Characterization of CRISPR-Cas Systems in Shewanella algae and Shewanella haliotis: Insights into the Adaptation and Survival of Marine Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shewanella Strains
2.2. Whole-Genome Sequencing, Assembly, and Annotation
2.3. CRISPR-Cas Systems Analysis
2.4. Nucleotide Sequence Accession Number
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, S.; Liu, Y.; Koonin, E.V.; Severinov, K.; Prangishvili, D.; Krupovic, M. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat. Commun. 2019, 10, 5204. [Google Scholar] [CrossRef] [PubMed]
- Nunez, J.K.; Lee, A.S.; Engelman, A.; Doudna, J.A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 2015, 519, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Sashital, D.G. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus 2019, 8, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Cheng, Q.X.; Wang, J.M.; Li, X.Y.; Zhang, Z.L.; Gao, S.; Cao, R.B.; Zhao, G.P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dong, H.; Cui, Y.; Cong, L.; Zhang, D. Application of different types of CRISPR/Cas-based systems in bacteria. Microb. Cell Fact. 2020, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, J.; Wang, B.; Han, J.; Hao, Y.; Wang, S.; Ma, X.; Yang, S.; Ma, L.; Yi, L.; et al. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Front. Bioeng. Biotechnol. 2020, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.Y.; Lin, C.F.; Tung, K.C.; Shyu, C.L.; Wu, M.J.; Liu, J.W.; Chang, C.S.; Chan, K.W.; Huang, J.A.; Shi, Z.Y. Clinical and microbiological features of shewanella bacteremia in patients with hepatobiliary disease. Intern. Med. 2013, 52, 431–438. [Google Scholar] [CrossRef]
- Chen, Y.S.; Liu, Y.C.; Yen, M.Y.; Wang, J.H.; Wang, J.H.; Wann, S.R.; Cheng, D.L. Skin and soft-tissue manifestations of Shewanella putrefaciens infection. Clin. Infect. Dis. 1997, 25, 225–229. [Google Scholar] [CrossRef]
- Yu, K.; Huang, Z.; Li, Y.; Fu, Q.; Lin, L.; Wu, S.; Dai, H.; Cai, H.; Xiao, Y.; Lan, R.; et al. Establishment and Application of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Detection of Shewanella Genus. Front. Microbiol. 2021, 12, 625821. [Google Scholar] [CrossRef] [PubMed]
- Hongyan, C.; Yujie, F.; Keyi, Y.; Zhenzhou, H.; Hang, D.; Duochun, W. Identification of Shewanella at species level based on16S rRNA and gyrB genes. Dis. Surveill. 2021, 36, 42–47. [Google Scholar] [CrossRef]
- Poovorawan, K.; Chatsuwan, T.; Lakananurak, N.; Chansaenroj, J.; Komolmit, P.; Poovorawan, Y. Shewanella haliotis associated with severe soft tissue infection, Thailand, 2012. Emerg. Infect. Dis. 2013, 19, 1019–1021. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Liu, P.Y.; Tseng, S.Y.; Lee, Y.H.; Ho, S.P. Characteristics and Phylogeny of Shewanella haliotis Isolated from Cultivated Shellfish in Taiwan. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 9895148. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.Y.; Liu, P.Y.; Lee, Y.H.; Wu, Z.Y.; Huang, C.C.; Cheng, C.C.; Tung, K.C. The Pathogenicity of Shewanella algae and Ability to Tolerate a Wide Range of Temperatures and Salinities. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 6976897. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Tung, K.-C.; Cheng, J.-F.; Wu, Z.-Y.; Chen, S.-Y.; Hong, Y.-K.; Huang, Y.-T.; Liu, P.-Y. Genomic characterization of carbapenem-resistant Shewanella algae isolated from Asian hard clam (Meretrix lusoria). Aquaculture 2019, 500, 300–304. [Google Scholar] [CrossRef]
- Lizarraga, W.C.; Mormontoy, C.G.; Calla, H.; Castaneda, M.; Taira, M.; Garcia, R.; Marin, C.; Abanto, M.; Ramirez, P. Complete genome sequence of Shewanella algae strain 2NE11, a decolorizing bacterium isolated from industrial effluent in Peru. Biotechnol. Rep. 2022, 33, e00704. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yu, K.; Fu, S.; Xiao, Y.; Wei, Q.; Wang, D. Genomic analysis reveals high intra-species diversity of Shewanella algae. Microb. Genom. 2022, 8, 000786. [Google Scholar] [CrossRef] [PubMed]
- Cerbino, G.N.; Traglia, G.M.; Ayala Nunez, T.; Parmeciano Di Noto, G.; Ramirez, M.S.; Centron, D.; Iriarte, A.; Quiroga, C. Comparative genome analysis of the genus Shewanella unravels the association of key genetic traits with known and potential pathogenic lineages. Front. Microbiol. 2023, 14, 1124225. [Google Scholar] [CrossRef]
- Dwarakanath, S.; Brenzinger, S.; Gleditzsch, D.; Plagens, A.; Klingl, A.; Thormann, K.; Randau, L. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens. Nucleic Acids Res. 2015, 43, 8913–8923. [Google Scholar] [CrossRef]
- Wang, J.H.; Tseng, S.Y.; Tung, K.C. Genomic investigation of emerging zoonotic pathogen Shewanella xiamenensis. Ci Ji Yi Xue Za Zhi 2020, 32, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Szeinbaum, N.; Kellum, C.E.; Glass, J.B.; Janda, J.M.; DiChristina, T.J. Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990. Int. J. Syst. Evol. Microbiol. 2018, 68, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Syn, C.K.; Swarup, S. A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal. Biochem. 2000, 278, 86–90. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, E.L.; Jaszczyszyn, Y.; Thermes, C. Library preparation methods for next-generation sequencing: Tone down the bias. Exp. Cell Res. 2014, 322, 12–20. [Google Scholar] [CrossRef]
- Rohland, N.; Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012, 22, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; MacCallum, I.; Kleber, M.; Shlyakhter, I.A.; Belmonte, M.K.; Lander, E.S.; Nusbaum, C.; Jaffe, D.B. ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Res. 2008, 18, 810–820. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Neron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, S.; Ren, C.; Zhu, Y.; Zhou, H.; Lai, Y.; Zhou, F.; Jia, Y.; Zheng, K.; Huang, Z. CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions. Commun. Biol. 2018, 1, 180. [Google Scholar] [CrossRef] [PubMed]
- Padilha, V.A.; Alkhnbashi, O.S.; Shah, S.A.; de Carvalho, A.; Backofen, R. CRISPRcasIdentifier: Machine learning for accurate identification and classification of CRISPR-Cas systems. Gigascience 2020, 9, giaa062. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, J.; Yan, F.; Wang, G.; Li, Y.; Huang, J. CrisprVi: A software for visualizing and analyzing CRISPR sequences of prokaryotes. BMC Bioinform. 2022, 23, 172. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xia, F.; Xia, Y.; Li, J.; Hu, Y.; Deng, Y.; Zou, M. Pangenome analysis of Shewanella xiamenensis revealed important genetic traits concerning genetic diversity, pathogenicity and antibiotic resistance. BMC Genom. 2024, 25, 216. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Wang, C.Y.; Ko, W.C.; Hsueh, P.R. In vitro diagnostics of coronavirus disease 2019: Technologies and application. J Microbiol. Immunol. Infect. 2021, 54, 164–174. [Google Scholar] [CrossRef]
- Huang, W.H.; Teng, L.C.; Yeh, T.K.; Chen, Y.J.; Lo, W.J.; Wu, M.J.; Chin, C.S.; Tsan, Y.T.; Lin, T.C.; Chai, J.W.; et al. 2019 novel coronavirus disease (COVID-19) in Taiwan: Reports of two cases from Wuhan, China. J. Microbiol. Immunol. Infect. 2020, 53, 481–484. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Huang, Y.T.; Chao, W.C.; Ho, S.P.; Cheng, J.F.; Liu, P.Y. Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing. J. Adv. Res. 2019, 18, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Koonin, E.V. Annotation and Classification of CRISPR-Cas Systems. Methods Mol. Biol. 2015, 1311, 47–75. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180087. [Google Scholar] [CrossRef]
- Mojica, F.J.; Diez-Villasenor, C.; Garcia-Martinez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Pourcel, C.; Salvignol, G.; Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005, 151, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Moïra, B.D.; Pier-Luc, P.; Edwige, Z.; Shiraz, A.S.; Jacques, C.; Sylvain, M. Streamlining CRISPR spacer-based bacterial host predictions to decipher the viral dark matter. Nucleic Acids Res. 2021, 49, 3127–3138. [Google Scholar] [CrossRef] [PubMed]
- Corts, A.D.; Thomason, L.C.; Gill, R.T.; Gralnick, J.A. Efficient and Precise Genome Editing in Shewanella with Recombineering and CRISPR/Cas9-Mediated Counter-Selection. ACS Synth. Biol. 2019, 8, 1877–1889. [Google Scholar] [CrossRef] [PubMed]
- Holt, H.M.; Gahrn-Hansen, B.; Bruun, B. Shewanella algae and Shewanella putrefaciens: Clinical and microbiological characteristics. Clin. Microbiol. Infect. 2005, 11, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Chia-Wei, L.; Cheng, J.F.; Tung, K.C.; Hong, Y.K.; Lin, J.H.; Lin, Y.H.; Tsai, C.A.; Lin, S.P.; Chen, Y.C.; Shi, Z.Y.; et al. Evolution of trimethoprim/sulfamethoxazole resistance in Shewanella algae from the perspective of comparative genomics and global phylogenic analysis. J. Microbiol. Immunol. Infect. 2022, 55, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Deem, M.W. Heterogeneous diversity of spacers within CRISPR (clustered regularly interspaced short palindromic repeats). Phys. Rev. Lett. 2010, 105, 128102. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, A.D.; Sun, C.L.; Plucinski, M.M.; Denef, V.J.; Thomas, B.C.; Horvath, P.; Barrangou, R.; Gilmore, M.S.; Getz, W.M.; Banfield, J.F. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput. Biol. 2012, 8, e1002475. [Google Scholar] [CrossRef]
- Tyson, G.W.; Banfield, J.F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Env. Environ. Microbiol. 2008, 10, 200–207. [Google Scholar] [CrossRef]
- Haerter, J.O.; Sneppen, K. Spatial structure and Lamarckian adaptation explain extreme genetic diversity at CRISPR locus. mBio 2012, 3, e00126-12. [Google Scholar] [CrossRef]
- Horvath, P.; Romero, D.A.; Coute-Monvoisin, A.C.; Richards, M.; Deveau, H.; Moineau, S.; Boyaval, P.; Fremaux, C.; Barrangou, R. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 2008, 190, 1401–1412. [Google Scholar] [CrossRef]
- Deem, M.W. CRISPR recognizes as many phage types as possible without overwhelming the Cas machinery. Proc. Natl. Acad. Sci. USA 2020, 117, 7550–7552. [Google Scholar] [CrossRef]
- Wheatley, R.M.; MacLean, R.C. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J. 2021, 15, 1420–1433. [Google Scholar] [CrossRef]
- Rollie, C.; Chevallereau, A.; Watson, B.N.J.; Chyou, T.Y.; Fradet, O.; McLeod, I.; Fineran, P.C.; Brown, C.M.; Gandon, S.; Westra, E.R. Targeting of temperate phages drives loss of type I CRISPR-Cas systems. Nature 2020, 578, 149–153. [Google Scholar] [CrossRef]
Species | Strain | Geography | Source |
---|---|---|---|
S. algae | AC | Taiwan | Haliotis diversicolor |
S. algae | CHL | Taiwan | bile |
S. algae | CLS1 | Taiwan | wound |
S. algae | CLS2 | Taiwan | blood |
S. algae | CLS3 | Taiwan | blood |
S. algae | CLS4 | Taiwan | blood |
S. algae | melkephyllucas | Taiwan | blood |
S. algae | SYT2 | Taiwan | Crassostrea gigas |
S. algae | SYT3 | Taiwan | ocean water |
S. algae | YHL | Taiwan | wound |
S. algae/S. haliotis | ACCC | Taiwan | bile |
S. algae/S. haliotis | JFC2 | Taiwan | Crassostrea gigas |
S. algae/S. haliotis | JFC3 | Taiwan | Crassostrea gigas |
S. algae/S. haliotis | JFL | Taiwan | blood |
S. algae/S. haliotis | MSW | Taiwan | Meretrix lusoria |
S. algae/S. haliotis | RC | Taiwan | blood |
S. algae/S. haliotis | YTH | Taiwan | blood |
Organisms | Origin and Spacer Index | |||
---|---|---|---|---|
Species | Strain | Cas Type | Spacer | Cas Genes |
S. algae | AC | CAS-I-F | 63 | Cas6, Csy3, Csy2, Csy1, Cas3-Cas2, Cas1 |
S. algae | CHL | CAS-I-E | 110 | Cas2, Cas1, Cas6, Cas5, Cas7, Cse2, Cse1, Cas3 |
S. algae | CLS1 | CAS-I-F | 51 | Cas1, Cas3-Cas2, Cas6, Csy1, Csy2, Csy3 |
S. algae | CLS2 | CAS-I-F | 10 | Cas1, Cas3-Cas2, Cas6, Csy1, Csy2, Csy3 |
S. algae | CLS3 | CAS-I-F | 86 | Cas1, Cas3-Cas2, Cas6, Csy1, Csy2, Csy3 |
S. algae | CLS4 | CAS-I-F | 43 | Cas6, Csy3, Csy2, Csy1, Cas3-Cas2, Cas1 |
S. algae | melkephyllucas | CAS-I-F | 45 | Cas6, Csy3, Csy2, Csy1, Cas3-Cas2, Cas1 |
S. algae | SYT2 | CAS-I-E | 64 | Cas2, Cas1, Cas6, Cas5, Cas7, Cse2, Cse1, Cas3 |
S. algae | SYT3 | CAS-I-F | 24 | Cas1, Cas3-Cas2, Cas6, Csy2, Csy3 |
S. algae | YHL | CAS-I-F | 43 | Cas6, Csy3, Csy2, Csy1, Cas3-Cas2, Cas1 |
S. algae/S. haliotis | ACCC | CAS-I-F | 47 | Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6 |
S. algae/S. haliotis | JFC2 | CAS-I-E | 28 | Cas3, Cse1, Cse2, Cas7, Cas5, Cas6, Cas1, Cas2 |
S. algae/S. haliotis | JFC3 | CAS-I-F | 31 | Cas6, Csy3, Csy2, Csy1, Cas3-Cas2, Cas1 |
S. algae/S. haliotis | JFL | CAS-I-E | 66 | Cas3, Cse1, Cse2, Cas7, Cas5, Cas6, Cas1, Cas2 |
S. algae/S. haliotis | MSW | CAS-I-F | 44 | Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6 |
S. algae/S. haliotis | RC | CAS-I-F | 27 | Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6 |
S. algae/S. haliotis | YTH | CAS-I-F | 27 | Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6 |
Species | Strain | Accession No. | Repeat Consensus |
---|---|---|---|
S. algae | AC | SAMN04492223 | TTTCTAAGCTGCCTGGGCGGCAGTGAAC |
S. algae | CHL | SAMN04492221 | CGGTTTATCCCCGTGGGTGCGGGGAACAC |
S. algae | CLS1 | SAMN04492203 | GTTCACTGCCGCCCAGGCAGCTTAGAAA |
S. algae | CLS2 | SAMN04492207 | TTTCTAAGCTGCCTGGGCGGCAGTGAAC |
S. algae | CLS3 | SAMN04492209 | TTTCTAAGCTGCCTGGGCGGCAGTGAAC |
S. algae | CLS4 | SAMN04492210 | TTTCTAAGCTGCCTGGGCGGCAGTGAAC |
S. algae | melkephyllucas | SAMN04492222 | TTTCTAAGCTGCCTGGGCGGCAGTGAAC |
S. algae | SYT2 | SAMN04492205 | CGGTTTATCCCCGTGGGTGCGGGGAACTC |
S. algae | SYT3 | SAMN04492208 | GTTCACTGCCGCCCAGGCAGCTTAGAAA |
S. algae | YHL | SAMN04492206 | TTTCTAAGCTGCCTGGGCGGCAGTGAAC |
S. algae/S. haliotis | ACCC | SAMN04492216 | GTTCACTGCCGCCCAGGCAGCTTAGAAA |
S. algae/S. haliotis | JFC2 | SAMN04492214 | GAGTTCCCCGCACCCACGGGGATAAACCG |
S. algae/S. haliotis | JFC3 | SAMN04492215 | TTTCTAAGCTGCCTGGGCGGCAGTGAAC |
S. algae/S. haliotis | JFL | SAMN04492224 | GTGTTCCCCGCACCCACGGGGATAAACCG |
S. algae/S. haliotis | MSW | SAMN04492233 | GTTCACTGCCGCCCAGGCAGCTTAGAAA |
S. algae/S. haliotis | RC | SAMN04492217 | GTTCACTGCCGCCCAGGCAGCTTAGAAA |
S. algae/S. haliotis | YTH | SAMN04492218 | GTTCACTGCCGCCCAGGCAGCTTAGAAA |
Species | Strain | Phage ID | Phage Name | Identity |
---|---|---|---|---|
S. algae | CHL | ref|NC_015465.1| | Synechococcus phage S-CBS3 | 100 |
ref|NC_016164.1| | Synechococcus phage S-CBS1 | 100 | ||
S. algae | CLS1 | ref|NC_004456.1| | Vibrio phage VHML | 93.75 |
ref|NC_027981.1| | Vibrio phage VP585 | 96.88 | ||
S. algae | CLS3 | ref|NC_004456.1| | Vibrio phage VHML | 93.75 |
ref|NC_004456.1| | Vibrio phage VHML | 100 | ||
ref|NC_004456.1| | Vibrio phage VHML | 100 | ||
ref|NC_004456.1| | Vibrio phage VHML | 96.88 | ||
ref|NC_009016.1| | Vibrio phage VP882 | 100 | ||
ref|NC_009016.1| | Vibrio phage VP882 | 100 | ||
ref|NC_019722.1| | Vibrio phage vB_VpaM_MAR | 100 | ||
ref|NC_019722.1| | Vibrio phage vB_VpaM_MAR | 100 | ||
ref|NC_027981.1| | Vibrio phage VP585 | 96.88 | ||
ref|NC_027981.1| | Vibrio phage VP585 | 93.75 | ||
S. algae | YHL | ref|NC_004456.1| | Vibrio phage VHML | 100 |
ref|NC_029094.1| | Pseudoalteromonas phage H101 | 100 | ||
S. algae/S. haliotis | MSW | ref|NC_004456.1| | Vibrio phage VHML | 100 |
ref|NC_005887.1| | Burkholderia virus BcepC6B | 95.83 | ||
ref|NC_019722.1| | Vibrio phage vB_VpaM_MAR | 100 | ||
ref|NC_027981.1| | Vibrio phage VP585 | 96.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-H.; Huang, P.-T.; Huang, Y.-T.; Mao, Y.-C.; Lai, C.-H.; Yeh, T.-K.; Tseng, C.-H.; Kao, C.-C. Characterization of CRISPR-Cas Systems in Shewanella algae and Shewanella haliotis: Insights into the Adaptation and Survival of Marine Pathogens. Pathogens 2024, 13, 439. https://doi.org/10.3390/pathogens13060439
Wang J-H, Huang P-T, Huang Y-T, Mao Y-C, Lai C-H, Yeh T-K, Tseng C-H, Kao C-C. Characterization of CRISPR-Cas Systems in Shewanella algae and Shewanella haliotis: Insights into the Adaptation and Survival of Marine Pathogens. Pathogens. 2024; 13(6):439. https://doi.org/10.3390/pathogens13060439
Chicago/Turabian StyleWang, Jui-Hsing, Po-Tsang Huang, Yao-Ting Huang, Yan-Chiao Mao, Chung-Hsu Lai, Ting-Kuang Yeh, Chien-Hao Tseng, and Chih-Chuan Kao. 2024. "Characterization of CRISPR-Cas Systems in Shewanella algae and Shewanella haliotis: Insights into the Adaptation and Survival of Marine Pathogens" Pathogens 13, no. 6: 439. https://doi.org/10.3390/pathogens13060439
APA StyleWang, J. -H., Huang, P. -T., Huang, Y. -T., Mao, Y. -C., Lai, C. -H., Yeh, T. -K., Tseng, C. -H., & Kao, C. -C. (2024). Characterization of CRISPR-Cas Systems in Shewanella algae and Shewanella haliotis: Insights into the Adaptation and Survival of Marine Pathogens. Pathogens, 13(6), 439. https://doi.org/10.3390/pathogens13060439