Clustering of Gastrointestinal Microorganisms in Human Stool Samples from Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Type
2.2. Study Populations and Inclusion and Exclusion Criteria
2.3. Real-Time PCR Diagnostics
2.4. Statistical Assessment
- Native cluster analysis for all microorganisms eligible for the Ghanaian population.
- Cluster analysis for microorganisms already included in the Colombian study [16] but with Ghanaian data to inspect interactions within a comparable composition of pathogens.
- Direct comparison employing both the Ghanaian data and the original data from the Colombian study [16] using a tanglegram.
2.5. Ethics
3. Results
3.1. Summary of the Diagnostic Results
3.2. Cluster Calculations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PCR Targets | Forward Primer Sequences | Reverse Primer Sequences | Probe Sequences | Sources |
---|---|---|---|---|
Salmonella spp. (ttrC) | ATT-GTT-GAT-TCA-GGT-ACA-AAC | AAT-TAG-CCA-TGT-TGT-AAT-CTC | CAA-GTT-CAA-CGC-GCA-ATT-TA | Wiemer et al., 2011 [38] |
Shigella spp./enteroinvasive Escherichia coli (ipaH) | CAG-AAG-AGC-AGA-AGT-ATG-AG | CAG-TAC-CTC-GTC-AGT-CAG | ACA-GGT-GAT-GCG-TGA-GAC-TG | Wiemer et al., 2011 [38] |
Campylobacter jejuni (gyrA) | CTA-TAA-CAA-CTG-CAC-CTA-CTA-AT | AAG-TGT-AAG-CAC-ACA-AGG-TA | CTT-AAT-AGC-CGT-CAC-CCC-AC | Wiemer et al., 2011 [38] |
Yersinia spp. (ail) | GCA-TTA-ACG-AAT-ATG-TTA-GC | ATC-GAG-TTT-GGA-GTA-TTC-AT | CCG-CTT-CCA-AAT-TTT-GTC-AT | Wiemer et al., 2011 [38] |
enteropathogenic Escherichia coli (eae; EAF plasmid sequence) | CAT-TGA-TCA-GGA-TTT-TTC-TGG-TGA-TA; CAG-GGT-AAA-AGA-AAG-ATG-ATA-A | CTC-ATG-CGG-AAA-TAG-CCG-TTA; GCA-TGG-AAC-ATC-GAT-CAG-TGA | ATA-GTC-TCG-CCA-GTA-TTC-GCC-ACC-AAT-ACC; TGG-AGT-GAT-CGA-ACG-GGA-TCC-A | Hahn et al., 2017 [39] |
enterotoxigenic Escherichia coli (eltB, estB) | GCG-TTA-CTA-TCC-TCT-CTA-TG; TCC-CTC-AGG-ATG-CTA-AAC | TGA-TAT-TCC-GAA-CAT-AGT-TCT-GTA; CAA-CAA-AGC-AAC-AGG-TAC-ATA-CGT | TAG-ACT-GGG-GAG-CTC-CGT-GTG-C; ATA-GCA-CCC-GGT-ACA-AGC-AGG | Hahn et al., 2017 [39] |
enteroaggregative Escherichia coli (aatA) | CAA-TGT-ATA-GAA-ATC-CGC-TGT-T | CTG-TCA-GAT-AAA-ATC-TCG-AGA-GAA | CAT-GTT-CCT-GAG-AGT-GCA-ATC-CCA-G | Hahn et al., 2017 [39] |
Tropheryma whipplei (Dig 15) | TGT-TTT-GTA-CTG-CTT-GTA-ACA-GGA-TCT | TCC-TGC-TCT-ATC-CCT-CCT-ATC-ATC | AGA-GAT-ACA-TTT-GTG-TTA-GTT-GTT-ACA | Fenollar et al., 2008 [40] |
Entamoeba histolytica (SSU rRNA) | ATT-GTC-GTG-GCA-TCC-TAA-CTC-A | GCG-GAC-GGC-TCA-TTA-TAA-CA | TCA-TTG-AAT-GAA-TTG-GCC-ATT-T | Verweij et al., 2004 [41] |
Giardia duodenalis (SSU rRNA) | GAC-GGC-TCA-GGA-CAA-CGG-TT | TTG-CCA-GCG-GTG-TCC-G | CCC-GCG-GCG-GTC-CCT-GCT-AG | Verweij et al., 2004 [41] |
Cyclospora cayetanensis (SSU rRNA) | TAG-TAA-CCG-AAC-GGA-TCG-CAT-T | AAT-GCC-ACG-GTA-GGC-CAA-TA | CCG-GCG-ATA-GAT-CAT-TCA-AGT-TTC-TGA-CC | Köller et al., 2020 [42], modified from Verweij et al., 2003 [43] |
Cryptosporidium parvum (138-bp fragment inside of the C. parvum-specific 452-bp fragment) | CGC-TTC-TCT-AGC-CTT-TCA-TGA | CTT-CAC-GTG-TGT-TTG-CCA-AT | CCA-ATC-ACA-GAA-TCA-TCA-GAA-TCG-ACT-GGT-ATC | Verweij et al., 2004 [41] |
Cystoisospora belli (ITS-2) | ATA-TTC-CCT-GCA-GCA-TGT-CTG-TTT | CCA-CAC-GCG-TAT-TCC-AGA-GA | CAA-GTT-CTG-CTC-ACG-CGC-TTC-TGG | ten Hove et al., 2008 [44] |
Dientamoeba fragilis (5.8S rRNA) | CAA-CGG-ATG-TCT-TGG-CTC-TTT-A | TGC-ATT-CAA-AGA-TCG-AAC-TTA-TCA-C | CAA-TTC-TAG-CCG-CTT-AT | Verweij et al., 2007 [45] |
Blastocystis hominis (SSU rRNA) | GGT-CCG-GTG-AAC-ACT-TTG-GAT-TT | CCT-ACG-GAA-ACC-TTG-TTA-CGA-CTT-CA | TCG-TGT-AAA-TCT-TAC-CAT-TTA-GAG-GA | Stensvold et al., 2012 [46] |
Ascaris lumbricoides (ITS-1) | GTA-ATA-GCA-GTC-GGC-GGT-TTC-TT | GCC-CAA-CAT-GCC-ACC-TAT-TC | TTG-GCG-GAC-AAT-TGC-ATG-CGA-T | Basuni et al., 2011 [47] |
Ancylostoma spp. (ITS-2) | GAA-TGA-CAG-CAA-ACT-CGT-TGT-TG | ATA-CTA-GCC-ACT-GCC-GAA-ACG-T | ATC-GTT-TAC-CGA-CTT-TAG | Basuni et al., 2011 [47] |
Necator americanus (ITS-2) | CTG-TTT-GTC-GAA-CGG-TAC-TTG-C | ATA-ACA-GCG-TGC-ACA-TGT-TGC | CTG-TAC-TAC-GCA-TTG-TAT-AC | Basuni et al., 2011 [47] |
Strongyloides stercoralis (SSU rRNA) | GAA-TTC-CAA-GTA-AAC-GTA-AGT-CAT-TAG-C | TGC-CTC-TGG-ATA-TTG-CTC-AGT-TC | ACA-CAC-CGG-CCG-TCG-CTG-C | Basuni et al., 2011 [47] |
Taenia solium (ITS-1) | ATG-GAT-CAA-TCT-GGG-TGG-AGT-T | ATC-GCA-GGG-TAA-GAA-AAG-AAG-GT | TGG-TAC-TGC-TGT-GGC-GGC-GG | Praet et al., 2013 [48] |
Taenia saginata (ITS-1) | GCG-TCG-TCT-TTG-CGT-TAC-AC | TGA-CAC-AAC-CGC-GCT-CTG | CCA-CAG-CAC-CAG-CGA-CAG-CAG-CAA | Praet et al., 2013 [48] |
Schistosoma spp. (ITS-2) | GGT-CTA-GAT-GAC-TTG-ATY-GAG-ATG-CT | TCC-CGA-GCG-YGT-ATA-ATG-TCA-TTA | TGG-GTT-GTG-CTC-GAG-TCG-TGG-C | Obeng et al., 2008 [49] |
Trichuris trichiura (SSU rRNA) | TTG-AAA-CGA-CTT-GCT-CAT-CAA-CTT | CTG-ATT-CTC-CGT-TAA-CCG-TTG-TC | CGA-TGG-TAC-GCT-ACG-TGC-TTA-CCA-TGG | Kaisar et al., 2017 [50] |
Enterobius vermicularis (ITS-1) | CGG-TGT-AAT-TTT-GTT-GGT-GTC-TAT-G | TGG-CAG-CAT-TGC-AAA-CTA-ATG | TGT-GCC-AGT-CAA-CGC-CTA-AAC-CGT-C | Köller et al., 2000 [42] |
Hymenolepis nana (ITS-1) | CAT-TGT-GTA-CCA-AAT-TGA-TGA-TGA-GTA | CAA-CTG-ACA-GCA-TGT-TTC-GAT-ATG | CGT-GTG-CGC-CTC-TGG-CTT-ACC-G | Köller et al., 2000 [42] |
Microsporidia (SSU rRNA of Enterocytozoon bieneusi, Encephalcytozoon cuniculi, Encephalcytozoon hellem and Encephalcytozoon intestinalis) | CAC-CAG-GTT-GAT-TCT-GCC-TGA; TCC-GGA-GAG-GGA-GCC-TGA-G | GCT-TGC-CCT-CCA-ATT-GCT-TC; GAC-TTG-CCC-TCC-AAT-CAC-ATG; CCG-ACT-TGC-CCT-CCA-GTA-AA; CTT-GGC-CTC-CAA-TCA-ATC-TCG | TGG-CAG-CAG-GCG-CGA-AAC-TTG-T | Tanida et al., 2022 [51] |
Internal control assay parameter Phocid Herpes Virus (PhHV) sequence | GGG-CGA-ATC-ACA-GAT-TGA-ATC | GCG-GTT-CCA-AAC-GTA-CCA-A | TTT-TTA-TGT-GTC-CGC-CAC-CAT-CTG-GAT-C | Niesters, 2001 [52] |
References
- Mejia, R.; Vicuña, Y.; Broncano, N.; Sandoval, C.; Vaca, M.; Chico, M.; Cooper, P.J.; Nutman, T.B. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am. J. Trop. Med. Hyg. 2013, 88, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kabir, F.; Manneh, J.; Lertsethtakarn, P.; Begum, S.; Gratz, J.; Becker, S.M.; Operario, D.J.; Taniuchi, M.; Janaki, L.; et al. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: A multicentre study. Lancet Infect. Dis. 2014, 14, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Platts-Mills, J.A.; Gratz, J.; Mduma, E.; Svensen, E.; Amour, C.; Liu, J.; Maro, A.; Saidi, Q.; Swai, N.; Kumburu, H.; et al. Association between stool enteropathogen quantity and disease in Tanzanian children using TaqMan array cards: A nested case-control study. Am. J. Trop. Med. Hyg. 2014, 90, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Eibach, D.; Krumkamp, R.; Hahn, A.; Sarpong, N.; Adu-Sarkodie, Y.; Leva, A.; Käsmaier, J.; Panning, M.; May, J.; Tannich, E. Application of a multiplex PCR assay for the detection of gastrointestinal pathogens in a rural African setting. BMC Infect. Dis. 2016, 16, 150. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Kabayiza, J.C.; Elfving, K.; Nilsson, S.; Msellem, M.I.; Mårtensson, A.; Björkman, A.; Bergström, T.; Lindh, M. Coinfection with Enteric Pathogens in East African Children with Acute Gastroenteritis-Associations and Interpretations. Am. J. Trop. Med. Hyg. 2018, 98, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, B.; Ochieng, J.B.; Ikumapayi, U.N.; Toure, A.; Ahmed, D.; Li, S.; Panchalingam, S.; Levine, M.M.; Kotloff, K.; Rasko, D.A.; et al. Quantitative PCR for detection of Shigella improves ascertainment of Shigella burden in children with moderate-to-severe diarrhea in low-income countries. J. Clin. Microbiol. 2013, 51, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.E.; Elfving, K.; Shakely, D.; Nilsson, S.; Msellem, M.; Trollfors, B.; Mårtensson, A.; Björkman, A.; Lindh, M. Rapid Clearance and Frequent Reinfection With Enteric Pathogens Among Children With Acute Diarrhea in Zanzibar. Clin. Infect. Dis. 2017, 65, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Georges-Courbot, M.C.; Beraud-Cassel, A.M.; Gouandjika, I.; Georges, A.J. Prospective study of enteric Campylobacter infections in children from birth to 6 months in the Central African Republic. J. Clin. Microbiol. 1987, 25, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Bonham, C.T.; Pallett, S.J.C.; Holland, T.J. OP TRENTON 3: An analysis of primary care presentations to a deployed role 1 in support of a United Nation peacekeeping operation. BMJ Mil. Health 2021, 167, 310–315. [Google Scholar] [CrossRef]
- Girgis, N.M.; Gundra, U.M.; Loke, P. Immune regulation during helminth infections. PLoS Pathog. 2013, 9, e1003250. [Google Scholar] [CrossRef]
- Church, J.A.; Parker, E.P.; Kirkpatrick, B.D.; Grassly, N.C.; Prendergast, A.J. Interventions to improve oral vaccine performance: A systematic review and meta-analysis. Lancet Infect. Dis. 2019, 19, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, C.; Dicksved, J.; Engstrand, L.; Rautelin, H. Composition of human faecal microbiota in resistance to Campylobacter infection. Clin. Microbiol. Infect. 2016, 22, 61.e1–61.e8. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Curr. Top. Microbiol. Immunol. 2021, 431, 233–263. [Google Scholar] [PubMed]
- Li, Y.; Xia, S.; Jiang, X.; Feng, C.; Gong, S.; Ma, J.; Fang, Z.; Yin, J.; Yin, Y. Gut Microbiota and Diarrhea: An Updated Review. Front. Cell. Infect. Microbiol. 2021, 11, 625210. [Google Scholar] [CrossRef] [PubMed]
- Moyo, S.J.; Kommedal, Ø.; Blomberg, B.; Hanevik, K.; Tellevik, M.G.; Maselle, S.Y.; Langeland, N. Comprehensive Analysis of Prevalence, Epidemiologic Characteristics, and Clinical Characteristics of Monoinfection and Coinfection in Diarrheal Diseases in Children in Tanzania. Am. J. Epidemiol. 2017, 186, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, J.; Frickmann, H.; Hagen, R.M.; Concha, G.; Molitor, E.; Hoerauf, A.; Kann, S. Gastrointestinal Pathogens in Multi-Infected Individuals: A Cluster Analysis of Interaction. Microorganisms 2023, 11, 2642. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Cooper, P.; Gunka, K.; Rupnik, M.; Wetzel, D.; Zimmermann, O.; Groß, U. High prevalence of nontoxigenic Clostridium difficile isolated from hospitalized and non-hospitalized individuals in rural Ghana. Int. J. Med. Microbiol. 2016, 306, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.A.; Stark, K.; Mockenhaupt, F.P.; Reither, K.; Weitzel, T.; Ignatius, R.; Saad, E.; Seidu-Korkor, A.; Bienzle, U.; Schreier, E. Molecular characterization of enteric viral agents from children in northern region of Ghana. J. Med. Virol. 2008, 80, 1790–1798. [Google Scholar] [CrossRef]
- Akuffo, R.; Armah, G.; Clemens, M.; Kronmann, K.C.; Jones, A.H.; Agbenohevi, P.; Sagoe, K.; Puplampu, N.; Talla Nzussouo, N.; Ampofo, W.; et al. Prevalence of enteric infections among hospitalized patients in two referral hospitals in Ghana. BMC Res. Notes 2017, 10, 292. [Google Scholar] [CrossRef]
- Nakano, T.; Binka, F.N.; Afari, E.A.; Agbodaze, D.; Aryeetey, M.E.; Mingle, J.A.; Kamiya, H.; Sakurai, M. Survey of enteropathogenic agents in children with and without diarrhoea in Ghana. J. Trop. Med. Hyg. 1990, 93, 408–412. [Google Scholar]
- Frimpong, E.H.; Feglo, P.; Essel-Ahun, M.; Addy, P.A. Determination of diagnostic Widal titres in Kumasi, Ghana. West Afr. J. Med. 2000, 19, 34–38. [Google Scholar] [PubMed]
- Heinemann, M.; Strauchs, C.; Lütgehetmann, M.; Aepfelbacher, M.; Klupp, E.M.; Owusu-Dabo, E.; Rolling, T.; Cramer, J.P.; Vinnemeier, C.D. Polymicrobial enteric infections in African infants with diarrhoea-results from a longitudinal prospective case-control study. Clin. Microbiol. Infect. 2021, 27, 1792–1798. [Google Scholar] [CrossRef] [PubMed]
- Hori, H.; Akpedonu, P.; Armah, G.; Aryeetey, M.; Yartey, J.; Kamiya, H.; Sakurai, M. Enteric pathogens in severe forms of acute gastroenteritis in Ghanaian children. Acta Paediatr. Jpn. 1996, 38, 672–676. [Google Scholar] [CrossRef]
- Duedu, K.O.; Offei, G.; Codjoe, F.S.; Donkor, E.S. Multidrug Resistant Enteric Bacterial Pathogens in a Psychiatric Hospital in Ghana: Implications for Control of Nosocomial Infections. Int. J. Microbiol. 2017, 2017, 9509087. [Google Scholar] [CrossRef] [PubMed]
- Djie-Maletz, A.; Reither, K.; Danour, S.; Anyidoho, L.; Saad, E.; Danikuu, F.; Ziniel, P.; Weitzel, T.; Wagner, J.; Bienzle, U.; et al. High rate of resistance to locally used antibiotics among enteric bacteria from children in Northern Ghana. J. Antimicrob. Chemother. 2008, 61, 1315–1318. [Google Scholar] [CrossRef] [PubMed]
- Forson, A.O.; Adjei, D.N.; Olu-Taiwo, M.; Quarchie, M.N.; Asmah, H.R. Characterization of Campylobacter associated gastric enteritis among patients with Human Immunodeficiency Virus (HIV) in a hospital in Accra, Ghana. PLoS ONE 2020, 15, e0240242. [Google Scholar] [CrossRef] [PubMed]
- Konadu, E.; Essuman, M.A.; Amponsah, A.; Agroh, W.X.K.; Badu-Boateng, E.; Gbedema, S.Y.; Boakye, Y.D. Enteric Protozoan Parasitosis and Associated Factors among Patients with and without Diabetes Mellitus in a Teaching Hospital in Ghana. Int. J. Microbiol. 2023, 2023, 5569262. [Google Scholar] [CrossRef] [PubMed]
- Ofori, L.A.; Fosu, D.; Ofori, S.; Akenten, C.W.; Flieger, A.; Simon, S.; Jaeger, A.; Lamshöft, M.; May, J.; Obiri-Danso, K.; et al. Salmonella enterica in farm environments in the Ashanti Region of Ghana. BMC Microbiol. 2023, 23, 370. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.T.; Ayeh-Kumi, P.F.; Annang, A.K.; Owusu-Frimpong, I.; Niampoma, S.; Brown, C.A. Molecular epidemiology of Cryptosporidium species in Kpong and its environs, Ghana. PLoS ONE 2023, 18, e0281216. [Google Scholar] [CrossRef]
- Berendes, D.M.; Kirby, A.E.; Clennon, J.A.; Agbemabiese, C.; Ampofo, J.A.; Armah, G.E.; Baker, K.K.; Liu, P.; Reese, H.E.; Robb, K.A.; et al. Urban sanitation coverage and environmental fecal contamination: Links between the household and public environments of Accra, Ghana. PLoS ONE 2018, 13, e0199304. [Google Scholar] [CrossRef]
- Larbi, R.T.; Atiglo, D.Y.; Peterson, M.B.; Biney, A.A.E.; Dodoo, N.D.; Dodoo, F.N. Household food sources and diarrhoea incidence in poor urban communities, Accra Ghana. PLoS ONE 2021, 16, e0245466. [Google Scholar] [CrossRef]
- Yirenya-Tawiah, D.R.; Darkwa, A.; Dzodzomenyo, M. Environmental surveillance for Vibrio cholerae in selected households’ water storage systems in Accra Metropolitan Area (AMA) prior to the 2014 cholera outbreak in Accra, Ghana. Environ. Sci. Pollut. Res Int. 2018, 25, 28335–28343. [Google Scholar] [CrossRef]
- Dzotsi, E.K.; Dongdem, A.Z.; Boateng, G.; Antwi, L.; Owusu-Okyere, G.; Nartey, D.B.; Olu-Taiwo, M.; Adjabeng, M.J.; Amankwa, J.; Sarkodie, B.; et al. Surveillance of Bacterial Pathogens of Diarrhoea in Two Selected Sub Metros Within the Accra Metropolis. Ghana Med. J. 2015, 49, 65–71. [Google Scholar] [CrossRef]
- Boaheng, J.M.; Raimann, J.G.; Narh, P.; Johnson, S.; Donald, L.L.; Mati, H.K.; Port, F.K.; Levin, N.W. Evidence for long-term efficacy of a membrane filtration device in rural villages in Ghana. Sci. Rep. 2024, 14, 5271. [Google Scholar] [CrossRef]
- Feglo, P.K.; Frimpong, E.H.; Essel-Ahun, M. Salmonellae carrier status of food vendors in Kumasi, Ghana. East Afr. Med. J. 2004, 81, 358–361. [Google Scholar] [CrossRef]
- Eberhardt, K.A.; Sarfo, F.S.; Dompreh, A.; Kuffour, E.O.; Geldmacher, C.; Soltau, M.; Schachscheider, M.; Drexler, J.F.; Eis-Hübinger, A.M.; Häussinger, D.; et al. Helicobacter pylori Coinfection Is Associated With Decreased Markers of Immune Activation in ART-Naive HIV-Positive and in HIV-Negative Individuals in Ghana. Clin. Infect. Dis. 2015, 61, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Dalmaijer, E.S.; Nord, C.L.; Astle, D.E. Statistical power for cluster analysis. BMC Bioinform. 2022, 23, 205. [Google Scholar] [CrossRef] [PubMed]
- Wiemer, D.; Loderstaedt, U.; von Wulffen, H.; Priesnitz, S.; Fischer, M.; Tannich, E.; Hagen, R.M. Real-time multiplex PCR for simultaneous detection of Campylobacter jejuni, Salmonella, Shigella and Yersinia species in fecal samples. Int. J. Med. Microbiol. 2011, 301, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Luetgehetmann, M.; Landt, O.; Schwarz, N.G.; Frickmann, H. Comparison of one commercial and two in-house TaqMan multiplex real-time PCR assays for detection of enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli. Trop. Med. Int. Health 2017, 22, 1371–1376. [Google Scholar] [CrossRef]
- Fenollar, F.; Laouira, S.; Lepidi, H.; Rolain, J.M.; Raoult, D. Value of Tropheryma whipplei quantitative polymerase chain reaction assay for the diagnosis of Whipple disease: Usefulness of saliva and stool specimens for first-line screening. Clin. Infect. Dis. 2008, 47, 659–667. [Google Scholar] [CrossRef]
- Verweij, J.J.; Blangé, R.A.; Templeton, K.; Schinkel, J.; Brienen, E.A.; van Rooyen, M.A.; van Lieshout, L.; Polderman, A.M. Simultaneous detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in fecal samples by using multiplex real-time PCR. J. Clin. Microbiol. 2004, 42, 1220–1223. [Google Scholar] [CrossRef]
- Köller, T.; Hahn, A.; Altangerel, E.; Verweij, J.J.; Landt, O.; Kann, S.; Dekker, D.; May, J.; Loderstädt, U.; Podbielski, A.; et al. Comparison of commercial and in-house real-time PCR platforms for 15 parasites and microsporidia in human stool samples without a gold standard. Acta Trop. 2020, 207, 105516. [Google Scholar] [CrossRef] [PubMed]
- Verweij, J.J.; Laeijendecker, D.; Brienen, E.A.; van Lieshout, L.; Polderman, A.M. Detection of Cyclospora cayetanensis in travellers returning from the tropics and subtropics using microscopy and real-time PCR. Int. J. Med. Microbiol. 2003, 293, 199–202. [Google Scholar] [CrossRef] [PubMed]
- ten Hove, R.J.; van Lieshout, L.; Brienen, E.A.; Perez, M.A.; Verweij, J.J. Real-time polymerase chain reaction for detection of Isospora belli in stool samples. Diagn. Microbiol. Infect. Dis. 2008, 61, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Verweij, J.J.; Mulder, B.; Poell, B.; van Middelkoop, D.; Brienen, E.A.; van Lieshout, L. Real-time PCR for the detection of Dientamoeba fragilis in fecal samples. Mol. Cell. Probes 2007, 21, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Stensvold, C.R.; Ahmed, U.N.; Andersen, L.O.; Nielsen, H.V. Development and evaluation of a genus-specific, probe-based, internal-process-controlled real-time PCR assay for sensitive and specific detection of Blastocystis spp. J. Clin. Microbiol. 2012, 50, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- Basuni, M.; Muhi, J.; Othman, N.; Verweij, J.J.; Ahmad, M.; Miswan, N.; Rahumatullah, A.; Aziz, F.A.; Zainudin, N.S.; Noordin, R. A pentaplex real-time polymerase chain reaction assay for detection of four species of soil-transmitted helminths. Am. J. Trop. Med. Hyg. 2011, 84, 338–343. [Google Scholar] [CrossRef]
- Praet, N.; Verweij, J.J.; Mwape, K.E.; Phiri, I.K.; Muma, J.B.; Zulu, G.; van Lieshout, L.; Rodriguez-Hidalgo, R.; Benitez-Ortiz, W.; Dorny, P.; et al. Bayesian modelling to estimate the test characteristics of coprology, coproantigen ELISA and a novel real-time PCR for the diagnosis of taeniasis. Trop. Med. Int. Health 2013, 18, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Obeng, B.B.; Aryeetey, Y.A.; de Dood, C.J.; Amoah, A.S.; Larbi, I.A.; Deelder, A.M.; Yazdanbakhsh, M.; Hartgers, F.C.; Boakye, D.A.; Verweij, J.J.; et al. Application of a circulating-cathodic-antigen (CCA) strip test and real-time PCR, in comparison with microscopy, for the detection of Schistosoma haematobium in urine samples from Ghana. Ann. Trop. Med. Parasitol. 2008, 102, 625–633. [Google Scholar] [CrossRef]
- Kaisar, M.M.M.; Brienen, E.A.T.; Djuardi, Y.; Sartono, E.; Yazdanbakhsh, M.; Verweij, J.J.; Supali, T.; VAN Lieshout, L. Improved diagnosis of Trichuris trichiura by using a bead-beating procedure on ethanol preserved stool samples prior to DNA isolation and the performance of multiplex real-time PCR for intestinal parasites. Parasitology 2017, 144, 965–974. [Google Scholar] [CrossRef]
- Tanida, K.; Hahn, A.; Eberhardt, K.A.; Tannich, E.; Landt, O.; Kann, S.; Feldt, T.; Sarfo, F.S.; Di Cristanziano, V.; Frickmann, H.; et al. Comparative assessment of in-house real-time PCRs targeting enteric disease-associated microsporidia in human stool samples. Pathogens 2022, 10, 656, Correction in Pathogens 2022, 11, 256. [Google Scholar] [CrossRef]
- Niesters, H.G. Quantitation of viral load using real-time amplification techniques. Methods 2001, 25, 419–429. [Google Scholar] [CrossRef]
- Ismail Bin, M.; Dauda, U. Standardization and Its Effects on K-Means Clustering Algorithm. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 17. [Google Scholar]
- Grosswendt, A.; Roeglin, H. Improved analysis of complete-linkage clustering. Algorithmica 2017, 78, 1131–1150. [Google Scholar] [CrossRef]
- Hofmans, J.; Ceulemans, E.; Steinley, D.; Van Mechelen, I. On the added value of bootstrap analysis for K-means clustering. J. Classif. 2015, 32, 268–284. [Google Scholar] [CrossRef]
- Hennig, C. Cluster-wise assessment of cluster stability. Comput. Stat. Data Anal. 2007, 52, 258–271. [Google Scholar] [CrossRef]
- Galili, T. dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef]
- Saraçli, S.; Doğan, N.; Doğan, İ. Comparison of hierarchical cluster analysis methods by cophenetic correlation. J. Inequalities Appl. 2013, 2013, 203. [Google Scholar] [CrossRef]
- Nguyen, N.; Chawshin, K.; Berg, C.F.; Varagnolo, D. Shuffle & untangle: Novel untangle methods for solving the tanglegram layout problem. Bioinform. Adv. 2022, 2, vbac014. [Google Scholar]
- Akenten, C.W.; Weinreich, F.; Paintsil, E.K.; Amuasi, J.; Fosu, D.; Loderstädt, U.; May, J.; Frickmann, H.; Dekker, D. Intestinal Helminth Infections in Ghanaian Children from the Ashanti Region between 2007 and 2008—A Retrospective Cross-Sectional Real-Time PCR-Based Assessment. Trop. Med. Infect. Dis. 2022, 7, 374. [Google Scholar] [CrossRef]
- Méndez, O.C.; Szmulewicz, G.; Menghi, C.; Torres, S.; González, G.; Gatta, C. Comparación de índices de infestaciones por enteroparásitos entre poblaciones HIV positivas y negativas [Comparison of intestinal parasite infestation indexes among HIV positive and negative populations]. Medicina (B Aires) 1994, 54, 307–310. [Google Scholar] [PubMed]
- Machdar, E.; van der Stehen, N.P.; Raschid-Sally, L.; Lens, P.N. Application of Quantitative Microbial Risk Assessment to analyze the public health risk from poor drinking water quality in a low income area in Accra, Ghana. Sci. Total Environ. 2013, 449, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Appiah-Twum, F.; Akorli, J.; Okyere, L.; Sagoe, K.; Osabutey, D.; Cappello, M.; Wilson, M.D. The effect of single dose albendazole (400 mg) treatment on the human gut microbiome of hookworm-infected Ghanaian individuals. Sci. Rep. 2023, 13, 11302. [Google Scholar] [CrossRef] [PubMed]
- Agbemavor, W.S.K.; Buys, E.M. Dynamic Interactions between Diarrhoeagenic Enteroaggregative Escherichia coli and Presumptive Probiotic Bacteria: Implications for Gastrointestinal Health. Microorganisms 2023, 11, 2942. [Google Scholar] [CrossRef]
- Venkatachalam, B.; Apple, J.; John, K.S.; Gusfield, D. Untangling tanglegrams: Comparing trees by their drawings. IEEE/ACM Trans. Comput. Biol. Bioinform. 2010, 7, 588–597. [Google Scholar] [CrossRef]
Parameter | Total Ghanaian Population (1569 Individuals), n (%), Mean Ct Value (±SD) | HIV-Positive Subpopulation (875 Individuals), n (%), Mean Ct Value (±SD) | Control Individuals for the HIV-Positive Subpopulation (30 Individuals), n (%), Mean Ct Value (±SD) | Subpopulation of Ghanaian Children < 2 Years of Age (664 Individuals), n (%), Mean Ct Value (±SD) |
---|---|---|---|---|
Salmonella spp. (ttrC sequence) | 119 (7.6%), 29.8 (±3.0) | 96 (10.7%), 29.6 (±3.1) | 3 (10%), 28.0 (±2.0) | 23 (3.5%), 31.0 (±2.1) |
Shigella spp./enteroinvasive Escherichia coli (EIEC, ipaH sequence) | 261 (16.7%), 27.6 (±5.8), | 196 (21.8%), 26.7 (±6.0) | 2 (6.7%), 31.5 (±0.7) | 65 (9.8%), 30.3 (±4.2) |
Campylobacter jejuni (gyrA sequence) | 49 (3.1%), 29.6 (±6.2) | 19 (2.1%), 28.1 (±6.4) | 2 (6.7%), 32.5 (±6.4) | 30 (4.5%), 30.6 (±5.9) |
Yersinia spp. (ail sequence) | 20 (1.3%), 34.5 (±2.7) | 1 (0.1%) 36.0 | 0 (0%) | 19 (2.9%) 34.4 (±2.7) |
Escherichia coli (EPEC, based on EAF plasmid and/or eae sequence) | 1012 (64.5%), 28.1 (±4.7) | 605 (67.1%), 27.8 (±4.83) | 28 (93.3%), 28.8 (±4.2) | 407 (61.6%), 28.8 (±4.4) |
enterotoxigenic Escherichia coli (ETEC, based on ST and/or LT sequences) | 578 (37.9%), 30.4 (±4.7) | 327 (36.3%), 30.4 (±4.2) | 10 (33.3%), 29.8 (±5.9) | 251 (38.0%), 30.3 (±5.2) |
enteroaggregative Escherichia coli (EAEC, aatA sequence) | 1009 (64.6%), 28.9 (±5.3) | 636 (70.6%), 28.2 (±5.2) | 17 (56.7%), 29.8 (±2.5) | 373 (56.4%), 29.9 (±5.5) |
Tropheryma whipplei (Dig 15 sequence) | 140 (9%), 34.9 (±2.1) | 83 (9.2%), 35.3 (±2.2) | 3 (10%), 37.7 (±0.6) | 57 (8.6%), 34.3 (±1.8) |
Entamoeba histolytica (SSU rRNA sequence) | 66 (4.2%), 36.8 (±5.6) | 54 (6.0%), 37.1 (±6.3) | 1 (3.3%), 38.0, (-) | 12 (1.8%), 35.5 (±7.2) |
Giardia duodenalis (SSU rRNA sequence) | 190 (12.2%), 30.8 (±4.5) | 95 (10.5%), 30.4 (±4.2) | 4 (13.3%), 29.5 (±5.7) | 95 (14.4%), 32.4 (±3.5) |
Cyclospora cayetanensis (SSU rRNA sequence) | 71 (4.5%), 34.7 (±4.3) | 63 (7.0%), 34.4 (±4.4) | 1 (3.3%), 39.0, (-) | 8 (1.2%), 36.9 (±2.0) |
Cryptosporidium parvum (138-bp fragment inside of the C. parvum-specific 452-bp fragment) | 71 (4.5%), 31.6 (±4.2) | 56 (6.2%), 31.0 (±4.3) | 0 (0%), n.a. | 15 (2.3%), 33.8 (±2.5) |
Cystoisospora belli (ITS-2 sequence) | 34 (2.2%), 30.9 (±4.3) | 33 (3.8%), 30.8 (±4.3) | 0 (0%), n.a. | 1 (0.2%), 35.0 (-) |
Dientamoeba fragilis (5.8S rRNA sequence) | 13 (0.8%), 32.7 (±5.7) | 2 (0.2%), 39.0 (±4.2) | 1 (3.3%), 36.0 (-) | 11 (1.7%), 31.5 (±5.3) |
Blastocystis hominis (SSU rRNA sequence) | 356 (22.7%), 32.8 (±6.2) | 106 (11.8%), 36.1 (±2.6) | 3 (10%), 37 (±2.0) | 250 (37.7%), 31.4 (±6.7) |
Ascaris lumbricoides (ITS-1 sequence) | 3 (0.2%), 25.7 (±3.5) | 1 (0.1%), 22.0 (-) | 0 (0%), n.a. | 2 (0.3%), 27.5 (±2.1) |
Necator americanus (ITS-2 sequence) | 6 (0.4%), 36.2 (±2.9) | 2 (0.7%), 36.2 (±2.9) | 3 (10.0%), 37.3 (±2.1) | 0 (0%), n.a. |
Strongyloides stercoralis (SSU rRNA sequence) | 18 (1.2%), 28.8 (±3.7) | 17 (1.9%), 28.7 (±3.8) | 0 (0%), n.a. | 1 (0.2%), 31.0 (-) |
Taenis solium (ITS-1 sequence) | 6 (0.4%), 36.0 (±5.3) | 5 (0.6%), 38.0 (±2.3) | 0 (0%), n.a. | 1 (0.2%), 26.0 (-) |
Taenia saginata (ITS-1 sequence) | 14 (0.9%), 36.5 (±3.0) | 14 (1.6%), 36.5 (±3.0) | 0 (0%), n.a. | 0 (%), n.a. |
Schistosoma spp. (ITS-2 sequence) | 33 (2.1%), 28.3 (±6.2) | 29 (2.8%), 25.0 (±5.6) | 0 (0%), n.a. | 8 (1.2%), 30.1 (±6.8) |
Hymenolepis nana (ITS-1 sequence) | 1 (0.1%), 35.0 (-) | 0 (0%), n.a. | 0 (0%), n.a. | 1 (0.2%), 35.0 (-) |
microsporidia (SSU rRNA sequence of Enterocytozoon bieneusi, Encephalcytozoon cuniculi, Encephalcytozoon hellem, and Encephalcytozoon intestinalis) | 128 (8.2%), 28.2 (±5.9) | 67 (7.4%), 25.5 (±5.4) | 0 (0%), n.a. | 61 (9.2%), 31.1 (±5.1) |
Total Ghanaian Population | Subpopulation of HIV-Positive Individuals | Subpopulation of Children < 2 Years of Age | |
---|---|---|---|
Number of included microbial parameters | n = 19 | n = 17 | n = 14 |
Details regarding included microbial parameters | Dientamoeba fragilis, Yersinia spp., Strongyloides stercoralis, Campylobacter jejuni, Schistosoma spp., Cystoisospora belli, Entamoeba histolytica, Cryptosporidium parvum, Cyclospora cayetanensis, microsporidia, Tropheryma whipplei, Giardia duodenalis, Salmonella spp., Blastocystis hominis, Shigella spp./enteroinvasive Escherichia coli, enterotoxigenic Escherichia coli, enteropathogenic Escherichia coli, and enteroaggregative Escherichia coli | Taenia saginata, Strongyloides stercoralis, Campylobacter jejuni, Schistosoma spp., Cystoisospora belli, Entamoeba histolytica, Cyclospora cayetanensis, Cryptosporidium parvum, microsporidia, Tropheryma whipplei, Salmonella spp., Giardia duodenalis, Blastocystis hominis, Shigella spp./enteroinvasive Escherichia coli, enterotoxigenic Escherichia coli, enteropathogenic Escherichia coli, enteroaggregative Escherichia coli | Dientamoeba fragilis, Entamoeba histolytica, Cryptosporidium parvum, Yersinia spp., Salmonella spp., Campylobacter jejuni, Tropheryma whipplei, microsporidia, Shigella spp./enteroinvasive Escherichia coli, Giardia duodenalis, Blastocystis hominis, enterotoxigenic Escherichia coli, enteroaggregative Escherichia coli, enteropathogenic Escherichia coli |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Backhaus, J.; Kann, S.; Hahn, A.; Weinreich, F.; Blohm, M.; Tanida, K.; Feldt, T.; Sarfo, F.S.; Di Cristanziano, V.; Loderstädt, U.; et al. Clustering of Gastrointestinal Microorganisms in Human Stool Samples from Ghana. Pathogens 2024, 13, 583. https://doi.org/10.3390/pathogens13070583
Backhaus J, Kann S, Hahn A, Weinreich F, Blohm M, Tanida K, Feldt T, Sarfo FS, Di Cristanziano V, Loderstädt U, et al. Clustering of Gastrointestinal Microorganisms in Human Stool Samples from Ghana. Pathogens. 2024; 13(7):583. https://doi.org/10.3390/pathogens13070583
Chicago/Turabian StyleBackhaus, Joy, Simone Kann, Andreas Hahn, Felix Weinreich, Martin Blohm, Konstantin Tanida, Torsten Feldt, Fred Stephen Sarfo, Veronica Di Cristanziano, Ulrike Loderstädt, and et al. 2024. "Clustering of Gastrointestinal Microorganisms in Human Stool Samples from Ghana" Pathogens 13, no. 7: 583. https://doi.org/10.3390/pathogens13070583
APA StyleBackhaus, J., Kann, S., Hahn, A., Weinreich, F., Blohm, M., Tanida, K., Feldt, T., Sarfo, F. S., Di Cristanziano, V., Loderstädt, U., Ehrhardt, S., Schoppen, S., Tagbor, H., Frickmann, H., & Eberhardt, K. A. (2024). Clustering of Gastrointestinal Microorganisms in Human Stool Samples from Ghana. Pathogens, 13(7), 583. https://doi.org/10.3390/pathogens13070583