Anatomical Vascular Differences and Leishmania-Induced Vascular Morphological Changes Are Associated with a High Parasite Load in the Skin of Dogs Infected with Leishmania infantum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Clinical Assessment
2.2. Histopathologic Analysis
2.3. Immunohistochemistry
2.4. Immunofluorescence
2.5. Statistical Analysis
3. Results
3.1. Ear Skin Exhibited Severe Histopathological Changes Compared with Abdominal Skin
3.2. Ear Skin Showed a Higher Parasite Load than Abdominal Skin
3.3. Ear Skin Has a Greater Number of Blood Vessels and Larger Vessel Diameters than Abdominal Skin
3.4. Ear Skin Exhibited the Highest Number of Recently Infiltrating MAC387+ Cells
3.5. Ear Skin Exhibited an Increased Number of Vascular Endothelial Growth Factor (VEGF)+ Cells Compared to Abdominal Skin
3.6. NOS2 Expression Was Associated with the Intensity and Distribution of Inflammatory Infiltrates
3.7. Abdominal Skin Exhibited a Higher NOS2/MAC387 Ratio than Ear Skin
3.8. Ear Skin Exhibited Collagen Disruption Associated with Increased Intensity and Distribution of Inflammatory Infiltrate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solano-Gallego, L.; Miró, G.; Koutinas, A.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. The LeishVet Group. LeishVet guidelines for the practical management of canine leishmaniosis. Parasit. Vectors 2011, 20, 86. [Google Scholar] [CrossRef] [PubMed]
- Atlas Interativo de Leishmaniose nas Américas: Aspectos Clínicos e Diagnósticos Diferenciais; Licença: CC BY-NC-SA 3.0 IGO; Organização Pan-Americana da Saúde: Washington, DC, USA, 2021. [CrossRef]
- Scorza, B.M.; Mahachi, K.G.; Cox, A.C.; Toepp, A.J.; Leal-Lima, A.; Kumar Kushwaha, A.; Kelly, P.; Meneses, C.; Wilson, G.; Gibson-Corley, K.N.; et al. Leishmania infantum xenodiagnosis from vertically infected dogs reveals significant skin tropism. PLoS Negl. Trop. Dis. 2021, 6, e0009366. [Google Scholar] [CrossRef] [PubMed]
- Maran, N.; Gomes, P.S.; Freire-de-Lima, L.; Freitas, E.O.; Freire-de-Lima, C.G.; Morrot, A. Host resistance to visceral leishmaniasis: Prevalence and prevention. Expert Rev. Anti-Infect. Ther. 2016, 14, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Souza, D.; Guerra-Sá, R.; Carneiro, C.M.; Vitoriano-Souza, J.; Giunchetti, R.C.; Teixeira-Carvalho, A.; Silveira-Lemos, D.; Oliveira, G.C.; Corrêa-Oliveira, R.; Reis, A.B. Higher expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 chemokines in the skin associated with parasite density in canine visceral leishmaniasis. PLoS Negl. Trop. Dis. 2012, 6, e1566. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.B.; Coura-Vital, W.; Colombo, F.A.; Baêta, F.J.M.; Pinheiro, A.C.; Roatt, B.M.; Reis, L.E.S.; Reis, A.B.; Marques, M.J. Comparative analysis of real-time PCR assays in the detection of canine visceral leishmaniasis. Parasitol. Res. 2018, 117, 3341–3346. [Google Scholar] [CrossRef] [PubMed]
- Jacintho, A.P.P.; Melo, G.D.; Machado, G.F.; Bertolo, P.H.L.; Moreira, P.R.R.; Momo, C.; Souza, T.A.; Vasconcelos, R.O. Expression of matrix metalloproteinase-2 and metalloproteinase-9 in the skin of dogs with visceral leishmaniasis. Parasitol. Res. 2018, 117, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Lazo, A.; Ordeix, L.; Planellas, M.; Pastor, J.; Solano-Gallego, L. Clinicopathological findings in sick dogs naturally infected with Leishmania infantum: Comparison of five different clinical classification systems. Res. Vet. Sci. 2018, 117, 18–27. [Google Scholar] [CrossRef]
- Abbehusen, M.M.C.; Almeida, V.d.A.; Solcà, M.d.S.; Pereira, L.d.S.; Costa, D.J.; Gil-Santana, L.; Bozza, P.T.; Fraga, D.B.M.; Veras, P.S.T.; Dos-Santos, W.L.C.; et al. Clinical and immunopathological findings during long term follow-up in Leishmania infantum experimentally infected dogs. Sci. Rep. 2017, 7, 15914. [Google Scholar] [CrossRef]
- Cavalcanti, A.S.; Ribeiro-Alves, M.; Pereira, L.d.O.R.; Mestre, G.L.; Ferreira, A.B.R.; Morgado, F.N.; Boité, M.C.; Cupolillo, E.; Moraes, M.O.; Porrozzi, R. Parasite load induces progressive spleen architecture breakage and impairs cytokine mRNA expression in Leishmania infantum-naturally infected dogs. PLoS ONE 2015, 10, e0123009. [Google Scholar] [CrossRef]
- Pereira-Fonseca, D.C.M.; Oliveira-Rovai, F.M.; Rodas, L.A.C.; Beloti, C.A.C.; Torrecilha, R.B.P.; Ito, P.K.R.K.; Avanço, S.V.; Cipriano, R.S.; Utsunomiya, Y.T.; Hiramoto, R.M.; et al. Dog skin parasite load, TLR-2, IL-10 and TNF-α expression and infectiousness. Parasite Immunol. 2017, 39, e12493. [Google Scholar] [CrossRef]
- Schatz, V.; Neubert, P.; Rieger, F.; Jantsch, J. Hypoxia, Hypoxia-Inducible Factor-1α, and Innate Antileishmanial Immune Responses. Front. Immunol. 2018, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Weinkopff, T.; Roys, H.; Bowlin, A.; Scott, P. Leishmania Infection Induces Macrophage Vascular Endothelial Growth Factor A Production in an ARNT/HIF-Dependent Manner. Infect. Immun. 2019, 87, e00088-19, Erratum in Infect. Immun. 2022, 90, e0001922. [Google Scholar] [CrossRef] [PubMed]
- Getty, R. Anatomia dos Animais Domésticos, 5th ed.; Rio de Janeiro: Guanabara, Brazil, 1986; pp. 1508, 1532–1533. [Google Scholar]
- Tobias, K.M.; Johnston, S.A. Veterinary Surgery Small Animal; Elsevier Saunders: St. Louis, MI, USA, 2012; pp. 1197–1198. [Google Scholar]
- Solano-Gallego, L.; Fernández-Bellon, H.; Morell, P.; Fondevila, D.; Alberola, J.; Ramis, A.; Ferrer, L. Histological and immunohistochemical study of clinically normal skin of Leishmania infantum-infected dogs. J. Comp. Pathol. 2004, 130, 7–12. [Google Scholar] [CrossRef]
- Ordeix, L.; Dalmau, A.; Osso, M.; Llull, J.; Montserrat-Sangrà, S.; Solano-Gallego, L. Histological and parasitological distinctive findings in clinically lesioned and normal-looking skin of dogs with different clinical stages of leishmaniosis. Parasit. Vectors 2017, 10, 121. [Google Scholar] [CrossRef]
- Jha, B.; Reverte, M.; Ronet, C.; Prevel, F.; Morgenthaler, F.D.; Desponds, C.; Lye, L.F.; Owens, K.L.; Scarpellino, L.; Dubey, L.K.; et al. In and out: Leishmania metastasis by hijacking lymphatic system and migrating immune cells. Front. Cell. Infect. Microbiol. 2022, 12, 941860. [Google Scholar] [CrossRef]
- Quinnell, R.J.; Courtenay, O.; Shaw, M.A.; Day, M.J.; Garcez, L.M.; Dye, C.; Kaye, P.M. Tissue cytokine responses in canine visceral leishmaniasis. J. Infect. Dis. 2001, 183, 1421–1424. [Google Scholar] [CrossRef]
- Quintella, L.P.; Cuzzi, T.; de F Madeira, M.; Okamoto, T.; de O Schubach, A. Immunoperoxidase technique using an anti-Leishmania (L.) chagasi hyperimmune serum in the diagnosis of culture-confirmed American tegumentary leishmaniasis. Rev. Inst. Med. Trop. Sao Paulo 2009, 51, 83–86. [Google Scholar] [CrossRef]
- Weinkopff, T.; Konradt, C.; Christian, D.A.; Discher, D.E.; Hunter, C.A.; Scott, P. Leishmania major Infection-Induced VEGF-A/VEGFR-2 Signaling Promotes Lymphangiogenesis That Controls Disease. J. Immunol. 2016, 197, 1823–1831. [Google Scholar] [CrossRef]
- Lima, L.V.; Carneiro, L.A.; Campos, M.B.; Chagas, E.J.; Laurenti, M.D.; Corbett, C.E.; Lainson, R.; Silveira, F.T. Canine visceral leishmaniasis due to Leishmania (L.) infantum chagasi in Amazonian Brazil: Comparison of the parasite density from the skin, lymph node and visceral tissues between symptomatic and asymptomatic, seropositive dogs. Rev. Inst. Med. Trop. Sao Paulo 2010, 52, 259–266. [Google Scholar] [CrossRef]
- Borja, L.S.; Sousa, O.M.F.; Solcà, M.D.S.; Bastos, L.A.; Bordoni, M.; Magalhães, J.T.; Larangeira, D.F.; Barrouin-Melo, S.M.; Fraga, D.B.M.; Veras, P.S.T. Parasite load in the blood and skin of dogs naturally infected by Leishmania infantum is correlated with their capacity to infect sand fly vectors. Vet. Parasitol. 2016, 229, 110–117. [Google Scholar] [CrossRef] [PubMed]
- dos-Santos, W.L.; David, J.; Badaró, R.; de-Freitas, L.A. Association between skin parasitism and a granulomatous inflammatory pattern in canine visceral leishmaniosis. Parasitol. Res. 2004, 92, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Verçosa, B.L.; Melo, M.N.; Puerto, H.L.; Mendonça, I.L.; Vasconcelos, A.C. Apoptosis, inflammatory response and parasite load in skin of Leishmania (Leishmania) chagasi naturally infected dogs: A histomorphometric analysis. Vet. Parasitol. 2012, 189, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.B.; Martins-Filho, O.A.; Teixeira-Carvalho, A.; Giunchetti, R.C.; Carneiro, C.M.; Mayrink, W.; Tafuri, W.L.; Corrêa-Oliveira, R. Systemic and compartmentalized immune response in canine visceral leishmaniasis. Vet. Immunol. Immunopathol. 2009, 128, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Giunchetti, R.C.; Mayrink, W.; Genaro, O.; Carneiro, C.M.; Corrêa-Oliveira, R.; Martins-Filho, O.A.; Marques, M.J.; Tafuri, W.L.; Reis, A.B. Relationship between canine visceral leishmaniosis and the Leishmania (Leishmania) chagasi burden in dermal inflammatory foci. J. Comp. Pathol. 2006, 135, 100–107. [Google Scholar] [CrossRef] [PubMed]
- de Queiroz, N.M.; da Silveira, R.C.; de Noronha, A.C., Jr.; Oliveira, T.M.; Machado, R.Z.; Starke-Buzetti, W.A. Detection of Leishmania (L.) chagasi in canine skin. Vet. Parasitol. 2011, 178, 1–8. [Google Scholar] [CrossRef]
- Verçosa, B.L.; Lemos, C.M.; Mendonça, I.L.; Silva, S.M.; de Carvalho, S.M.; Goto, H.; Costa, F.A. Transmission potential, skin inflammatory response, and parasitism of symptomatic and asymptomatic dogs with visceral leishmaniasis. BMC Vet. Res. 2008, 4, 45. [Google Scholar] [CrossRef]
- Calabrese, K.; Cortada, V.; Dorval, M.; Lima, M.S.; Oshiro, E.; Souza, C.; Silva-Almeida, M.; Carvalho, L.; da Costa, S.G.; Abreu-Silva, A. Leishmania (Leishmania) infantum/chagasi: Histopathological aspects of the skin in naturally infected dogs in two endemic areas. Exp. Parasitol. 2010, 124, 253–257. [Google Scholar] [CrossRef]
- Cardoso, J.M.O.; Ker, H.G.; Aguiar-Soares, R.D.O.; Moreira, N.D.D.; Mathias, F.A.S.; Reis, L.E.S.; Roatt, B.M.; Vieira, P.M.A.; Coura-Vital, W.; Carneiro, C.M.; et al. Association between mast cells, tissue remodelation and parasite burden in the skin of dogs with visceral leishmaniasis. Vet. Parasitol. 2017, 243, 260–266. [Google Scholar] [CrossRef]
- Medeiros, A.C.; Dantas-Filho, A.M. Cicatrização das feridas cirúrgicas. J. Surg. Clin. Res. 2017, 7, 87–102. [Google Scholar] [CrossRef]
- Soulas, C.; Conerly, C.; Kim, W.-K.; Burdo, T.H.; Alvarez, X.; Lackner, A.A.; Williams, K.C. Recently, infiltrating MAC387(+) monocytes/macrophages a third macrophage population involved in SIV and HIV encephalitic lesion formation. Am. J. Pathol. 2011, 178, 2121–2135. [Google Scholar] [CrossRef] [PubMed]
- Peters, N.C.; Egen, J.G.; Secundino, N.; Debrabant, A.; Kimblin, N.; Kamhawi, S.; Lawyer, P.; Fay, M.P.; Germain, R.N.; Sacks, D. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 2008, 321, 970–974, Erratum in Science 2008, 322, 1634. [Google Scholar] [CrossRef] [PubMed]
- Moreira, P.R.; Fernando, F.S.; Montassier, H.J.; André, M.R.; de Oliveira Vasconcelos, R. Polarized M2 macrophages in dogs with visceral leishmaniasis. Vet. Parasitol. 2016, 226, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Kropf, P.; Fuentes, J.M.; Fähnrich, E.; Arpa, L.; Herath, S.; Weber, V.; Soler, G.; Celada, A.; Modolell, M.; Müller, I. Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB J. 2005, 19, 1000–1002. [Google Scholar] [CrossRef] [PubMed]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)—Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Lai, Y.S.; Wahyuningtyas, R.; Aui, S.P.; Chang, K.T. Autocrine VEGF signaling on M2 macrophages regulates PD-L1 expression for immunomodulation of T cells. J. Cell. Mol. Med. 2019, 23, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Murase, L.S.; de Souza, J.V.P.; de Lima Neto, Q.A.; de Mello, T.F.P.; Cardoso, B.M.; Lera-Nonose, D.S.S.L.; Teixeira, J.J.V.; Lonardoni, M.V.C.; Demarchi, I.G. The role of metalloproteases in Leishmania species infection in the New World: A systematic review. Parasitology 2018, 145, 1499–1509. [Google Scholar] [CrossRef]
- Arumugam, S.; Scorza, B.M.; Petersen, C. Visceral Leishmaniasis and the Skin: Dermal Parasite Transmission to Sand Flies. Pathogens 2022, 11, 610. [Google Scholar] [CrossRef]
- Carregaro, V.; Ribeiro, J.M.; Valenzuela, J.G.; Souza-Júnior, D.L.; Costa, D.L.; Oliveira, C.J.F.; Sacramento, L.A.; Nascimento, M.S.L.; Milanezi, C.M.; Cunha, F.Q.; et al. Nucleosides present on phlebotomine saliva induce immunossuppression and promote the infection establishment. PLoS Negl. Trop. Dis. 2015, 9, e0003600. [Google Scholar] [CrossRef]
Skin Sample | Clinical Signs | Intensity of Inflammatory Infiltrate | p Value | Distribution of Inflammatory Infiltrate # | p Value | ||
---|---|---|---|---|---|---|---|
Absent—Mild | Moderate—Severe | Perivascular | Diffuse | ||||
Ear skin | Subclinical | 10 | 3 | *** 0.001 | 7 | 3 | ** 0.007 |
Clinically affected | 1 | 12 | 1 | 10 | |||
Total | 11 | 15 | 8 | 13 | |||
Abdominal skin | Subclinical | 13 | 0 | * 0.014 | 3 | 0 | 0.069 |
Clinically affected | 7 | 6 | 3 | 7 | |||
Total | 20 | 6 | 6 | 7 |
Skin Sample | Presence of Granulomatous Reaction | Intensity of Inflammatory Infiltrate # | p Value | Distribution of Inflammatory Infiltrate | p Value | ||
---|---|---|---|---|---|---|---|
Ear skin | Absent—Mild | Moderate—Severe | Perivascular | Diffuse | |||
Present | 0 | 10 | *** 0.0007 | 0 | 6 | * 0.045 | |
Absent | 11 | 5 | 8 | 7 | |||
Total | 11 | 15 | 8 | 13 | |||
Abdominal skin | Absent—Mild | Moderate—Severe | Perivascular | Diffuse | |||
Present | 0 | 6 | **** <0.0001 | 0 | 3 | 0.192 | |
Absent | 20 | 0 | 6 | 4 | |||
Total | 20 | 6 | 6 | 7 |
Skin Sample | Amastigote Distribution # | Intensity of Inflammatory Infiltrate | p Value | Distribution of Inflammatory Infiltrate | p Value | ||
---|---|---|---|---|---|---|---|
Ear skin | Absent—Mild | Moderate—Severe | Perivascular | Diffuse | |||
Perivascular | 6 | 5 | 0.21 | 3 | 4 | 0.62 | |
Diffuse | 3 | 9 | 3 | 8 | |||
Total | 9 | 14 | 6 | 12 | |||
Abdominal skin | Absent—Mild | Moderate—Severe | Perivascular | Diffuse | |||
Perivascular | 14 | 1 | ** 0.017 | 5 | 3 | 0.18 | |
Diffuse | 1 | 5 | 0 | 3 | |||
Total | 15 | 6 | 5 | 6 |
%NOS2 | %MAC 387 | NOS2/MAC387 Ratio ** | |
---|---|---|---|
Ear skin | 5.450 (0.1000–46.84) | 1.785 (0.0–18.15) | 4.155 (0.0190–16.40) |
Abdominal skin | 10.31 (0.3600–30.75) | 0.7800 (0.0–7.840) | 10.483 (0.2600–64.44) |
NOS2/mm2 | MAC 387/mm2 | NOS2/MAC387 Ratio * | |
Ear skin | 25.50 (0.5000–1030) | 20.67 (0.0–135.1) | 3.425 (0.0200–61.10) |
Abdominal skin | 31.35 (0.5000–217.5) | 3.775 (0.0–86.22) | 6.300 (0.1800–102.0) |
Skin Sample | Variable | Classification | Distribution of Collagen | p Value | |
---|---|---|---|---|---|
Regular | Disruption | ||||
Ear | Clinical signs | Subclinical | 10 | 3 | ** 0.0048 |
Clinically affected | 2 | 11 | |||
Inflammatory infiltrate intensity | Absent–Mild | 11 | 0 | **** <0.0001 | |
Moderate–Severe | 1 | 14 | |||
Inflammatory infiltrate distribution | Perivascular | 8 | 0 | ** 0.0010 | |
Diffuse | 3 | 10 | |||
Abdomen | Clinical signs | Subclinical | 13 | 0 | ** 0.0052 |
Clinically affected | 6 | 7 | |||
Inflammatory infiltrate intensity | Absent–Mild | 18 | 2 | ** 0.0018 | |
Moderate–Severe | 1 | 5 | |||
Inflammatory infiltrate distribution | Perivascular | 6 | 0 | 0.069 | |
Diffuse | 3 | 4 |
Distribution of Parasite Load in Dermis | Distribution of Collagen in the Dermis | p Value | |
---|---|---|---|
Regular | Disruption | ||
Perivascular | 20 | 6 | ** 0.0019 |
Diffuse | 5 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, F.N.; de Souza, T.L.; Menezes, R.C.; Keidel, L.; dos Santos, J.P.R.; da Silva, I.J.; Pelajo-Machado, M.; Morgado, F.N.; Porrozzi, R. Anatomical Vascular Differences and Leishmania-Induced Vascular Morphological Changes Are Associated with a High Parasite Load in the Skin of Dogs Infected with Leishmania infantum. Pathogens 2024, 13, 371. https://doi.org/10.3390/pathogens13050371
Ribeiro FN, de Souza TL, Menezes RC, Keidel L, dos Santos JPR, da Silva IJ, Pelajo-Machado M, Morgado FN, Porrozzi R. Anatomical Vascular Differences and Leishmania-Induced Vascular Morphological Changes Are Associated with a High Parasite Load in the Skin of Dogs Infected with Leishmania infantum. Pathogens. 2024; 13(5):371. https://doi.org/10.3390/pathogens13050371
Chicago/Turabian StyleRibeiro, Francini N., Tainã L. de Souza, Rodrigo C. Menezes, Lucas Keidel, João Paulo R. dos Santos, Igor J. da Silva, Marcelo Pelajo-Machado, Fernanda N. Morgado, and Renato Porrozzi. 2024. "Anatomical Vascular Differences and Leishmania-Induced Vascular Morphological Changes Are Associated with a High Parasite Load in the Skin of Dogs Infected with Leishmania infantum" Pathogens 13, no. 5: 371. https://doi.org/10.3390/pathogens13050371
APA StyleRibeiro, F. N., de Souza, T. L., Menezes, R. C., Keidel, L., dos Santos, J. P. R., da Silva, I. J., Pelajo-Machado, M., Morgado, F. N., & Porrozzi, R. (2024). Anatomical Vascular Differences and Leishmania-Induced Vascular Morphological Changes Are Associated with a High Parasite Load in the Skin of Dogs Infected with Leishmania infantum. Pathogens, 13(5), 371. https://doi.org/10.3390/pathogens13050371