Plant Extract in the Control of Poultry Omphalitis
Abstract
:1. Introduction
2. Methodology Used to Select the Studies Used in Subsequent Topics
2.1. Search Mechanisms
2.2. Eligibility Criteria
2.3. Screening and Data Extraction
3. Poultry Omphalitis
4. Rapid Intervention of Omphalitis Infection to Minimize Bacterial Transmission
5. Plant Extracts
6. Regimens Based on Plant Extracts to Control Omphalitis
7. Conclusions
- Precisely determining the total cost associated with obtaining and applying plant extracts in the poultry farming context remains uncertain.
- The availability of the plant species required for the production of antibacterial extracts.
- The lack of a solid scientific basis that clearly delineates the toxicity profile of plant extracts, including those that are widespread.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jalob, Z.K.; Farhan, W.H.; Ibrahiem, Z.Y.; Jumaa, B.N. Bacteriological and pathological study of omphalitis in broiler chicks. Kufa J. Vet. Med. Sci. 2015, 6, 17–26. [Google Scholar] [CrossRef]
- Azevedo, D.L.; Campos, F.L.; Fortes, F.B.B.; Loureiro, F. Mortalidade de aves notificadas ao serviço veterinário oficial estadual do Rio Grande do Sul no período de janeiro a julho de 2015. Rev. Educ. Contin. Med. Vet. Zootec. CRMV-SP 2016, 14, 75. [Google Scholar]
- Niemi, J.K. The economic cost of bacterial infections. In Advancements and Technologies in Pig and Poultry Bacterial Disease Control; Academic Press: Cambridge, MA, USA, 2021; pp. 1–23. [Google Scholar]
- Krivonogova, A.; Isaeva, A.; Loretts, O.; Chentsova, A. Composition and antibiotic susceptibility of opportunistic pathogenic microflora in poultry farms aimed at egg or meat farming. In International Scientific and Practical Conference “Digital Agriculture-Development Strategy” (ISPC 2019); Atlantis Press: Amsterdam, The Netherlands, 2019; pp. 542–545. [Google Scholar]
- Mohibbullah, M.; Hasan, M.H.; Rahman, M.S.; Rafia, R.; Rashid, H.; Akter, M.R.; Afroz, F. Identification of Bacteria Associated With Chicken Omphalitis and Their Antibiotic Profiles. Cohesive J. Microbiol. Infect. Dis. 2022, 6, 1–6. [Google Scholar] [CrossRef]
- Saad, N.; El-Abasy, M.A.; El-Khayat, F.; Ali, N.G.; Ismail, M.M. Efficacy of chitosan nanoparticles as a natural antibacterial agent against pathogenic bacteria causing omphalitis in poultry. Pak. Vet. J. 2023, 43, 66. [Google Scholar]
- Toghyani, P.; Shahzamani, S.; Gholami Ahangaran, M.; Ali Mousavi Firouzabadi, S. Comparison of Eucalyptus Extract and Formaldehyde on Hatchability and Survival Rate of Chicks in Disinfection of Fertile Eggs. Int. J. Pharm. Res. All. Sci. 2020, 9, 105–109. [Google Scholar]
- Ye, Y.; Yang, Q.; Fang, F.; Li, Y. The camelliagenin from defatted seeds of Camellia oleifera as antibiotic substitute to treat chicken against infection of Escherichia coli and Staphylococcus aureus. BMC Vet. Res. 2015, 11, 214. [Google Scholar] [CrossRef] [PubMed]
- N’nanle, O.; Tété-Bénissan, A.; Tona, K.; Teteh, A.; Voemesse, K.; Decuypere, E.; Gbeassor, M. Effect of in Ovo Inoculation of Moringa oleifera Leaves Extract on Hatchability and Chicken Growth Performance. Eur. Poult. Sci. 2017, 81, 1–9. [Google Scholar]
- Sharma, V.; Jakhar, K.K.; Dahiya, S. Immuno-pathological studies on broiler chicken experimentally infected with Escherichia coli and supplemented with neem (Azadirachta indica) leaf extract. Vet. World 2016, 9, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med. 2017, 8, 266–275. [Google Scholar] [CrossRef]
- Oskay, M.; Oskay, D.; Kalyoncu, F. Activity of some plant extracts against multi-drug resistant human pathogens. Iran J. Pharmacol. Res. 2009, 8, 293–300. [Google Scholar]
- Swelum, A.A.; Elbestawy, A.R.; El-Saadony, M.T.; Hussein, E.O.; Alhotan, R.; Suliman, G.M.; Taha, A.E.; Ba-Awadh, H.; El-Tarabily, K.A.; Abd El-Hack, M.E. Ways to minimize bacterial infections, with special reference to Escherichia coli, to cope with the first-week mortality in chicks: An updated overview. Poult. Sci. 2021, 100, 101039. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, S.A.; Aslam, A.; Rabbani, M.; Tipu, M.Y. Factors Contributing to Yolk Retention in Poultry: A Review. Pak. Vet. J. 2004, 24, 46–51. [Google Scholar]
- Boerjan, M. Chick Vitality and Uniformity. Int. Hatch. Pract. 2006, 20, 7–8. [Google Scholar]
- Rahman, M.M.; Rahman, A.Z.; Islam, S.S. Bacterial Diseases of Poultry Prevailing in Bangladesh. J. Poult. Sci. 2007, 1, 1–6. [Google Scholar]
- Oliveira, G.D.S.; Nascimento, S.T.; dos Santos, V.M.; Silva, M.G. Clove Essential Oil in the Sanitation of Fertile Eggs. Poult. Sci. 2020, 99, 5509–5516. [Google Scholar] [CrossRef]
- Oliveira, G.d.S.; McManus, C.; Salgado, C.B.; dos Santos, V.M. Effects of Sanitizers on Microbiological Control of Hatching Eggshells and Poultry Health during Embryogenesis and Early Stages after Hatching in the Last Decade. Animals 2022, 12, 2826. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.d.S.; McManus, C.; dos Santos, V.M. Control of Escherichia coli in Poultry Using the In Ovo Injection Technique. Antibiotics 2024, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.d.S.; McManus, C.; Vale, I.R.R.; Dos Santos, V.M. Obtaining Microbiologically Safe Hatching Eggs from Hatcheries: Using Essential Oils for Integrated Sanitization Strategies in Hatching Eggs, Poultry Houses and Poultry. Pathogens 2024, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.D.S.; McManus, C.; dos Santos, V.M. Maintaining safe antibacterial standards in poultry production using Syzygium aromaticum essential oil. World’s Poult. Sci. J. 2024, 80, 1–11. [Google Scholar] [CrossRef]
- Rahman, Z.; Siddiqui, M.N.; Khatun, M.A.; Kamruzzaman, M. Effect of guava (Psidium guajava) leaf meal on production performances and antimicrobial sensitivity in commercial broiler. J. Nat. Prod. 2013, 6, 177–187. [Google Scholar]
- Elsebaie, E.M.; Essa, R.Y. Application of barnûf (Pluchea dioscoridis) leaves extract as a natural antioxidant and antimicrobial agent for eggs quality and safety improvement during storage. J. Food Process. Preserv. 2022, 46, e16061. [Google Scholar] [CrossRef]
- Baylan, M.; Akpınar, G.C.; Canogullari, S.D.; Ayasan, T. The Effects of Using Garlic Extract for Quail Hatching Egg Disinfection on Hatching Results and Performance. Rev. Bras. Cienc. Avic. 2018, 20, 343–350. [Google Scholar] [CrossRef]
- Oliveira, G.D.S.; McManus, C.; dos Santos, V.M. Garlic as Active Principle of Sanitiser for Hatching Eggs. Worlds Poult. Sci. J. 2022, 78, 1037–1052. [Google Scholar] [CrossRef]
- Iqbal, T.; Hamza, A.; Altaf, S. Preparation of hand sanitizer at home through plant extracts. Biol. Times 2023, 2, 5–6. [Google Scholar]
- Pandey, B.P.; Thapa, R.; Upreti, A. Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of Artemisia vulgaris and Gaultheria fragrantissima collected from Nepal. Asian Pac. J. Trop. Med. 2017, 10, 952–959. [Google Scholar] [CrossRef]
- Rasul, M.G. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. Int. J. Basic Sci. Appl. Comput. 2018, 2, 10–14. [Google Scholar]
- Chesca, A.C.; Tristão, D.S.; Tristão, M.S.; Almeida, R.N.; Begnini, M.L. Estudo Comparativo da Atividade Antibacteriana do Extrato de Cravo-da-índia (Eugenia caryophyllata Thunb.) Extraído por via Etanólica e Metanólica. I Encontro de Desenvolvimento de Processos Industriais; University of Uberaba: Uberaba, Brazil, 2017; pp. 1–7. [Google Scholar]
- Danish, P.; Ali, Q.; Hafeez, M.; Malik, A. Antifungal and Antibacterial Activity of Aloe Vera Plant Extract. Biol. Clin. Sci. Res. J. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Pessini, G.L.; Holetz, F.B.; Sanches, N.R.; Cortez, D.A.G.; Dias Filho, B.P.; Nakamura, C.V. Avaliação da atividade antibacteriana e antifúngica de extratos de plantas utilizados na medicina popular. Rev. Bras. Farmacogn. 2003, 13, 21–24. [Google Scholar] [CrossRef]
- Eller, S.C.W.d.S.; Feitosa, V.A.; Arruda, T.A.; Antunes, R.M.P.; Catão, R.M.R. Avaliação antimicrobiana de extratos vegetais e possível interação farmacológica in vitro. Rev. Ciências Farm. Básica Apl. 2015, 36, 131–136. [Google Scholar]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Huang, X.; Ma, G. Antimicrobial Activities and Mechanisms of Extract and Components of Herbs in East Asia. RSC Adv. 2022, 12, 29197–29213. [Google Scholar] [CrossRef] [PubMed]
- Rachmawati, K.; Kurnijasanti, R.; Sabdoningrum, E.K.; Naw, S.W. Effectiveness of Ketapang (Terminalia cattapa L.) Extract Against Avian Pathogenic Escherichia coli (APEC) Infections in Layer Performance. Pharmacogn. J. 2023, 15, 417–422. [Google Scholar] [CrossRef]
- Bandian, L.; Moghaddam, M.; Bahreini, M.; Vatankhah, E. Antibacterial characteristics and mechanisms of some herbal extracts and ϵ-polylysine against two spoilage bacterial. Food Biosci. 2022, 50, 102060. [Google Scholar] [CrossRef]
- De Souza, W.B.; de Alcântara, N.R.; Andrade, M.A.; Almeida, T.F.; Santana, E.S. Avaliação do potencial de extratos vegetais no controle in vitro de Escherichia coli de origem animal. Enciclopédia Biosf. 2014, 10, 2755–2764. [Google Scholar]
- Duraiswamy, H.; Nallaiyan, S.; Nelson, J.; Samy, P.R.; Johnson, M.; Varaprasadam, I. The effect of extracts of Selaginella involvens and Selaginella inaequalifolia leaves on poultry pathogens. Asian Pac. J. Trop. Med. 2010, 3, 678–681. [Google Scholar] [CrossRef]
- Kędzia, R.; Lis, M. Assessment of the Antibacterial Activity of Chestnut (Castanea sativa) and Cloves (Syzygium aromaticum) Herbal Extracts as an Alternative to Antibiotics Use during Post-Hatching Period of Chicks. Sci. Technol. Innov. 2021, 11, 48–54. [Google Scholar] [CrossRef]
- Sabdoningrum, E.K.; Hidanah, S.; Yuniarti, W.M.; Chusniati, S.; Warsito, S.H.; Muchtaromah, B. Antimicrobial activity of Phyllantus niruri extract on Avian pathogenic Escherichia coli Isolated from Chicken with Colibacillosis symptoms. Res. J. Pharm. Technol. 2020, 13, 1883–1887. [Google Scholar] [CrossRef]
- De Bona, E.D.A.M.; da Silva Pinto, F.G.; Borges, A.M.C.; Scur, M.C.; Fruet, T.K.; Weber, L.D.; Alves, L.F.A.; de Moura, A.C. Avaliação da atividade antimicrobiana de extratos vegetais frente a sorovares de Salmonella spp. de origem avícola. J. Health Sci. 2013, 15, 41–46. [Google Scholar]
- Shaheen, A.Y.; Sheikh, A.A.; Rabbani, M.; Aslam, A.; Bibi, T.; Liaqat, F.; Muhammad, J.; Rehmani, S.F. Antibacterial activity of herbal extracts against multi-drug resistant Escherichia coli recovered from retail chicken meat. Pak. J. Pharm. Sci. 2015, 28, 1295–1300. [Google Scholar]
- Pinho, E.; Ferreira, I.C.; Barros, L.; Carvalho, A.M.; Soares, G.; Henriques, M. Antibacterial potential of northeastern portugal wild plant extracts and respective phenolic compounds. BioMed Res. Int. 2014, 2014, 814590. [Google Scholar] [CrossRef] [PubMed]
- Shahid, A.; Ali, M.A.; Muzammil, S.; Aslam, B.; Shahid, M.; Saqalein, M.; Akash, M.S.H.; Almatroudi, A.; Allemailem, K.S.; Khurshid, M. Antibiotic residues in food chains; impact on the environment and human health: A review. Appl. Ecol. Environ. Res. 2021, 19, 3959–3977. [Google Scholar] [CrossRef]
- Jia, W.L.; Song, C.; He, L.Y.; Wang, B.; Gao, F.Z.; Zhang, M.; Ying, G.G. Antibiotics in Soil and Water: Occurrence, Fate, and Risk. Curr. Opin. Environ. Sci. Health 2023, 32, 100437. [Google Scholar] [CrossRef]
- Tayel, A.A.; Al-Hassan, A.A.; El-Tras, W.F.; Moussa, S.H. Control of egg contamination with enteric Salmonella using plant extracts. J. Food Agric. Environ. 2014, 12, 24–29. [Google Scholar]
- Gatea, S.M.; Baqer, H.Q.; Altaie, S.M.S.; Aljanabi, T.K.; Hussain, M.A.; Musa, B.A.H. Effect of spraying some plant extracts on hatching eggs of broiler chickens on the hatching rate and embryo mortality and the weight of hatched chicken. Iran. J. Ichthyol. 2023, 10, 280–285. [Google Scholar]
- El-Kholy, K.H.; Sarhan, D.M.; El-Said, E.A. Effect of in-ovo Injection of herbal extracts on post-hatch performance, immunological, and physiological responses of broiler chickens. J. World’s Poult. Res. 2021, 11, 183–192. [Google Scholar] [CrossRef]
- Mamta, M.; Jakhar, K.K. Protective effects of Tinospora cordifolia on clinical manifestations of experimental colibacillosis in broiler chicken. Haryana Vet. 2016, 55, 145–148. [Google Scholar]
- Oliveira, G.d.S.; McManus, C.; Sousa, H.A.D.F.; Santos, P.H.G.D.S.; dos Santos, V.M. A Mini-Review of the Main Effects of Essential Oils from Citrus aurantifolia, Ocimum basilicum, and Allium sativum as Safe Antimicrobial Activity in Poultry. Animals 2024, 14, 382. [Google Scholar] [CrossRef]
Risk Factors For Poultry Infection | ||
---|---|---|
Pre-Incubation | Incubation Handling | Post-Hatching |
Sanitary and environmental deficiencies in poultry sheds | Inadequate physical parameters of incubation | Sanitary and environmental deficiencies in poultry sheds |
Improper egg handling | Failure to remove infertile eggs | Absence of vaccination |
Contaminated breeders | Inadequately sanitized setters | Inadequate chick handling |
Study | Plant Extract (Common Name) | Plant Extract (Scientific Name) | Extraction Solvent | Sensitive Bacteria |
---|---|---|---|---|
[38] | Lemon Balm | Melissa officinalis | Water/ethyl alcohol | E. coli |
Baru Nut | Dipteryx alata | Water/ethyl alcohol | E. coli | |
Aloe | A. vera | Water/ethyl alcohol | E. coli | |
Lemongrass | Cymbopogon citratrus | Water/ethyl alcohol | E. coli | |
Peppermint | Mentha spicata | Water/ethyl alcohol | E. coli | |
Wormseed | Chenopodium ambrosioides | Water/ethyl alcohol | E. coli | |
Wormwood | Artemisia absinthium | Water/ethyl alcohol | E. coli | |
Madagascar Periwinkle | Catharanthus roseus | Water/ethyl alcohol | E. coli | |
Plantain | P. major | Water/ethyl alcohol | E. coli | |
Scotch Bonnet Pepper | Capsicum chinense | Water/ethyl alcohol | E. coli | |
[39] | Spike Moss | Selaginella involvens | Petroleum ether/benzene/methanol/water | E. coli |
Spike Moss | S. involvens | Petroleum ether/benzene/methanol/water | Pseudomonas spp. | |
Spike Moss | Selaginella inaequalifolia | Petroleum ether/benzene/methanol/water | E. coli | |
Spike Moss | S. inaequalifolia | Petroleum ether/benzene/methanol/water | Pseudomonas spp. | |
[40] | Chestnut | Castanea sativa | Water | E. coli |
Chestnut | C. sativa | Water | Klebsiella pneumoniae | |
Chestnut | C. sativa | Water | S. aureus | |
Chestnut | C. sativa | Water | E. faecalis | |
Clove | S. aromaticum | Water | E. coli | |
Clove | S. aromaticum | Water | K. pneumoniae | |
Clove | S. aromaticum | Water | S. aureus | |
Clove | S. aromaticum | Water | E. faecalis | |
[41] | Stonebreaker | Phyllantus niruri | Methanol | E. coli |
[36] | Ketapang | Terminalia cattapa | Methanol | E. coli |
[42] | Chrysanthemum | Dendranthema grandiflora | Water | S. Derby |
Garlic | Allium sativum | Water | S. Derby | |
Rosemary | R. officinalis | Water | S. Derby | |
Turmeric | Curcuma longa | Water | S. Heidelberg | |
Ginger | Z. officinale | Water | S. Heidelberg | |
Chrysanthemum | D. grandiflora | Water | S. Heidelberg | |
Garlic | A. sativum | Water | S. Heidelberg | |
Chrysanthemum | D. grandiflora | Water | S. Cubana | |
Garlic | A. sativum | Water | S. Cubana | |
Chrysanthemum | D. grandiflora | Water | S. Orion | |
Garlic | A. sativum | Water | S. Orion | |
Chrysanthemum | C. citratus | Water | S. Enteritidis | |
Garlic | A. sativum | Water | S. Enteritidis | |
Chrysanthemum | D. grandiflora | Water | S. Enteritidis | |
Garlic | A. sativum | Water | S. Infantis | |
Chrysanthemum | D. grandiflora | Water | S. Infantis | |
Turmeric | C. longa | Water | S. Mbandaka | |
Garlic | A. sativum | Water | S. Mbandaka | |
Chrysanthemum | D. grandiflora | Water | S. Mbandaka | |
Onion | Allium cepa | Water | S. Agona | |
Garlic | A. sativum | Water | S. Agona | |
Chrysanthemum | D. grandiflora | Water | S. Agona | |
Turmeric | C. longa | Water | S. Lexington | |
Onion | A. cepa | Water | S. Lexington | |
Rue | Ruta graveolens | Water | S. Lexington | |
Garlic | A. sativum | Water | S. Lexington | |
Chrysanthemum | D. grandiflora | Water | S. Lexington | |
Lemongrass | C. citratus | Water | S. Give | |
Garlic | A. sativum | Water | S. Give | |
Chrysanthemum | D. grandiflora | Water | S. Give | |
Garlic | A. sativum | Water | S. Newport | |
Chrysanthemum | D. grandiflora | Water | S. Newport | |
Ginger | Z. officinale | Water | S. Montevideo | |
Garlic | A. sativum | Water | S. Montevideo | |
Lemongrass | C. citratus | Water | S. Kentucky | |
Onion | A. cepa | Water | S. Kentucky | |
Garlic | A. sativum | Water | S. Kentucky | |
Chrysanthemum | D. grandiflora | Water | S. Kentucky | |
[43] | Clove | S. aromaticum | Ethanol | E. coli |
Peppermint | Mentha piperita | Ethanol | E. coli | |
Cinnamon | Cinnamomum zeylanicum | Ethanol | E. coli | |
Coriander | Coriandrum sativum | Ethanol | E. coli | |
Black seed | Nigella sativa | Ethanol | E. coli | |
Garlic | A. sativum | Ethanol | E. coli |
Origin of the Extract | Extract Application Route | Extract Administration Responses | Reference |
---|---|---|---|
Antibacterial management before hatching | |||
Q. infectoria, P. granatum and S. alexandrina | Eggshell sanitization |
| [47] |
P. granatum | Eggshell sanitization | In the proportion of 5 mL/100 mL:
| [48] |
Eucalyptus | Eggshell sanitization | At a concentration of 0.5 and 1%:
| [7] |
T. vulgaris, C. cassia and S. aromaticum | In ovo |
| [49] |
M. oleifera | In ovo |
| [9] |
Antibacterial management after hatching | |||
P. guajava | Feed |
| [22] |
C. oleífera | Feed | At concentrations of 250 and 500 mg/kg:
| [8] |
C. sativa + S. aromaticum | Water | At the dose of 5 mL/L:
| [40] |
T. cordifolia | Feed | At a concentration of 1 g/kg:
| [50] |
A. indica | Water | At a concentration of 10%, it increases the humoral immune response of poultry against Escherichia coli. | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, G.d.S.; Pires, P.G.d.S.; McManus, C.; de Jesus, L.M.; Santos, P.H.G.d.S.; dos Santos, V.M. Plant Extract in the Control of Poultry Omphalitis. Pathogens 2024, 13, 438. https://doi.org/10.3390/pathogens13060438
Oliveira GdS, Pires PGdS, McManus C, de Jesus LM, Santos PHGdS, dos Santos VM. Plant Extract in the Control of Poultry Omphalitis. Pathogens. 2024; 13(6):438. https://doi.org/10.3390/pathogens13060438
Chicago/Turabian StyleOliveira, Gabriel da Silva, Paula Gabriela da Silva Pires, Concepta McManus, Luana Maria de Jesus, Pedro Henrique Gomes de Sá Santos, and Vinícius Machado dos Santos. 2024. "Plant Extract in the Control of Poultry Omphalitis" Pathogens 13, no. 6: 438. https://doi.org/10.3390/pathogens13060438
APA StyleOliveira, G. d. S., Pires, P. G. d. S., McManus, C., de Jesus, L. M., Santos, P. H. G. d. S., & dos Santos, V. M. (2024). Plant Extract in the Control of Poultry Omphalitis. Pathogens, 13(6), 438. https://doi.org/10.3390/pathogens13060438