The Role of Senescent CD8+T Cells in the Pathogenesis of Disseminated Leishmaniasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Subjects
2.3. PBMC Isolation
2.4. Flow Cytometric Analysis
2.4.1. Peripheral Blood CD8+T Cells
2.4.2. Biopsies
2.4.3. PBMC Culture
2.5. CD8+T Functional Assay
2.5.1. MØ Differentiation
2.5.2. CD8+T Cells Sorting
2.5.3. Co-Cultures
2.6. Granzyme B Production
2.7. Statistical Analysis
3. Results
3.1. Patients with DL Have an Increase in the Frequency of Circulating CD8+T Cells That Present a Memory/Senescent Phenotype
3.2. Ulcers from DL Patients Have an Increase in the Frequency of Infiltrating CD8+T Cells with Senescent/Degranulation Phetotype (CD8+CD57+CD107a+)
3.3. DL Patients’ Circulating CD8+T Having a Senescent Profile Showed Intracellular GzB Increased by Specific Stimuli
3.4. Specific CD8+T Cells from DL Patients Have an Increased Degranulation Phenotype, Causing More Apoptosis of Infected Target Cells
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M. den Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Bottazzi, M.E.; Franco-Paredes, C.; Ault, S.K.; Periago, M.R. The Neglected Tropical Diseases of Latin America and the Caribbean: A Review of Disease Burden and Distribution and a Roadmap for Control and Elimination. PLoS Negl. Trop. Dis. 2008, 2, e300. [Google Scholar] [CrossRef] [PubMed]
- Marsden, P.D. Leishmaniasis. BMJ 1990, 300, 666–667. [Google Scholar] [CrossRef] [PubMed]
- Weigle, K.; Saravia, N.G. Natural History, Clinical Evolution, and the Host-Parasite Interaction in New World Cutaneous Leishmaniasis. Clin. Dermatol. 1996, 14, 433–450. [Google Scholar] [CrossRef] [PubMed]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Boaventura, V.S.; Cafe, V.; Costa, J.; Oliveira, F.; Bafica, A.; Rosato, A.; de Freitas, L.A.R.; Brodskyn, C.; Barral-Netto, M.; Barral, A. Concomitant Early Mucosal and Cutaneous Leishmaniasis in Brazil. Am. J. Trop. Med. Hyg. 2006, 75, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Miranda Lessa, M.; Andrade Lessa, H.; Castro, T.W.N.; Oliveira, A.; Scherifer, A.; Machado, P.; Carvalho, E.M. Mucosal Leishmaniasis: Epidemiological and Clinical Aspects. Braz. J. Otorhinolaryngol. 2007, 73, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Machado, G.U.; Prates, F.V.; Machado, P.R.L. Disseminated Leishmaniasis: Clinical, Pathogenic, and Therapeutic Aspects. An. Bras. Dermatol. 2019, 94, 9–16. [Google Scholar] [CrossRef]
- Grimaldi, G.; Tesh, R.B. Leishmaniases of the New World: Current Concepts and Implications for Future Research. Clin. Microbiol. Rev. 1993, 6, 230–250. [Google Scholar] [CrossRef]
- Glesby, M.J.; Machado, P.R.; Carvalho, E.M.; Lago, E.; Rosa, M.E.; Guimarães, L.H.; Jirmanus, L. Epidemiological and Clinical Changes in American Tegumentary Leishmaniasis in an Area of Leishmania (Viannia) Braziliensis Transmission Over a 20-Year Period. Am. J. Trop. Med. Hyg. 2012, 86, 426–433. [Google Scholar] [CrossRef]
- Turetz, M.L.; Machado, P.R.; Ko, A.I.; Alves, F.; Bittencourt, A.; Almeida, R.P.; Mobashery, N.; Johnson, W.D., Jr.; Carvalho, E.M. Disseminated Leishmaniasis: A New and Emerging Form of Leishmaniasis Observed in Northeastern Brazil. J. Infect. Dis. 2002, 186, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, A.; Sousa, R.; Heine, C.; Cardoso, M.; Guimarães, L.H.; Machado, P.R.L.; Carvalho, E.M.; Riley, L.W.; Wilson, M.E.; Schriefer, A. Association between an Emerging Disseminated Form of Leishmaniasis and Leishmania (Viannia) Braziliensis Strain Polymorphisms. J. Clin. Microbiol. 2012, 50, 4028–4034. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, W.N.; Dórea, A.S.; Carneiro, P.P.; Nascimento, M.T.; Carvalho, L.P.; Machado, P.R.L.; Schriefer, A.; Bacellar, O.; Carvalho, E.M. The Influence of Infection by Different Leishmania (Viannia) Braziliensis Isolates on the Pathogenesis of Disseminated Leishmaniasis. Front. Cell Infect. Microbiol. 2021, 11, 740278. [Google Scholar] [CrossRef] [PubMed]
- Faria, D.R.; Souza, P.E.A.; Durães, F.V.; Carvalho, E.M.; Gollob, K.J.; Machado, P.R.; Dutra, W.O. Recruitment of CD8+ T Cells Expressing Granzyme A Is Associated with Lesion Progression in Human Cutaneous Leishmaniasis. Parasite Immunol. 2009, 31, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Kurschus, F.C.; Kleinschmidt, M.; Fellows, E.; Dornmair, K.; Rudolph, R.; Lilie, H.; Jenne, D.E. Killing of Target Cells by Redirected Granzyme B in the Absence of Perforin. FEBS Lett. 2004, 562, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.H.; Becker, I. CD8 Cytotoxic T Cells in Cutaneous Leishmaniasis. Parasite Immunol. 2007, 29, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Rodrigues, M.; Russell, D.G. The Interaction between CD8+ Cytotoxic T Cells and Leishmania-Infected Macrophages. J. Exp. Med. 1991, 174, 499–505. [Google Scholar] [CrossRef]
- Arosa, F.A. CD8+ CD28− T Cells: Certainties and Uncertainties of a Prevalent Human T-cell Subset. Immunol. Cell Biol. 2002, 80, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, A.N. CD28 Extinction in Human T Cells: Altered Functions and the Program of T-cell Senescence. Immunol. Rev. 2005, 205, 158–169. [Google Scholar] [CrossRef]
- Weng, N.; Akbar, A.N.; Goronzy, J. CD28− T Cells: Their Role in the Age-Associated Decline of Immune Function. Trends Immunol. 2009, 30, 306–312. [Google Scholar] [CrossRef]
- Strioga, M.; Pasukoniene, V.; Characiejus, D. CD8+ CD28− and CD8+ CD57+ T Cells and Their Role in Health and Disease. Immunology 2011, 134, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, K.; Waltzer, W.C.; Jao, S.; Pullis, C.; Shabtai, M.; Raisbeck, A.P.; Rapaport, F.T. Homing of CD8CD57 T lymphocytes into acutely rejected renal allografts. Transplantation 1992, 54, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Covre, L.P.; Devine, O.P.; Garcia de Moura, R.; Vukmanovic-Stejic, M.; Dietze, R.; Ribeiro-Rodrigues, R.; de Matos Guedes, H.L.; Lubiana Zanotti, R.; Falqueto, A.; Akbar, A.N.; et al. Compartmentalized Cytotoxic Immune Response Leads to Distinct Pathogenic Roles of Natural Killer and Senescent CD8+ T Cells in Human Cutaneous Leishmaniasis. Immunology 2020, 159, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Dantas, M.L.; de Oliveira, J.M.G.C.; Carvalho, L.; Passos, S.T.; Queiroz, A.; Guimarães, L.H.; Machado, P.; Carvalho, E.; Arruda, S. Comparative Analysis of the Tissue Inflammatory Response in Human Cutaneous and Disseminated Leishmaniasis. Mem. Inst. Oswaldo Cruz 2014, 109, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Milling, S. Ageing Dangerously; Homing of Senescent CD8 T Cells in Cutaneous Leishmaniasis. Immunology 2020, 159, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Elmahallawy, E.K.; Sampedro Martinez, A.; Rodriguez-Granger, J.; Hoyos-Mallecot, Y.; Agil, A.; Navarro Mari, J.M.; Gutierrez Fernandez, J. Diagnosis of Leishmaniasis. J. Infect. Dev. Ctries. 2014, 8, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.R.L.; Rosa, M.E.A.; Guimarães, L.H.; Prates, F.V.O.; Queiroz, A.; Schriefer, A.; Carvalho, E.M. Treatment of Disseminated Leishmaniasis with Liposomal Amphotericin B. Clin. Infect. Dis. 2015, 61, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.M.; Javadi, A.; Firooz, A.; Khamesipour, A. Comparison of Cytokine Profile of IFN-γ, IL-5 and IL-10 in Cutaneous Leishmaniasis Using PBMC vs. Whole Blood. Iran. J. Microbiol. 2019, 11, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Derby, E.; Reddy, V.; Kopp, W.; Nelson, E.; Baseler, M.; Sayers, T.; Malyguine, A. Three-Color Flow Cytometric Assay for the Study of the Mechanisms of Cell-Mediated Cytotoxicity. Immunol. Lett. 2001, 78, 35–39. [Google Scholar] [CrossRef]
- Nascimento, M.T.; Franca, M.; Carvalho, A.M.; Amorim, C.F.; Peixoto, F.; Beiting, D.; Scott, P.; Carvalho, E.M.; Carvalho, L.P. Inhibition of Gamma-Secretase Activity without Interfering in Notch Signalling Decreases Inflammatory Response in Patients with Cutaneous Leishmaniasis. Emerg. Microbes Infect. 2021, 10, 1219–1226. [Google Scholar] [CrossRef]
- Da Silva Santos, C.; Boaventura, V.; Ribeiro Cardoso, C.; Tavares, N.; Lordelo, M.J.; Noronha, A.; Costa, J.; Borges, V.M.; de Oliveira, C.I.; Van Weyenbergh, J.; et al. CD8+ Granzyme B+—Mediated Tissue Injury vs. CD4+IFNγ+—Mediated Parasite Killing in Human Cutaneous Leishmaniasis. J. Investig. Dermatol. 2013, 133, 1533–1540. [Google Scholar] [CrossRef]
- Cardoso, T.M.; Machado, Á.; Costa, D.L.; Carvalho, L.P.; Queiroz, A.; Machado, P.; Scott, P.; Carvalho, E.M.; Bacellar, O. Protective and Pathological Functions of CD8+ T Cells in Leishmania Braziliensis Infection. Infect. Immun. 2015, 83, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Novais, F.O.; Scott, P. CD8+ T Cells in Cutaneous Leishmaniasis: The Good, the Bad, and the Ugly. Semin. Immunopathol. 2015, 37, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.; Novais, F.O.; Paixão, C.S.; de Oliveira, C.I.; Machado, P.R.L.; Carvalho, L.P.; Scott, P.; Carvalho, E.M. Glyburide, a NLRP3 Inhibitor, Decreases Inflammatory Response and Is a Candidate to Reduce Pathology in Leishmania Braziliensis Infection. J. Investig. Dermatol. 2020, 140, 246–249.e2. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.F.; Ferraz-Nogueira, R.; Costa, V.F.A.; Pimentel, M.I.F.; Chometon, T.Q.; Lyra, M.R.; Schubach, A.O.; Da-Cruz, A.M.; Bertho, A.L. Contribution of Leishmania Braziliensis Antigen-Specific CD4+ T, CD8+ T, NK and CD3+ CD56+ NKT Cells in the Immunopathogenesis of Cutaneous Leishmaniasis Patients: Cytotoxic, Activation and Exhaustion Profiles. PLoS ONE 2020, 15, e0229400. [Google Scholar] [CrossRef] [PubMed]
- Fantecelle, C.H.; Covre, L.P.; Garcia de Moura, R.; de Matos Guedes, H.L.; Amorim, C.F.; Scott, P.; Mosser, D.; Falqueto, A.; Akbar, A.N.; Gomes, D.C.O. Transcriptomic Landscape of Skin Lesions in Cutaneous Leishmaniasis Reveals a Strong CD8+ T Cell Immunosenescence Signature Linked to Immunopathology. Immunology 2021, 164, 754–765. [Google Scholar] [CrossRef]
- Koh, C.C.; Wardini, A.B.; Vieira, M.; Passos, L.S.A.; Martinelli, P.M.; Neves, E.G.A.; do Vale Antonelli, L.R.; Barbosa, D.F.; Velikkakam, T.; Gutseit, E.; et al. Human CD8+ T Cells Release Extracellular Traps Co-Localized with Cytotoxic Vesicles That Are Associated with Lesion Progression and Severity in Human Leishmaniasis. Front. Immunol. 2020, 11, 594581. [Google Scholar] [CrossRef]
- Saldanha, M.G.; Pagliari, C.; Queiroz, A.; Machado, P.R.L.; Carvalho, L.; Scott, P.; Carvalho, E.M.; Arruda, S. Tissue Damage in Human Cutaneous Leishmaniasis: Correlations Between Inflammatory Cells and Molecule Expression. Front. Cell Infect. Microbiol. 2020, 10, 355. [Google Scholar] [CrossRef] [PubMed]
- Egui, A.; Ledesma, D.; Pérez-Antón, E.; Montoya, A.; Gómez, I.; Robledo, S.M.; Infante, J.J.; Vélez, I.D.; López, M.C.; Thomas, M.C. Phenotypic and Functional Profiles of Antigen-Specific CD4+ and CD8+ T Cells Associated with Infection Control in Patients with Cutaneous Leishmaniasis. Front. Cell Infect. Microbiol. 2018, 8, 393. [Google Scholar] [CrossRef]
- Covre, L.P.; Martins, R.F.; Devine, O.P.; Chambers, E.S.; Vukmanovic-Stejic, M.; Silva, J.A.; Dietze, R.; Rodrigues, R.R.; de Matos Guedes, H.L.; Falqueto, A.; et al. Circulating Senescent T Cells Are Linked to Systemic Inflammation and Lesion Size During Human Cutaneous Leishmaniasis. Front. Immunol. 2019, 9, 3001. [Google Scholar] [CrossRef]
- Kared, H.; Martelli, S.; Ng, T.P.; Pender, S.L.F.; Larbi, A. CD57 in Human Natural Killer Cells and T-Lymphocytes. Cancer Immunol. Immunother. 2016, 65, 441–452. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, C.A.; Nascimento, M.T.; Bacellar, O.; Carvalho, L.P.; Carvalho, E.M.; Cardoso, T.M. The Role of Senescent CD8+T Cells in the Pathogenesis of Disseminated Leishmaniasis. Pathogens 2024, 13, 460. https://doi.org/10.3390/pathogens13060460
Abreu CA, Nascimento MT, Bacellar O, Carvalho LP, Carvalho EM, Cardoso TM. The Role of Senescent CD8+T Cells in the Pathogenesis of Disseminated Leishmaniasis. Pathogens. 2024; 13(6):460. https://doi.org/10.3390/pathogens13060460
Chicago/Turabian StyleAbreu, Cayo A., Maurício Teixeira Nascimento, Olívia Bacellar, Lucas Pedreira Carvalho, Edgar Marcelino Carvalho, and Thiago Marconi Cardoso. 2024. "The Role of Senescent CD8+T Cells in the Pathogenesis of Disseminated Leishmaniasis" Pathogens 13, no. 6: 460. https://doi.org/10.3390/pathogens13060460
APA StyleAbreu, C. A., Nascimento, M. T., Bacellar, O., Carvalho, L. P., Carvalho, E. M., & Cardoso, T. M. (2024). The Role of Senescent CD8+T Cells in the Pathogenesis of Disseminated Leishmaniasis. Pathogens, 13(6), 460. https://doi.org/10.3390/pathogens13060460