High Frequencies of kdr Mutation and Chikungunya Infection in Aedes aegypti Population from Minas Gerais, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mosquito Collection and Rearing following Instagram Posts
2.3. Taxonomic Identification and CHIKV Molecular Diagnosis in the Captured Mosquitoes
2.4. CHIKV Genome Sequencing and Phylogenomic Analyses
2.5. Analysis of kdr as a Molecular Marker for Pyrethroid Resistance
2.6. Ethical Statement
3. Results
3.1. Species Collected, Infection Rates, and Viral Dissemination
3.2. CHIKV Genome Sequencing and Phylogenomic Analyses
3.3. Analysis of kdr in the Aedes aegypti Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, M.C. An Epidemic of Virus Disease in Southern Province, Tanganyika Territory, in 1952–1953. Trans. R Soc. Trop. Med. Hyg. 1955, 49, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Pialoux, G.; Gaüzère, B.-A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an Epidemic Arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. [Google Scholar] [CrossRef]
- Morrison, T.E. Reemergence of Chikungunya Virus. J. Virol. 2014, 88, 11644–11647. [Google Scholar] [CrossRef]
- Leparc-Goffart, I.; Nougairede, A.; Cassadou, S.; Prat, C.; de Lamballerie, X. Chikungunya in the Americas. Lancet 2014, 383, 514. [Google Scholar] [CrossRef] [PubMed]
- Costa-da-Silva, A.L.; Ioshino, R.S.; Petersen, V.; Lima, A.F.; dos Cunha, M.P.; Wiley, M.R.; Ladner, J.T.; Prieto, K.; Palacios, G.; Costa, D.D.; et al. First Report of Naturally Infected Aedes aegypti with Chikungunya Virus Genotype ECSA in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005630. [Google Scholar] [CrossRef]
- Ribeiro Cruz, A.C.; Pinto Nunes Neto, J.; Patroca da Silva, S.; Vieira Pinto da Silva, E.; Juscely Galvão Pereira, G.; Maia Santos, M.; Antônio de Oliveira Monteiro, H.; Barreto dos Santos, F.; José de Paula Souza e Guimarães, R.; Fortes Aragão, C.; et al. Chikungunya Virus Detection in Aedes aegypti and Culex quinquefasciatus during an Outbreak in the Amazon Region. Viruses 2020, 12, 853. [Google Scholar] [CrossRef]
- Vazeille, M.; Moutailler, S.; Coudrier, D.; Rousseaux, C.; Khun, H.; Huerre, M.; Thiria, J.; Dehecq, J.-S.; Fontenille, D.; Schuffenecker, I.; et al. Two Chikungunya Isolates from the Outbreak of La Reunion (Indian Ocean) Exhibit Different Patterns of Infection in the Mosquito, Aedes albopictus. PLoS ONE 2007, 2, e1168. [Google Scholar] [CrossRef]
- Vega-Rua, A.; Zouache, K.; Girod, R.; Failloux, A.-B.; Lourenco-de-Oliveira, R. High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus. J. Virol. 2014, 88, 6294–6306. [Google Scholar] [CrossRef] [PubMed]
- Honório, N.A.; Wiggins, K.; Câmara, D.C.P.; Eastmond, B.; Alto, B.W. Chikungunya Virus Vector Competency of Brazilian and Florida Mosquito Vectors. PLoS Negl. Trop. Dis. 2018, 12, e0006521. [Google Scholar] [CrossRef]
- Carvalho, R.G.; Lourenço-de-Oliveira, R.; Braga, I.A. Updating the Geographical Distribution and Frequency of Aedes albopictus in Brazil with Remarks Regarding Its Range in the Americas. Mem. Inst. Oswaldo Cruz 2014, 109, 787–796. [Google Scholar] [CrossRef]
- Ferreira-de-Lima, V.H.; Câmara, D.C.P.; Honório, N.A.; Lima-Camara, T.N. The Asian Tiger Mosquito in Brazil: Observations on Biology and Ecological Interactions since Its First Detection in 1986. Acta Trop. 2020, 205, 105386. [Google Scholar] [CrossRef]
- da Rocha, R.C.; da Cardoso, A.S.; de Souza, J.L.; da Pereira, E.S.; de Amorim, M.F.; de Souza, M.S.M.; de Medeiros, C.L.; Monteiro, M.F.M.; de Meneguetti, D.U.O.; de Paula, M.B.; et al. First Official Record of Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Acre State, Northern Brazil. Rev. Inst. Med. Trop. Sao Paulo 2023, 65, e20. [Google Scholar] [CrossRef]
- da Silva Ferreira, R.; de Toni Aquino da Cruz, L.C.; de Souza, V.J.; da Silva Neves, N.A.; de Souza, V.C.; Filho, L.C.F.; da Silva Lemos, P.; de Lima, C.P.S.; Naveca, F.G.; Atanaka, M.; et al. Insect-Specific Viruses and Arboviruses in Adult Male Culicids from Midwestern Brazil. Infect. Genet. Evol. 2020, 85, 104561. [Google Scholar] [CrossRef]
- da Silva Neves, N.A.; da Silva Ferreira, R.; Morais, D.O.; Pavon, J.A.R.; de Pinho, J.B.; Slhessarenko, R.D. Chikungunya, Zika, Mayaro, and Equine Encephalitis Virus Detection in Adult Culicinae from South Central Mato Grosso, Brazil, during the Rainy Season of 2018. Braz. J. Microbiol. 2022, 53, 63–70. [Google Scholar] [CrossRef]
- Lutomiah, J.; Mulwa, F.; Mutisya, J.; Koskei, E.; Langat, S.; Nyunja, A.; Koka, H.; Konongoi, S.; Chepkorir, E.; Ofula, V.; et al. Probable Contribution of Culex quinquefasciatus Mosquitoes to the Circulation of Chikungunya Virus during an Outbreak in Mombasa County, Kenya, 2017–2018. Parasit Vectors 2021, 14, 138. [Google Scholar] [CrossRef]
- van den Hurk, A.F.; Hall-Mendelin, S.; Pyke, A.T.; Smith, G.A.; Mackenzie, J.S. Vector Competence of Australian Mosquitoes for Chikungunya Virus. Vector-Borne Zoonotic Dis. 2010, 10, 489–495. [Google Scholar] [CrossRef]
- Brasil; Ministério da Saúde; Brasil. Secretaria de VigDepartamento de Articulação Estratégica de Vigilância em Saúde Guia de Vigilância Em Saúde. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_5ed_rev_atual.pdf (accessed on 21 April 2024).
- Valle, D.; Bellinato, D.F.; Viana-Medeiros, P.F.; Lima, J.B.P.; Martins Junior, A.d.J. Resistance to Temephos and Deltamethrin in Aedes aegypti from Brazil between 1985 and 2017. Mem. Inst. Oswaldo Cruz. 2019, 114, e180544. [Google Scholar] [CrossRef]
- Campos, K.B.; Martins, A.J.; de Rodovalho, C.M.; Bellinato, D.F.; dos Dias, L.S.; de Lourdes da Graça Macoris, M.; Andrighetti, M.T.M.; Lima, J.B.P.; Obara, M.T. Assessment of the Susceptibility Status of Aedes aegypti (Diptera: Culicidae) Populations to Pyriproxyfen and Malathion in a Nation-Wide Monitoring of Insecticide Resistance Performed in Brazil from 2017 to 2018. Parasit Vectors 2020, 13, 531. [Google Scholar] [CrossRef]
- Macoris, M.d.L.; Martins, A.J.; Andrighetti, M.T.M.; Lima, J.B.P.; Valle, D. Pyrethroid Resistance Persists after Ten Years without Usage against Aedes aegypti in Governmental Campaigns: Lessons from São Paulo State, Brazil. PLoS Negl. Trop. Dis. 2018, 12, e0006390. [Google Scholar] [CrossRef]
- Moyes, C.L.; Wiebe, A.; Gleave, K.; Trett, A.; Hancock, P.A.; Padonou, G.G.; Chouaïbou, M.S.; Sovi, A.; Abuelmaali, S.A.; Ochomo, E.; et al. Analysis-Ready Datasets for Insecticide Resistance Phenotype and Genotype Frequency in African Malaria Vectors. Sci. Data 2019, 6, 121. [Google Scholar] [CrossRef]
- Melo Costa, M.; Campos, K.B.; Brito, L.P.; Roux, E.; Melo Rodovalho, C.; Bellinato, D.F.; Lima, J.B.P.; Martins, A.J. Kdr Genotyping in Aedes aegypti from Brazil on a Nation-Wide Scale from 2017 to 2018. Sci. Rep. 2020, 10, 13267. [Google Scholar] [CrossRef]
- Souza, B.S.; Lima, L.F.; Galardo, A.K.R.; Corbel, V.; Lima, J.B.P.; Martins, A.J. Genetic Structure and Kdr Mutations in Aedes aegypti Populations along a Road Crossing the Amazon Forest in Amapá State, Brazil. Sci. Rep. 2023, 13, 17167. [Google Scholar] [CrossRef]
- Brito, L.P.; Carrara, L.; de Freitas, R.M.; Lima, J.B.P.; Martins, A.J. Levels of Resistance to Pyrethroid among Distinct Kdr Alleles in Aedes aegypti Laboratory Lines and Frequency of Kdr Alleles in 27 Natural Populations from Rio de Janeiro, Brazil. Biomed. Res. Int. 2018, 2018, 2410819. [Google Scholar] [CrossRef]
- SES-MG; Secretaria de Estado de Saúde de Minas Gerais Arboviroses Urbanas (Dengue, Chikungunya e Zika). Boletim Epidemiológico No 296—Semana Epidemiológica 40/2023. Available online: https://www.saude.mg.gov.br/images/1_noticias/06_2023/1-out-nov-dez/09-10-BO_ARBO296.pdf (accessed on 21 April 2024).
- SES-MG; Secretaria de Estado de Saúde de Minas Gerais Painel de Monitoramento de Casos. Vigilância Das Arboviroses Em Minas Gerais: Chikungunya. Available online: https://www.saude.mg.gov.br/aedes/painel (accessed on 21 April 2024).
- IBGE; Instituto Brasileiro de Geografia e Estatística Áreas Urbanizadas Do Brasil 2019. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101973_informativo.pdf (accessed on 21 April 2024).
- Maia, L.J.; de Oliveira, C.H.; Silva, A.B.; Souza, P.A.A.; Müller, N.F.D.; da Cruz Cardoso, J.; Ribeiro, B.M.; de Abreu, F.V.S.; Campos, F.S. Arbovirus Surveillance in Mosquitoes: Historical Methods, Emerging Technologies, and Challenges Ahead. Exp. Biol. Med. 2023, 248, 2072–2082. [Google Scholar] [CrossRef]
- IBGE; Instituto Brasileiro de Geografia e Estatística Cidades e Estados. Available online: https://www.ibge.gov.br/cidades-e-estados/mg/salinas.html (accessed on 21 April 2024).
- Scolforo, J.R. Mapeamento e Inventário Da Flora Nativa e Dos Reflorestamentos de Minas Gerais; UFLA: Lavras, Brasil, 2006. [Google Scholar]
- Koppen, W. Das Geographische System Der Klimat. Handb. Der Klimatol. 1936, 47, 17–30. [Google Scholar] [CrossRef]
- SES-MG; Secretaria de Estado de Saúde de Minas Gerais Arboviroses Urbanas (Dengue, Chikungunya e Zika). Boletim Epidemiológico No 270—Semana Epidemiológica 05/2023, 06 de Fevereiro. Available online: https://www.saude.mg.gov.br/images/1_noticias/06_2023/4-jan-fev-marc/BO_ARBO270.pdf (accessed on 21 April 2024).
- Nasci, R.S. A Lightweight Battery-Powered Aspirator for Collecting Resting Mosquitoes in the Field. Mosq. News 1981, 41, 808–811. [Google Scholar]
- Dubrulle, M.; Mousson, L.; Moutailler, S.; Vazeille, M.; Failloux, A.-B. Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as Soon as Two Days after Oral Infection. PLoS ONE 2009, 4, e5895. [Google Scholar] [CrossRef]
- Consoli, R.A.G.B.; de Oliveira, R.L. Principais Mosquitos de Importância Sanitária No Brasil; Fiocruz: Rio de Janeiro, Brazil, 1994; ISBN 8575412906. [Google Scholar]
- Forattini, O.P. Culicidologia Médica: Identificação, Biologia, Epidemiologia—Volume 2; Edusp: São Paulo, Brazil, 2002; ISBN 8531406994. [Google Scholar]
- de Oliveira, C.H.; Andrade, M.S.; Campos, F.S.; da C. Cardoso, J.; Gonçalves-dos-Santos, M.E.; Oliveira, R.S.; Aquino-Teixeira, S.M.; Campos, A.A.; Almeida, M.A.; Simonini-Teixeira, D.; et al. Yellow Fever Virus Maintained by Sabethes Mosquitoes during the Dry Season in Cerrado, a Semiarid Region of Brazil, in 2021. Viruses 2023, 15, 757. [Google Scholar] [CrossRef]
- Pastorino, B.; Bessaud, M.; Grandadam, M.; Murri, S.; Tolou, H.J.; Peyrefitte, C.N. Development of a TaqMan® RT-PCR Assay without RNA Extraction Step for the Detection and Quantification of African Chikungunya Viruses. J. Virol. Methods 2005, 124, 65–71. [Google Scholar] [CrossRef]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.A.; et al. Multiplex PCR Method for MinION and Illumina Sequencing of Zika and Other Virus Genomes Directly from Clinical Samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef]
- Moreira, F.R.R.; de Menezes, M.T.; Salgado-Benvindo, C.; Whittaker, C.; Cox, V.; Chandradeva, N.; de Paula, H.H.S.; Martins, A.F.; das Chagas, R.R.; Brasil, R.D.V.; et al. Epidemiological and Genomic Investigation of Chikungunya Virus in Rio de Janeiro State, Brazil, between 2015 and 2018. PLoS Negl. Trop. Dis. 2023, 17, e0011536. [Google Scholar] [CrossRef]
- Fonseca, V.; Libin, P.J.K.; Theys, K.; Faria, N.R.; Nunes, M.R.T.; Restovic, M.I.; Freire, M.; Giovanetti, M.; Cuypers, L.; Nowé, A.; et al. A Computational Method for the Identification of Dengue, Zika and Chikungunya Virus Species and Genotypes. PLoS Negl. Trop. Dis. 2019, 13, e0007231. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Larsson, A. AliView: A Fast and Lightweight Alignment Viewer and Editor for Large Datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Teixeira, M.G.; Andrade, A.M.S.; da Conceição N. Costa, M.; Castro, J.S.M.; Oliveira, F.L.S.; Goes, C.S.B.; Maia, M.; Santana, E.B.; Nunes, B.T.D.; Vasconcelos, P.F.C. East/Central/South African Genotype Chikungunya Virus, Brazil, 2014. Emerg. Infect. Dis. 2015, 21, 906–907. [Google Scholar] [CrossRef]
- de Souza, U.J.B.; dos Santos, R.N.; Giovanetti, M.; Alcantara, L.C.J.; Galvão, J.D.; Cardoso, F.D.P.; Brito, F.C.S.; Franco, A.C.; Roehe, P.M.; Ribeiro, B.M.; et al. Genomic Epidemiology Reveals the Circulation of the Chikungunya Virus East/Central/South African Lineage in Tocantins State, North Brazil. Viruses 2022, 14, 2311. [Google Scholar] [CrossRef]
- Xavier, J.; Alcantara, L.C.J.; Fonseca, V.; Lima, M.; Castro, E.; Fritsch, H.; Oliveira, C.; Guimarães, N.; Adelino, T.; Evaristo, M.; et al. Increased Interregional Virus Exchange and Nucleotide Diversity Outline the Expansion of Chikungunya Virus in Brazil. Nat. Commun. 2023, 14, 4413. [Google Scholar] [CrossRef]
- Lessa-Aquino, C.; Trinta, K.S.; Pestana, C.P.; Ribeiro, M.O.; Sucupira, M.V.F.; Boia, M.N.; Baptista, P.A.; Cunha, R.V.; Medeiros, M.A. Detection of East/Central/South African Genotype Chikungunya Virus during an Outbreak in a Southeastern State of Brazil. Epidemiol. Infect. 2018, 146, 2056–2058. [Google Scholar] [CrossRef]
- Aragão, C.F.; Pinheiro, V.C.S.; Nunes Neto, J.P.; da Silva, E.V.P.; Pereira, G.J.G.; do Nascimento, B.L.S.; Castro, K.d.S.; Maia, A.M.; Catete, C.P.; Martins, L.C.; et al. Natural Infection of Aedes aegypti by Chikungunya and Dengue Type 2 Virus in a Transition Area of North-Northeast Brazil. Viruses 2019, 11, 1126. [Google Scholar] [CrossRef]
- Teixeira, A.F.; de Brito, B.B.; Correia, T.M.L.; Viana, A.I.S.; Carvalho, J.C.; da Silva, F.A.F.; Santos, M.L.C.; da Silveira, E.A.; Neto, H.P.G.; da Silva, N.M.P.; et al. Simultaneous Circulation of Zika, Dengue, and Chikungunya Viruses and Their Vertical Co-Transmission among Aedes aegypti. Acta Trop. 2021, 215, 105819. [Google Scholar] [CrossRef]
- Aragão, C.F.; Cruz, A.C.R.; Nunes Neto, J.P.; de Oliveira Monteiro, H.A.; da Silva, E.V.P.; da Silva, S.P.; dos Santos Andrade, A.T.; Tadei, W.P.; Pinheiro, V.C.S. Circulation of Chikungunya Virus in Aedes aegypti in Maranhão, Northeast Brazil. Acta Trop. 2018, 186, 1–4. [Google Scholar] [CrossRef]
- Monteiro, F.J.C.; Mourão, F.R.P.; Ribeiro, E.S.D.; Rêgo, M.O.d.S.; Frances, P.A.d.C.; Souto, R.N.P.; dos Santos Façanha, M.; Tahmasebi, R.; da Costa, A.C. Prevalence of Dengue, Zika and Chikungunya Viruses in Aedes (Stegomyia) aegypti (Diptera: Culicidae) in a Medium-Sized City, Amazon, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e10. [Google Scholar] [CrossRef]
- Alto, B.W.; Wiggins, K.; Eastmond, B.; Velez, D.; Lounibos, L.P.; Lord, C.C. Transmission Risk of Two Chikungunya Lineages by Invasive Mosquito Vectors from Florida and the Dominican Republic. PLoS Negl. Trop. Dis. 2017, 11, e0005724. [Google Scholar] [CrossRef]
- Ferreira-de-Brito, A.; Ribeiro, I.P.; de Miranda, R.M.; Fernandes, R.S.; Campos, S.S.; da Silva, K.A.B.; de Castro, M.G.; Bonaldo, M.C.; Brasil, P.; Lourenço-de-Oliveira, R. First Detection of Natural Infection of Aedes aegypti with Zika Virus in Brazil and throughout South America. Mem. Inst. Oswaldo Cruz 2016, 111, 655–658. [Google Scholar] [CrossRef]
- de Fátima Freire de Melo Ximenes, M.; de Araújo Galvão, J.M.; Inacio, C.L.S.; Macêdo e Silva, V.P.; do Nascimento Pereira, R.L.; Pinheiro, M.P.G.; de Medeiros Silva, M.M.; Gomes, C.E.S. Arbovirus Expansion: New Species of Culicids Infected by the Chikungunya Virus in an Urban Park of Brazil. Acta Trop. 2020, 209, 105538. [Google Scholar] [CrossRef]
- Variza, P.F.; Lorenz, C.; de Oliveira, J.G.; Fernandes, M.; Netto, S.A.; Prophiro, J.S. Updated Spatio-Temporal Distribution of Aedes (Stegomyia) albopictus in Brazil. Acta Trop. 2022, 232, 106511. [Google Scholar] [CrossRef]
- Reiter, P.; Fontenille, D.; Paupy, C. Aedes albopictus as an Epidemic Vector of Chikungunya Virus: Another Emerging Problem? Lancet Infect. Dis. 2006, 6, 463–464. [Google Scholar] [CrossRef]
- Bonilauri, P.; Bellini, R.; Calzolari, M.; Angelini, R.; Venturi, L.; Fallacara, F.; Cordioli, P.; Angelini, P.; Venturelli, C.; Merialdi, G.; et al. Chikungunya Virus in Aedes albopictus, Italy. Emerg. Infect. Dis. 2008, 14, 852–854. [Google Scholar] [CrossRef]
- Santos, M.E.G.; Sousa, E.C.; Bitencourt, C.S.; Oliveira, C.H.; Silva, A.J.J.; Ribeiro, J.C.; Franca, A.O.; Mendes, H.H.N.; Abreu, F.V.S. Monitoramento de Mosquitos Aedes spp. (Diptera: Culicidae) Na Região Urbana Do Município de Salinas-MG, Norte de Minas Gerais. In Proceedings of the Anais do Congresso da Sociedade Brasileira de Parasitologia—Parasito 2021: A Parasitologia na perspectiva da Saúde Única; Sociedade Brasileira de Parasitologia: Goiânia, Brazil, 2021. [Google Scholar]
- Santos, T.P. Potential of Aedes Albopictus as a Bridge Vector for Enzootic Pathogens at the Urban-Forest Interfacein Brazil—Approved with Minor Corrections. Emerg. Microbes Infect. 2018, 7, 8. [Google Scholar]
- Corbel, V.; Fonseca, D.M.; Weetman, D.; Pinto, J.; Achee, N.L.; Chandre, F.; Coulibaly, M.B.; Dusfour, I.; Grieco, J.; Juntarajumnong, W.; et al. International Workshop on Insecticide Resistance in Vectors of Arboviruses, December 2016, Rio de Janeiro, Brazil. Parasit Vectors 2017, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug FDA Approves First Vaccine to Prevent Disease Caused by Chikungunya Virus. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-vaccine-prevent-disease-caused-chikungunya-virus#:~:text=Today%2C%20the%20U.S.%20Food%20and,bite%20of%20an%20infected%20mosquito (accessed on 19 May 2024).
- Palmer, J.R.B.; Oltra, A.; Collantes, F.; Delgado, J.A.; Lucientes, J.; Delacour, S.; Bengoa, M.; Eritja, R.; Bartumeus, F. Citizen Science Provides a Reliable and Scalable Tool to Track Disease-Carrying Mosquitoes. Nat. Commun. 2017, 8, 916. [Google Scholar] [CrossRef]
- de Abreu, F.V.S.; Delatorre, E.; dos Santos, A.A.C.; Ferreira-de-Brito, A.; de Castro, M.G.; Ribeiro, I.P.; Furtado, N.D.; Vargas, W.P.; Ribeiro, M.S.; Meneguete, P.; et al. Combination of Surveillance Tools Reveals That Yellow Fever Virus Can Remain in the Same Atlantic Forest Area at Least for Three Transmission Seasons. Mem. Inst. Oswaldo Cruz 2019, 114, e190076. [Google Scholar] [CrossRef] [PubMed]
- Abreu, F.V.S.; dos Santos, E.; Gomes, M.Q.; Vargas, W.P.; Oliveira Passos, P.H.; Nunes e Silva, C.; Araújo, P.C.; Pires, J.R.; Romano, A.P.M.; Teixeira, D.S.; et al. Capture of Alouatta Guariba clamitans for the Surveillance of Sylvatic Yellow Fever and Zoonotic Malaria: Which Is the Best Strategy in the Tropical Atlantic Forest? Am. J. Primatol. 2019, 81, e23000. [Google Scholar] [CrossRef] [PubMed]
- Chame, M.; Barbosa, H.J.C.; Gadelha, L.M.R.; Augusto, D.A.; Krempser, E.; Abdalla, L. SISS-Geo: Leveraging Citizen Science to Monitor Wildlife Health Risks in Brazil. J. Health Inf. Res. 2019, 3, 414–440. [Google Scholar] [CrossRef] [PubMed]
- Chame, M.; Abdalla, L.; Pinter, A.; Romano, A.P.M.; Krempser, E.; Ramos, D.G.; de Oliveira Passos, P.H.; Silva, P.C.L.; Da Silva, G.M.P.; Gatti, R.R.; et al. Primates in SISS-Geo: Potential Contributions of Mobile Technology, Health Surveillance and Citizen Science to Support Species Conservation in Brazil. Neotrop. Primates 2020, 26, 80–89. [Google Scholar] [CrossRef]
- Sousa, L.B.; Craig, A.; Chitkara, U.; Fricker, S.; Webb, C.; Williams, C.; Baldock, K. Methodological Diversity in Citizen Science Mosquito Surveillance: A Scoping Review. Citiz. Sci. 2022, 7, 8. [Google Scholar] [CrossRef]
- Craig, A.T.; Kama, N.; Fafale, G.; Bugoro, H. Citizen Science as a Tool for Arboviral Vector Surveillance in a Resourced-Constrained Setting: Results of a Pilot Study in Honiara, Solomon Islands, 2019. BMC Public Health 2021, 21, 509. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.S.; Campos, F.S.; de Oliveira, C.H.; Oliveira, R.S.; Campos, A.A.S.; de Almeida, M.A.B.; Fonseca, V.d.S.; Simonini-Teixeira, D.; Sevá, A.d.P.; Temponi, A.O.D.; et al. Fast Surveillance Response Reveals the Introduction of a New Yellow Fever Virus Sub-Lineage in 2021, in Minas Gerais, Brazil. Mem. Inst. Oswaldo Cruz 2022, 117, e220175. [Google Scholar] [CrossRef]
- Braz Sousa, L.; Fricker, S.R.; Doherty, S.S.; Webb, C.E.; Baldock, K.L.; Williams, C.R. Citizen Science and Smartphone E-Entomology Enables Low-Cost Upscaling of Mosquito Surveillance. Sci. Total Environ. 2020, 704, 135349. [Google Scholar] [CrossRef]
Species | Male | Female | Sum (Relative Abundance %) # | Pools Tested (CHIKV-Positive) | MIR * |
---|---|---|---|---|---|
Ae. aegypti (Linnaeus, 1762) | 70 | 95 | 165 (39.2) | 31 (10) | 60.6 |
Cx. quinquefasciatus Say, 1823 | 143 | 113 | 256 (60.8) | 26 (2) | 7.8 |
Total | 213 | 208 | 421 (100) | 57 (12) | 28.5 |
Cod. Pool | Species | No. of Individuals | Sex | CT * | Individual Heads | Positive Heads (CT **) |
---|---|---|---|---|---|---|
X-595 | Ae. aegypti | 5 | F | 20.1 | c144, c145, c146, c147, c148 | c144 (21.5); c146 (22.0); c148 (30.1) |
X-556 | Ae. aegypti | 5 | F | 21.0 | c33, c34, c35, c36, c37 | c34 (21.2) |
X-585 | Ae. aegypti | 5 | F | 22.9 | c82, c83, c84, c88, 89 | c83 (23.6); c84 (35.8) |
X-584 | Ae. aegypti | 2 | F | 23.1 | c81, c108 | c81 (21.6) |
X-579 | Ae. aegypti | 5 | F | 24.1 | c51, c52, c54, c56, c58 | c58 (26.9) |
X-594 | Ae. aegypti | 5 | F | 24.2 | c139, c140, c141, c142, c143 | c141 (23.0) |
X-606 | Ae. aegypti | 5 | F | 28.0 | c149, c150, c151, c152, c164 | _ |
X-555 | Ae. aegypti | 6 | M | 38.0 | c30, c32, c39, c40, c43, c44 | _ |
X-593 | Ae. aegypti | 7 | M | 38.3 | c126, c128, c134, c135, c136, c137, c138 | _ |
X-586 | Ae. aegypti | 8 | M | 40.0 | c85, c86, c87, c90, c91, c92, c93, c94 | _ |
X-623 | Cx. quinquefasciatus | 9 | M | 38.1 | c296, c297, c298, c299, c300, c301, c302, c303, c304 | _ |
X-619 | Cx. quinquefasciatus | 9 | F | 38.2 | c254, c255, c256, c257, c258, c259, c260, c261, c262 | _ |
Genotypes | VV+VV+ FF | VV+VV+ FC | VV+VV+ CC | VL+VI+ FC | VL+VI+ CC | LL+II+ CC | VV+Vl+ CC * | VV+VI+ FC | VL+II+ CC |
---|---|---|---|---|---|---|---|---|---|
No. of individuals (Frequency) | 3 | 2 | 18 | 17 | 53 | 67 | 2 | 1 | 1 |
(1.8) | (1.2) | (11.0) | (10.4) | (32.3) | (40.9) | (1.2) | (0.6) | (0.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida-Souza, P.A.; Oliveira, C.H.d.; Brito, L.P.; Teixeira, T.d.J.; Celestino, I.A.; Penha, G.B.; dos Santos, R.M.; Mendes, W.M.; Ribeiro, B.M.; Campos, F.S.; et al. High Frequencies of kdr Mutation and Chikungunya Infection in Aedes aegypti Population from Minas Gerais, Brazil. Pathogens 2024, 13, 457. https://doi.org/10.3390/pathogens13060457
Almeida-Souza PA, Oliveira CHd, Brito LP, Teixeira TdJ, Celestino IA, Penha GB, dos Santos RM, Mendes WM, Ribeiro BM, Campos FS, et al. High Frequencies of kdr Mutation and Chikungunya Infection in Aedes aegypti Population from Minas Gerais, Brazil. Pathogens. 2024; 13(6):457. https://doi.org/10.3390/pathogens13060457
Chicago/Turabian StyleAlmeida-Souza, Pedro Augusto, Cirilo Henrique de Oliveira, Luiz Paulo Brito, Thaynara de Jesus Teixeira, Iago Alves Celestino, Gabriele Barbosa Penha, Ronaldo Medeiros dos Santos, Wexley Miranda Mendes, Bergmann Morais Ribeiro, Fabrício Souza Campos, and et al. 2024. "High Frequencies of kdr Mutation and Chikungunya Infection in Aedes aegypti Population from Minas Gerais, Brazil" Pathogens 13, no. 6: 457. https://doi.org/10.3390/pathogens13060457
APA StyleAlmeida-Souza, P. A., Oliveira, C. H. d., Brito, L. P., Teixeira, T. d. J., Celestino, I. A., Penha, G. B., dos Santos, R. M., Mendes, W. M., Ribeiro, B. M., Campos, F. S., Roehe, P. M., Guimarães, N. R., Iani, F. C. M., Martins, A. J., & Abreu, F. V. S. d. (2024). High Frequencies of kdr Mutation and Chikungunya Infection in Aedes aegypti Population from Minas Gerais, Brazil. Pathogens, 13(6), 457. https://doi.org/10.3390/pathogens13060457