Detection of Chlamydia psittaci in the Genital Tract of Horses and in Environmental Samples: A Pilot Study in Sardinia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Origin of the Samples
2.3. Sampling Protocol
2.3.1. Blood Collection
2.3.2. Collection of Swabs
2.3.3. Ectoparasite Collection
2.4. Direct Immunofluorescence Test
2.5. DNA Extraction
2.6. Screening of Chlamydia spp. by PCR Amplification
2.7. Purification and Sequencing
2.8. Statistical Analysis
3. Results
3.1. Origin of the Samples and Detection of Chlamydia Species by Molecular and Serological Tests
3.2. Detection of Chlamydia Species in the Environment
3.3. Sardinian Survey Sample Size Calculation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stokes, H.S.; Berg, M.L.; Bennett, A.T.D. A Review of Chlamydial Infections in Wild Birds. Pathogens 2021, 10, 948. [Google Scholar] [CrossRef]
- Borel, N.; Polkinghorne, A.; Pospischil, A. A Review on Chlamydial Diseases in Animals: Still a Challenge for Pathologists? Veter Pathol. 2018, 55, 374–390. [Google Scholar] [CrossRef]
- Eisenberg, T.; Fawzy, A.; Kaim, U.; Nesseler, A.; Riße, K.; Völker, I.; Hechinger, S.; Schauerte, N.; Geiger, C.; Knauf-Witzens, T.; et al. Chronic wasting associated with Chlamydia pneumoniae in three ex situ breeding facilities for tropical frogs. Antonie Leeuwenhoek 2020, 113, 2139–2154. [Google Scholar] [CrossRef]
- Vorimore, F.; Hölzer, M.; Liebler-Tenorio, E.; Barf, L.-M.; Delannoy, S.; Vittecoq, M.; Wedlarski, R.; Lécu, A.; Scharf, S.; Blanchard, Y.; et al. Evidence for the existence of a new genus Chlamydiifrater gen. nov. inside the family Chlamydiaceae with two new species isolated from flamingo (Phoenicopterus roseus): Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov. Syst. Appl. Microbiol. 2021, 44, 126200. [Google Scholar] [CrossRef]
- Sachse, K.; Bavoil, P.M.; Kaltenboeck, B.; Stephens, R.S.; Kuo, C.-C.; Rosselló-Móra, R.; Horn, M. Emendation of the family Chlamydiaceae: Proposal of a single genus, Chlamydia, to include all currently recognized species. Syst. Appl. Microbiol. 2015, 38, 99–103. [Google Scholar] [CrossRef]
- Ravichandran, K.; Anbazhagan, S.; Karthik, K.; Angappan, M.; Dhayananth, B. A Comprehensive review on avian chlamydiosis: A neglected zoonotic disease. Trop. Anim. Health Prod. 2021, 53, 414. [Google Scholar] [CrossRef]
- Weygaerde, Y.V.; Versteele, C.; Thijs, E.; De Spiegeleer, A.; Boelens, J.; Vanrompay, D.; Van Braeckel, E.; Vermaelen, K. An unusual presentation of a case of human psittacosis. Respir. Med. Case Rep. 2018, 23, 138–142. [Google Scholar] [CrossRef]
- Collina, F.; De Chiara, A.; De Renzo, A.; De Rosa, G.; Botti, G.; Franco, R. Chlamydia psittaci in ocular adnexa MALT lymphoma: A possible role in lymphomagenesis and a different geographical distribution. Infect. Agents Cancer 2012, 7, 8. [Google Scholar] [CrossRef]
- Dembek, Z.F.; Mothershead, J.L.; Owens, A.N.; Chekol, T.; Wu, A. Psittacosis: An Underappreciated and Often Undiagnosed Disease. Pathogens 2023, 12, 1165. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, J.; Shi, X.; Hu, J.; Li, H.; Li, X.; Wang, Y.; Wu, B. A case of chlamydia psittaci caused severe pneumonia and meningitis diagnosed by metagenome next-generation sequencing and clinical analysis: A case report and literature review. BMC Infect. Dis. 2021, 21, 621. [Google Scholar] [CrossRef]
- Balsamo, G.; Maxted, A.M.; Midla, J.W.; Murphy, J.M.; Wohrle, R.; Edling, T.M.; Fish, P.H.; Flammer, K.; Hyde, D.; Kutty, P.K.; et al. Compendium of Measures to Control. Chlamydia psittaci. Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2017. J. Avian Med. Surg. 2017, 31, 262–282. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, H.; Cao, H.; Ji, J.; Zhang, R.; Li, W.; Guo, H.; Chen, L.; Ma, C.; Cui, M.; et al. Human-to-human transmission of Chlamydia psittaci in China, 2020: An epidemiological and aetiological investigation. Lancet Microbe 2022, 3, e512–e520. [Google Scholar] [CrossRef]
- Jenkins, C.; Jelocnik, M.; Melinda, L.; O’Rourke, B.; Chicken, C.; Carrick, J.; Polkinghorne, A. An epizootic of Chlamydia psittaci equine reproductive loss associated with suspected spillover from native Australian parrots. Emerg. Microbes Infect. 2018, 7, 88. [Google Scholar] [CrossRef]
- Jelocnik, M.; Branley, J.; Heller, J.; Alderson, S.; Galea, F.; Polkinghorne, A. Multilocus sequence typing identifies an avian-like Chlamydia psittaci strain involved in equine placentitis and associated with subsequent human psittacosis. Emerg. Microbes Infect. 2017, 6, e7. [Google Scholar] [CrossRef]
- Anstey, S.; Lizárraga, D.; Nyari, S.; Chalmers, G.; Carrick, J.; Chicken, C.; Jenkins, C.; Perkins, N.; Timms, P.; Jelocnik, M. Epidemiology of Chlamydia psittaci infections in pregnant Thoroughbred mares and foals. Veter J. 2021, 273, 105683. [Google Scholar] [CrossRef]
- El-Hage, C.; Gilkerson, J. Chlamydia psittaci: An emerging cause of equine abortion and fatal neonatal illness in south-eastern Australia. VetRec. 2023, 193, 11. [Google Scholar] [CrossRef]
- Akter, R.; Sansom, F.M.; El-Hage, C.M.; Gilkerson, J.R.; Legione, A.R.; Devlin, J.M. A 25-year retrospective study of Chlamydia psittaci in association with equine reproductive loss in Australia. J. Med. Microbiol. 2021, 70, 001284. [Google Scholar] [CrossRef]
- Cheong, H.C.; Lee, C.Y.Q.; Cheok, Y.Y.; Tan, G.M.Y.; Looi, C.Y.; Wong, W.F. Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019, 7, 146. [Google Scholar] [CrossRef]
- Polkinghorne, A.; Greub, G. A new equine and zoonotic threat emerges from an old avian pathogen, Chlamydia psittaci. Clin. Microbiol. Infect. 2017, 23, 693–694. [Google Scholar] [CrossRef]
- Szeredi, L.; Hotzel, H.; Sachse, K. High prevalence of chlamydial (Chlamydophila psittaci) infection in fetal membranes of aborted equine fetuses. Veter Res. Commun. 2005, 29, 37–49. [Google Scholar] [CrossRef]
- Costa, L.R.R. History and Physical Examination of the Horse. In Manual of Clinical Procedures in the Horse; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 27–58. [Google Scholar] [CrossRef]
- Barrelet, A.; Ricketts, S. Haematology and blood biochemistry in the horse: A guide to interpretation. In Practice 2002, 24, 318–327. [Google Scholar] [CrossRef]
- Dascanio, J.; McCue, P. Equine Reproductive Procedures. In Washing the Penis Book; John Dascanio, V.M.D., Patrick McCue, D.V.M., Eds.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2021; p. 22. [Google Scholar]
- Love, C.C. Semen Collection Techniques. Veter Clin. North Am. Equine Pr. 1992, 8, 111–128. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Mihalca, A.; Petney, T. Ticks of Europe and North Africa; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Chisu, V.; Porcu, R.; Tanda, A.; Masala, G. First isolation and characterization of Chlamydophila abortus from abortion tissues of sheep in Sardinia, Italy. Vet. Ital. 2013, 49, 331–334. [Google Scholar] [CrossRef]
- Chisu, V.; Foxi, C.; Tanda, A.; Masala, G. Molecular evidence of Chlamydiales in ticks from wild and domestic hosts in Sardinia, Italy. Parasitol. Res. 2018, 117, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Doosti, A.; Arshi, A. Determination of the Prevalence of Chlamydia psittaci by PCR in Iranian Pigeons. Int. J. Biol. 2011, 3, 79–82. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Cohen, J.; Everitt, B.S. Large sample standard errors of kappa and weighted kappa. Psychol Bull. 1969, 72, 323–327. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categoricaldata. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Brown, L.D.; Cat, T.T.; DasGupta, A. Interval Estimation for a proportion. Statistical Science 2001, 16, 101–133. [Google Scholar] [CrossRef]
- Reiczigel, F.; Ózsvári. Exact confidence limits for prevalence of a disease with an imperfect diagnostic test. Epidemiol. Infect. 2010, 138, 1674–1678. [Google Scholar] [CrossRef]
- Albini, S.; Marti, H.; Imkamp, F.; Borel, N. Update on the zoonotic potential of Chlamydia. Schweiz Arch. Tierheilkd. 2023, 165, 165–178. [Google Scholar] [CrossRef]
- El-Hage, C.; Legione, A.; Devlin, J.; Hughes, K.; Jenkins, C.; Gilkerson, J. Equine Psittacosis and the Emergence of Chlamydia psittaci as an Equine Abortigenic Pathogen in Southeastern Australia: A Retrospective Data Analysis. Animals 2023, 13, 2443. [Google Scholar] [CrossRef]
- Sachse, K.; Hölzer, M.; Vorimore, F.; Barf, L.-M.; Sachse, C.; Laroucau, K.; Marz, M.; Lamkiewicz, K. Genomic analysis of 61 Chlamydia psittaci strains reveals extensive divergence associated with host preference. BMC Genom. 2023, 24, 288. [Google Scholar] [CrossRef]
- Begg, A.P.; Carrick, J.; Chicken, C.; Blishen, A.; Todhunter, K.; Eamens, K.; Jenkins, C. Fetoplacental pathology of equine abortion, premature birth, and neonatal loss due to Chlamydia psittaci. Veter Pathol. 2022, 59, 983–996. [Google Scholar] [CrossRef]
- Schachter, J.; Chernesky, M.A.; Willis, D.E.; Fine, P.M.; Martin, D.H.; Fuller, D.; Jordan, J.A.; Janda, W.; Hook, E.W., 3rd. Vaginal Swabs Are the Specimens of Choice When Screening for Chlamydia trachomatis and Neisseria gonorrhoeae: Results from a Multicenter Evaluation of the APTIMA Assays for Both Infections. Sex. Transm. Dis. 2005, 32, 725–728. [Google Scholar] [CrossRef]
- Aaron, K.J.; Griner, S.; Footman, A.; Boutwell, A.; Van Der Pol, B. Vaginal Swab vs Urine for Detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis: A Meta-Analysis. Ann. Fam. Med. 2023, 21, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Papp, J.R.; E Shewen, P.; E Thorn, C.; Andersen, A.A. Immunocytologic detection of Chlamydia psittaci from cervical and vaginal samples of chronically infected ewes. Can. J. Vet. Res. Rev. Can. Rech. Vét. 1998, 62, 72–74. [Google Scholar]
- Cunningham, K.A.; Beagley, K.W. Male Genital Tract Chlamydial Infection: Implications for Pathology and Infertility1. Biol. Reprod. 2008, 79, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Chen, T.; Liao, L.; Wang, Z.; Xiao, J.; Lu, J.; Xie, Q. A parrot-type Chlamydia psittaci strain is association with egg production drop in laying ducks. Transbound. Emerg. Dis. 2019, 66, 2002–2010. [Google Scholar] [CrossRef]
- Yao, W.; Chen, X.; Wu, Z.; Wang, L.; Shi, G.; Yang, Z.; Zhang, Y.; Wu, B. A cluster of Psittacosis cases in Lishui, Zhejiang Province, China, in 2021. Front. Cell. Infect. Microbiol. 2022, 12, 1044984. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.A.; Durrheim, D.; Heller, J.; O’Rourke, B.; Hope, K.; Merritt, T.; Freeman, P.; Chicken, C.; Carrick, J.; Branley, J.; et al. Equine chlamydiosis—An emerging infectious disease requiring a one health surveillance approach. Zoonoses Public Health 2018, 65, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Stokes, H.S.; Martens, J.M.; Walder, K.; Segal, Y.; Berg, M.L.; Bennett, A.T.D. Species, sex and geographic variation in chlamydial prevalence in abundant wild Australian parrots. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Anstey, S.I.; Kasimov, V.; Jenkins, C.; Legione, A.; Devlin, J.; Amery-Gale, J.; Gilkerson, J.; Hair, S.; Perkins, N.; Peel, A.J.; et al. Chlamydia Psittaci ST24: Clonal Strains of One Health Importance Dominate in Australian Horse, Bird and Human Infections. Pathogens 2021, 10, 1015. [Google Scholar] [CrossRef]
- Kasimov, V.; White, R.T.; Foxwell, J.; Jenkins, C.; Gedye, K.; Pannekoek, Y.; Jelocnik, M. Whole-genome sequencing of Chlamydia psittaci from Australasian avian hosts: A genomics approach to a pathogen that still ruffles feathers. Microb. Genom. 2023, 9, 001072. [Google Scholar] [CrossRef]
- Hulin, V.; Bernard, P.; Vorimore, F.; Aaziz, R.; Cléva, D.; Robineau, J.; Durand, B.; Angelis, L.; Siarkou, V.I.; Laroucau, K. Assessment of Chlamydia psittaci Shedding and Environmental Contamination as Potential Sources of Worker Exposure throughout the Mule Duck Breeding Process. Appl. Environ. Microbiol. 2015, 82, 1504–1518. [Google Scholar] [CrossRef]
- Kahane, S.; Greenberg, D.; Newman, N.; Dvoskin, B.; Friedman, M.G. Domestic water supplies as a possible source of infection with Simkania. J. Infect. 2007, 54, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Wheelhouse, N.; Sait, M.; Gidlow, J.; Deuchande, R.; Borel, N.; Baily, J.; Caldow, G.; Longbottom, D. Molecular detection of Chlamydia-like organisms in cattle drinking water. Veter Microbiol. 2011, 152, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Muroni, G.; Pinna, L.; Serra, E.; Chisu, V.; Mandas, D.; Coccollone, A.; Liciardi, M.; Masala, G. A Chlamydia psittaci Outbreak in Psittacine Birds in Sardinia, Italy. Int. J. Environ. Res. Public Health 2022, 19, 14204. [Google Scholar] [CrossRef]
Features | Mares (n = 39) | Stallion (n = 21) |
---|---|---|
Breeds | ||
Anglo-Arabian | 17 | 12 |
Standardbred | 14 | 0 |
Arabian | 3 | 4 |
Thoroughbred | 3 | 3 |
Italian Saddle | 2 | 0 |
Oldenburg | 0 | 1 |
Luxembourg Warmblood | 0 | 1 |
Age | ||
Young (1–6 y) | 1 | 1 |
Middle (7–14 y) | 19 | 10 |
Old (>15 y) | 19 | 10 |
Gender | Sample Type | Method | Chlamydia spp. (16S rRNA Screening) | C. abortus (pmp Assay) | C. psittaci (ompA Assay) |
---|---|---|---|---|---|
Mares (39) | Vaginal swabs (39) | PCR-positive samples | 8 (20.5%) | 0 | 8 (20.5%) |
Uterine swabs (27) | PCR-positive samples | 2 (7.4%) | 0 | 2 (7.4%) | |
Total in mares | 10 (25.6%) | 0 | 10 (25.6%) | ||
Stallion (21) | Urethral swabs (21) | PCR-positive samples | 1 (4.8%) | 0 | 1 (4.8%) |
Seminal fluid (16) | PCR-positive samples | 2 (10%) | 0 | 0 | |
Total in stallions | 3 (14.2%) | 0 | 1 (4.8%) | ||
Overall results | 13 (21.6%) | 0 | 11 (18.3%) |
a | Uterine Swabs | |||
---|---|---|---|---|
Vaginal Swabs | POS | NEG | Total | Substantial Agreement: 85% |
POS | 1 | 3 | 4 | Cohen’s k: 0.25 [95% CI = 0.13–0.44] |
NEG | 1 | 22 | 23 | |
Total | 2 | 25 | 27 | |
b | Seminal Fluid | |||
Urethral Swabs | POS | NEG | Total | Substantial Agreement: 87.5% |
POS | 1 | 0 | 1 | Cohen’s k: 0.45 [95% CI = 0.37–0.52] |
NEG | 2 | 13 | 15 | |
Total | 2 | 14 | 16 |
Environmental Samples (n) | Collection Areas | IFD Chlamydia spp. | 16S rRNA PCR Chlamydia spp. | pmp PCR C. abortus | ompA PCR C. psittaci | GenBank Accession Number (1st Hit; ID%) |
---|---|---|---|---|---|---|
Swabs (8) | Senior mares’ area Mares’ pond Foals’ area Service center General pond Garden 1 Garden 2 Stallions’ area | 0/8 | 3/8 | 0/8 | 1/8 | C. psittaci (MK630234; 100%) |
Water (16) | Senior mares’ area Mares’ pond Foals’ area Service center General pond Garden 1 Garden 2 Stallions’ area | 0/16 | 5/16 | 0/16 | 3/16 | C. psittaci (MK630234; 100%) |
Sample (n) | Species (n) | Tick Stage, Sex, and Engorgement State (n) | Host (n) | PCR Chlamydia spp. |
---|---|---|---|---|
Ticks (46) | Rhipicephalus spp. (1) | FE (1) | 1 | 0 |
Hy. marginatum (26) | FE (8); FNE (1); MNE (14); ME (2); | 10 | 0 | |
D. marginatus (1) | MNE (1) | 1 | 0 | |
Rh. sanguineus (19) | FE (7); FNE (1); MNE (5); ME (1); NE (3); NNE (2); | 7 | 0 | |
Flies (5) | H. equina (5) | F (5) | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muroni, G.; Serra, E.; Biggio, G.P.; Sanna, D.; Cherchi, R.; Taras, A.; Appino, S.; Foxi, C.; Masala, G.; Loi, F.; et al. Detection of Chlamydia psittaci in the Genital Tract of Horses and in Environmental Samples: A Pilot Study in Sardinia. Pathogens 2024, 13, 236. https://doi.org/10.3390/pathogens13030236
Muroni G, Serra E, Biggio GP, Sanna D, Cherchi R, Taras A, Appino S, Foxi C, Masala G, Loi F, et al. Detection of Chlamydia psittaci in the Genital Tract of Horses and in Environmental Samples: A Pilot Study in Sardinia. Pathogens. 2024; 13(3):236. https://doi.org/10.3390/pathogens13030236
Chicago/Turabian StyleMuroni, Gaia, Elisa Serra, Giovanni Paolo Biggio, Daniela Sanna, Raffaele Cherchi, Andrea Taras, Simonetta Appino, Cipriano Foxi, Giovanna Masala, Federica Loi, and et al. 2024. "Detection of Chlamydia psittaci in the Genital Tract of Horses and in Environmental Samples: A Pilot Study in Sardinia" Pathogens 13, no. 3: 236. https://doi.org/10.3390/pathogens13030236
APA StyleMuroni, G., Serra, E., Biggio, G. P., Sanna, D., Cherchi, R., Taras, A., Appino, S., Foxi, C., Masala, G., Loi, F., & Chisu, V. (2024). Detection of Chlamydia psittaci in the Genital Tract of Horses and in Environmental Samples: A Pilot Study in Sardinia. Pathogens, 13(3), 236. https://doi.org/10.3390/pathogens13030236