyg. 2007, 77, 170–180. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, A.; Israr, M.; Shah, M.; Shams, S.; Khan, W.; Shah, M.; Siraj, M.; Akbar, K.; Naz, T.; et al. Genomic miscellany and allelic frequencies of Plasmodium falciparum msp1, msp2 and glurp in parasite isolates. PLoS ONE 2022, 17, e0264654. [Google Scholar] [CrossRef]
- Long, C.A.; Zavala, F. Immune Responses in Malaria. Cold Spring Harb. Perspect. Med. 2017, 7, a025577. [Google Scholar] [CrossRef] [PubMed]
- Bouyou-Akotet, M.K.; M’Bondoukwé, N.P.; Mawili-Mboumba, D.P. Genetic polymorphism of merozoite surface protein-1 in Plasmodium falciparum isolates from patients with mild to severe malaria in Libreville, Gabon. Parasite 2015, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Silué, K.D.; Felger, I.; Utzinger, J.; Beck, H.-P.; Smith, T.; Tanner, M. Prévalence, diversité antigénique et multiplicité d’infections de Plasmodium falciparum en milieu scolaire au centre de la Côte d’Ivoire. Med. Trop. 2006, 66, 149–156. [Google Scholar]
- Conway, D.J.; Cavanagh, D.R.; Tanabe, K.; Roper, C.; Mikes, Z.S.; Sakihama, N.; Bojang, K.A.; Oduola, A.M.J.; Kremsner, P.G.; Arnot, D.E.; et al. A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nat. Med. 2000, 6, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49. [Google Scholar] [CrossRef]
- Ockenhouse, C.F.; Schulman, S.; Shear, H.L. Induction of crisis forms in the human malaria parasite Plasmodium falciparum by gamma-interferon-activated, monocyte-derived macrophages. J. Immunol. 1984, 133, 1601–1608. [Google Scholar] [CrossRef]
Gene | Primers | Primer Sequences (5′→3′) | Annealing Temperature (°C) | Reference |
---|---|---|---|---|
Primary PCR | ||||
msp1 | M1-OR | 5′-CTA GAA GCT TTA GAA GAT GCA GTA TTG-3′ | 54.2 | [36] |
M1-OF | 5′-CTT AAA TAG TAT TCT AAT TCA AGT GGA TCA-3′ | |||
msp2 | M2R | 5′-ATG AAG GTA ATT AAA ACA TTG TCT ATT ATA-3′ | 53.2 | [36] |
M2F | 5′-CTT TGT TAC CAT CGG TAC ATT CTT-3′ | |||
SECONDARY PCR | ||||
K1 | M1K1R | 5′-AAA TGA AGA AGA AAT TAC TAC AAA AGG TGC-3′ | 58.2 | [36] |
M1K1F | 5′-GCT TGC ATC AGC TGG AGG GCT TGC ACC AGA-3′ | |||
MAD20 | M1MAD20R | 5′-AAA TGA AGG AAC AAG TGG AAC AGC TGT TAC-3′ | 60.9 | [36] |
M1MAD20F | 5′-ATC TGA AGG ATT TGT ACG TCT TGA ATT ACC-3′ | |||
RO33 | M1RO33R | 5′-TAA AGG ATG GAG CAA ATA CTC AAG TTG TTG-3′ | 62.2 | [36] |
M1RO33F | 5′-CAT CTG AAG GAT TTG CAG CAC CTG GAG ATC-3′ | |||
IC3D7 | M2ICR | 5′-AAT ACT AAG AGT GTA GGT GCA TATGCT CCA-3′ | 62.7 | [36] |
M2ICF | 5′-TTT TAT TTG GTG CAT TGC CAG AAC TTG AAC-3′ | |||
FC27 | M2FCR | 5′-AGA AGT ATG GCA GAA AGT AAC CCT TCT ACT-3′ | 61.6 | [36] |
M2FCF | 5′-GAT TGT AAT TCG GGG GAT TCA GTT TGT TCG-3′ |
South Africa | Nigeria | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gene | TOTAL n (%) | Female | Male | p-Value | TOTAL n (%) | Female | Male | p-Value | |
n (%) | n (%) | n (%) | n (%) | ||||||
msp1 | K1 | 31 (39.7) | 20 (25.6) | 11 (14.1) | 0.744 | 29 (56.9) | 19 (37.3) | 10 (19.6) | 0.889 |
RO33 | 6 (7.7) | 4 (5.1) | 2 (2.6) | 0.685 | 46 (90.2) | 29 (56.9) | 17 (33.3) | 0.451 | |
MAD20 | 12 (15.1) | 7 (9.0) | 5 (6.4) | 0.506 | 15 (29.4) | 9 (17.6) | 6 (11.8) | 0.650 | |
MAD20 + K1 | 8 (10.3) | 5 (6.4) | 3 (3.8) | 0.792 | 9 (17.6) | 5 (9.8) | 4 (7.8) | 0.527 | |
MAD20 + RO33 | 2 (2.6) | 2 (2.6) | - | 0.311 | 14 (27.5) | 8 (15.7) | 6 (11.8) | 0.487 | |
RO33 + K1 | 1 (1.3) | 1 (1.3) | - | 0.477 | 26 (51.0) | 17 (33.3) | 9 (17.6) | 0.918 | |
RO33 + MAD20 + K1 | 1 (1.3) | 1 (1.3) | - | 0.477 | 8 (15.7) | 4 (7.8) | 4 (7.8) | 0.343 | |
msp2 | FC27 | 35 (44.9) | 20 (25.6) | 15 (19.2) | 0.107 | 31 (60.8) | 20 (39.2) | 11 (21.6) | 0.972 |
IC3D7 | 34 (43.6) | 22 (28.2) | 12 (15.4) | 0.747 | 10 (19.6) | 7 (13.7) | 3 (5.9) | 0.696 | |
FC27 + IC3D7 | 14 (17.9) | 9 (11.5) | 5 (6.4) | 0.835 | 10 (19.6) | 7 (13.7) | 3 (5.9) | 0.696 |
Gene | Age Category | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
<19 | 20–40 | 40+ | ||||||
n | % | n | % | n | % | |||
msp1 | K1 | 20 | 34.5% | 27 | 46.6% | 11 | 19.0% | 0.571 |
RO33 | 28 | 54.9% | 16 | 31.4% | 7 | 13.7% | 0.001 * | |
MAD 20 | 12 | 44.4% | 10 | 37.0% | 5 | 18.5% | 0.173 | |
MAD 20 + K1 | 5 | 29.4% | 9 | 52.9% | 3 | 17.6% | 0.909 | |
MAD 20 + RO33 | 10 | 62.5% | 6 | 37.5% | 0 | 0.0% | 0.004 * | |
RO33 + K1 | 15 | 57.7% | 9 | 34.6% | 2 | 7.7% | 0.002 * | |
RO33 + MAD 20 + K1 | 4 | 44.4% | 5 | 55.6% | 0 | 0.0% | 0.243 | |
msp2 | FC | 29 | 44.6% | 23 | 35.4% | 13 | 20.0% | 0.001 * |
IC | 13 | 29.5% | 25 | 56.8% | 6 | 13.6% | 0.256 | |
FC+IC | 12 | 50.0% | 8 | 33.3% | 4 | 16.7% | 0.057 |
South Africa | Nigeria | Independent t-Test p-Value | ||
---|---|---|---|---|
Msp1 | MOI | 1.24 | 1.63 | <0.001 * |
Msp2 | MOI | 1.20 | 1.24 | 0.213 |
Overall | MOI | 2.44 | 2.87 | <0.000 * |
Msp1 | He | 0.81 | 0.54 | |
Msp2 | He | 0.61 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akoniyon, O.P.; Akiibinu, M.; Adeleke, M.A.; Maharaj, R.; Okpeku, M. A Comparative Study of Genetic Diversity and Multiplicity of Infection in Uncomplicated Plasmodium falciparum Infections in Selected Regions of Pre-Elimination and High Transmission Settings Using MSP1 and MSP2 Genes. Pathogens 2024, 13, 172. https://doi.org/10.3390/pathogens13020172
Akoniyon OP, Akiibinu M, Adeleke MA, Maharaj R, Okpeku M. A Comparative Study of Genetic Diversity and Multiplicity of Infection in Uncomplicated Plasmodium falciparum Infections in Selected Regions of Pre-Elimination and High Transmission Settings Using MSP1 and MSP2 Genes. Pathogens. 2024; 13(2):172. https://doi.org/10.3390/pathogens13020172
Chicago/Turabian StyleAkoniyon, Olusegun Philip, Moses Akiibinu, Matthew A. Adeleke, Rajendra Maharaj, and Moses Okpeku. 2024. "A Comparative Study of Genetic Diversity and Multiplicity of Infection in Uncomplicated Plasmodium falciparum Infections in Selected Regions of Pre-Elimination and High Transmission Settings Using MSP1 and MSP2 Genes" Pathogens 13, no. 2: 172. https://doi.org/10.3390/pathogens13020172
APA StyleAkoniyon, O. P., Akiibinu, M., Adeleke, M. A., Maharaj, R., & Okpeku, M. (2024). A Comparative Study of Genetic Diversity and Multiplicity of Infection in Uncomplicated Plasmodium falciparum Infections in Selected Regions of Pre-Elimination and High Transmission Settings Using MSP1 and MSP2 Genes. Pathogens, 13(2), 172. https://doi.org/10.3390/pathogens13020172