A New Ex Vivo Model Based on Mouse Retinal Explants for the Study of Ocular Toxoplasmosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Host Cells Culture Conditions and T. gondii Maintenance
2.2. Retinal Explants
2.3. Retinal Explant Infection with T. gondii
2.4. Immunofluorescence
2.5. Western Blotting
2.6. Statistics
3. Results
3.1. Infection of Retinal Explants by T. gondii: Time Course and Microglia Activation
3.2. Effects of T. gondii Infection on Inflammation and Oxidative Stress
3.3. Effects of T. gondii Infection on Retinal Cell Death
4. Discussion
4.1. Comparison with Previous Models of OT
4.2. Characterization of the Ex Vivo Mouse Model
4.3. Advantages and Shortcomings of the Proposed Model
4.4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bodaghi, B.; Touitou, V.; Fardeau, C.; Paris, L.; LeHoang, P. Toxoplasmosis: New challenges for an old disease. Eye 2012, 26, 241–244. [Google Scholar] [CrossRef]
- Petersen, E.; Kijlstra, A.; Stanford, M. Epidemiology of ocular toxoplasmosis. Ocul. Immunol. Inflamm. 2012, 20, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Furtado, J.M.; Winthrop, K.L.; Butler, N.J.; Smith, J.R. Ocular toxoplasmosis I: Parasitology, epidemiology and public health. Clin. Exp. Ophthalmol. 2013, 41, 82–94. [Google Scholar] [CrossRef]
- Rodriguez Fernandez, V.; Casini, G.; Bruschi, F. Ocular Toxoplasmosis: Mechanisms of Retinal Infection and Experimental Models. Parasitologia 2021, 1, 50–60. [Google Scholar] [CrossRef]
- Butler, N.J.; Furtado, J.M.; Winthrop, K.L.; Smith, J.R. Ocular toxoplasmosis II: Clinical features, pathology and management. Clin. Exp. Ophthalmol. 2013, 41, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Dukaczewska, A.; Tedesco, R.; Liesenfeld, O. Experimental Models of Ocular Infection with Toxoplasma gondii. Eur. J. Microbiol. Immunol. 2015, 5, 293–305. [Google Scholar] [CrossRef]
- Moraes, A.M.; Pessôa, C.N.; Vommaro, R.C.; De Souza, W.; de Mello, F.G.; Hokoç, J.N. Cultured embryonic retina systems as a model for the study of underlying mechanisms of Toxoplasma gondii infection. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2813–2821. [Google Scholar] [CrossRef] [PubMed]
- Furtado, J.M.; Ashander, L.M.; Mohs, K.; Chipps, T.J.; Appukuttan, B.; Smith, J.R. Toxoplasma gondii migration within and infection of human retina. PLoS ONE 2013, 8, 21. [Google Scholar] [CrossRef]
- Amato, R.; Biagioni, M.; Cammalleri, M.; Dal Monte, M.; Casini, G. VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3066–3076. [Google Scholar] [CrossRef]
- Amato, R.; Catalani, E.; Dal Monte, M.; Cammalleri, M.; Di Renzo, I.; Perrotta, C.; Cervia, D.; Casini, G. Autophagy-mediated neuroprotection induced by octreotide in an ex vivo model of early diabetic retinopathy. Pharmacol. Res. 2018, 128, 167–178. [Google Scholar] [CrossRef]
- Amato, R.; Giannaccini, M.; Dal Monte, M.; Cammalleri, M.; Pini, A.; Raffa, V.; Lulli, M.; Casini, G. Association of the Somatostatin Analog Octreotide With Magnetic Nanoparticles for Intraocular Delivery: A Possible Approach for the Treatment of Diabetic Retinopathy. Front. Bioeng. Biotechnol. 2020, 8, 144. [Google Scholar] [CrossRef]
- Amato, R.; Rossino, M.G.; Cammalleri, M.; Locri, F.; Pucci, L.; Dal Monte, M.; Casini, G. Lisosan G Protects the Retina from Neurovascular Damage in Experimental Diabetic Retinopathy. Nutrients 2018, 10, 1932. [Google Scholar] [CrossRef]
- Rossino, M.G.; Amato, R.; Amadio, M.; Rosini, M.; Basagni, F.; Cammalleri, M.; Dal Monte, M.; Casini, G. A Nature-Inspired Nrf2 Activator Protects Retinal Explants from Oxidative Stress and Neurodegeneration. Antioxidants 2021, 10, 1296. [Google Scholar] [CrossRef]
- Rossino, M.G.; Lulli, M.; Amato, R.; Cammalleri, M.; Monte, M.D.; Casini, G. Oxidative Stress Induces a VEGF Autocrine Loop in the Retina: Relevance for Diabetic Retinopathy. Cells 2020, 9, 1452. [Google Scholar] [CrossRef]
- Saadatnia, G.; Haj Ghani, H.; Khoo, B.Y.; Maimunah, A.; Rahmah, N. Optimization of Toxoplasma gondii cultivation in VERO cell line. Trop. Biomed. 2010, 27, 125–130. [Google Scholar]
- Guo, L.; Choi, S.; Bikkannavar, P.; Cordeiro, M.F. Microglia: Key Players in Retinal Ageing and Neurodegeneration. Front. Cell Neurosci. 2022, 16, 804782. [Google Scholar] [CrossRef] [PubMed]
- de Araujo-Silva, C.A.; Peclat-Araujo, M.R.; de Souza, W.; Vommaro, R.C. An alternative method to establish an early acute ocular toxoplasmosis model for experimental tests. Int. Ophthalmol. 2024, 44, 73. [Google Scholar] [CrossRef] [PubMed]
- Greigert, V.; Bittich-Fahmi, F.; Pfaff, A.W. Pathophysiology of ocular toxoplasmosis: Facts and open questions. PLoS Negl. Trop. Dis. 2020, 14, e0008905. [Google Scholar] [CrossRef]
- Blader, I.J.; Saeij, J.P. Communication between Toxoplasma gondii and its host: Impact on parasite growth, development, immune evasion, and virulence. Apmis 2009, 117, 458–476. [Google Scholar] [CrossRef] [PubMed]
- Djurković-Djaković, O.; Nikolić, A.; Bobić, B.; Klun, I.; Aleksić, A. Stage conversion of Toxoplasma gondii RH parasites in mice by treatment with atovaquone and pyrrolidine dithiocarbamate. Microbes Infect. 2005, 7, 49–54. [Google Scholar] [CrossRef]
- Sokol, S.L.; Primack, A.S.; Nair, S.C.; Wong, Z.S.; Tembo, M.; Verma, S.K.; Cerqueira-Cezar, C.K.; Dubey, J.P.; Boyle, J.P. Dissection of the in vitro developmental program of Hammondia hammondi reveals a link between stress sensitivity and life cycle flexibility in Toxoplasma gondii. Elife 2018, 22, 36491. [Google Scholar] [CrossRef]
- Song, H.B.; Jung, B.K.; Kim, J.H.; Lee, Y.H.; Choi, M.H. Investigation of tissue cysts in the retina in a mouse model of ocular toxoplasmosis: Distribution and interaction with glial cells. Parasitol. Res. 2018, 117, 2597–2605. [Google Scholar] [CrossRef] [PubMed]
- Kakita, H.; Aoyama, M.; Nagaya, Y.; Asai, H.; Hussein, M.H.; Suzuki, M.; Kato, S.; Saitoh, S.; Asai, K. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production. Toxicol. Appl. Pharmacol. 2013, 268, 99–105. [Google Scholar] [CrossRef]
- Scheiblich, H.; Bicker, G. Nitric oxide regulates antagonistically phagocytic and neurite outgrowth inhibiting capacities of microglia. Dev. Neurobiol. 2016, 76, 566–584. [Google Scholar] [CrossRef] [PubMed]
- Campagno, K.E.; Lu, W.; Jassim, A.H.; Albalawi, F.; Cenaj, A.; Tso, H.Y.; Clark, S.P.; Sripinun, P.; Gómez, N.M.; Mitchell, C.H. Rapid morphologic changes to microglial cells and upregulation of mixed microglial activation state markers induced by P2X7 receptor stimulation and increased intraocular pressure. J. Neuroinflamm. 2021, 18, 217. [Google Scholar] [CrossRef]
- Harun-Or-Rashid, M.; Inman, D.M. Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. J. Neuroinflamm. 2018, 15, 313. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, C.; Zhang, J.; Xu, Y.; Liu, K.; Luo, D.; Qiu, Q.; Xu, G.T. An in vitro cell model to study microglia activation in diabetic retinopathy. Cell Biol. Int. 2022, 46, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Toda, N.; Nakanishi-Toda, M. Nitric oxide: Ocular blood flow, glaucoma, and diabetic retinopathy. Prog. Retin. Eye Res. 2007, 26, 205–238. [Google Scholar] [CrossRef]
- Fulton, D.; Gratton, J.P.; McCabe, T.J.; Fontana, J.; Fujio, Y.; Walsh, K.; Franke, T.F.; Papapetropoulos, A.; Sessa, W.C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999, 399, 597–601. [Google Scholar] [CrossRef]
- Ninchoji, T.; Love, D.T.; Smith, R.O.; Hedlund, M.; Vestweber, D.; Sessa, W.C.; Claesson-Welsh, L. eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin. Elife 2021, 28, 64944. [Google Scholar] [CrossRef]
- Cheon, E.W.; Park, C.H.; Kang, S.S.; Cho, G.J.; Yoo, J.M.; Song, J.K.; Choi, W.S. Change in endothelial nitric oxide synthase in the rat retina following transient ischemia. Neuroreport 2003, 14, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 2, 28. [Google Scholar]
- Lyons, R.E.; Anthony, J.P.; Ferguson, D.J.; Byrne, N.; Alexander, J.; Roberts, F.; Roberts, C.W. Immunological studies of chronic ocular toxoplasmosis: Up-regulation of major histocompatibility complex class I and transforming growth factor beta and a protective role for interleukin-6. Infect. Immun. 2001, 69, 2589–2595. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.M.; Laplace, D.; Takvorian, P.M.; Tanowitz, H.B.; Cali, A.; Wittner, M. A cell culture system for study of the development of Toxoplasma gondii bradyzoites. J. Eukaryot. Microbiol. 1995, 42, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Drankowska, J.; Kos, M.; Kościuk, A.; Marzęda, P.; Boguszewska-Czubara, A.; Tylus, M.; Święch-Zubilewicz, A. MMP targeting in the battle for vision: Recent developments and future prospects in the treatment of diabetic retinopathy. Life Sci. 2019, 229, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.F.; Pan, K.H.; Cherng, J.Y. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int. J. Mol. Sci. 2015, 16, 28800–28811. [Google Scholar] [CrossRef] [PubMed]
- Schuindt, S.H.; Oliveira, B.C.; Pimentel, P.M.; Resende, T.L.; Retamal, C.A.; DaMatta, R.A.; Seipel, D.; Arnholdt, A.C. Secretion of multi-protein migratory complex induced by Toxoplasma gondii infection in macrophages involves the uPA/uPAR activation system. Vet. Parasitol. 2012, 186, 207–215. [Google Scholar] [CrossRef]
- Seipel, D.; Oliveira, B.C.; Resende, T.L.; Schuindt, S.H.; Pimentel, P.M.; Kanashiro, M.M.; Arnholdt, A.C. Toxoplasma gondii infection positively modulates the macrophages migratory molecular complex by increasing matrix metalloproteinases, CD44 and alpha v beta 3 integrin. Vet. Parasitol. 2010, 169, 312–319. [Google Scholar] [CrossRef]
- Böhm, E.W.; Buonfiglio, F.; Voigt, A.M.; Bachmann, P.; Safi, T.; Pfeiffer, N.; Gericke, A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox. Biol. 2023, 68, 18. [Google Scholar] [CrossRef]
- Pompella, A.; Romani, A.; Benedetti, A.; Comporti, M. Loss of membrane protein thiols and lipid peroxidation in allyl alcohol hepatotoxicity. Biochem. Pharmacol. 1991, 41, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Zarkovic, N. 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Mol. Aspects Med. 2003, 24, 281–291. [Google Scholar] [CrossRef]
- Pompella, A.; Dominici, S.; Frank, J.; Biesalski, H.K. Indirect immunofluorescence detection of protein-bound 4-hydroxynonenal in tissue sections and isolated cells. Methods Mol. Biol. 2002, 196, 41–46. [Google Scholar]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef]
- Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature 2015, 517, 311–320. [Google Scholar] [CrossRef]
- Kroemer, G.; El-Deiry, W.S.; Golstein, P.; Peter, M.E.; Vaux, D.; Vandenabeele, P.; Zhivotovsky, B.; Blagosklonny, M.V.; Malorni, W.; Knight, R.A.; et al. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2005, 2, 1463–1467. [Google Scholar] [CrossRef]
- Fiers, W.; Beyaert, R.; Declercq, W.; Vandenabeele, P. More than one way to die: Apoptosis, necrosis and reactive oxygen damage. Oncogene 1999, 18, 7719–7730. [Google Scholar] [CrossRef]
- Morgan, M.J.; Kim, Y.S. Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp. Mol. Med. 2022, 54, 1695–1704. [Google Scholar] [CrossRef]
Antigen | Host Species | Mono/Polyclonal | Dilution | Source | Cat. No |
---|---|---|---|---|---|
T. gondii * | Goat | Polyclonal | 1:100 | Thermo Fisher Scientific, Waltham, MA, USA | PA1-7256 |
Iba1 *† | Rabbit | Monoclonal | 1:1000 | Abcam, Cambridge, UK | ab178846 |
iNOS † | Rabbit | Monoclonal | 1:200 | Abcam | ab178945 |
eNOS † | Rabbit | Polyclonal | 1:200 | Santa Cruz Biotechnology, Dallas, TX, USA | sc-654 |
MMP-2 † | Rabbit | Polyclonal | 1:200 | Santa Cruz Biotechnology | sc-10736 |
4-HNE † | Rabbit | Polyclonal | 1:100 | Kindly provided by Alfonso Pompella, University of Pisa | Not applicable |
RIPK1 † | Rabbit | Polyclonal | 1:100 | Bio-Techne, Minneapolis, MA, USA | 77077 |
RIPK3 † | Rabbit | Polyclonal | 1:200 | Bio-Techne | 77299 |
Active caspase-3 | Rabbit | Polyclonal | 1:500 | Cell Signaling Technology, Danvers, MA, USA | 9664 |
Antigen | Host Species | Mono/Polyclonal | Dilution | Source | Cat. No |
---|---|---|---|---|---|
β-actin | Mouse | Monoclonal | 1:2500 | Merck Sigma-Aldrich, Darmstadt, Germany | A2228 |
NF-kB p65 † | Rabbit | Polyclonal | 1:1000 | Abcam, Cambridge, UK | ab16502 |
pNF-kB p65 † | Rabbit | Polyclonal | 1:100 | Santa Cruz Biotechnology, Dallas, TX, USA | sc-33020 |
IL-6 † | Mouse | Monoclonal | 1:3000 | Santa Cruz | sc-57315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez Fernandez, V.; Amato, R.; Piaggi, S.; Pinto, B.; Casini, G.; Bruschi, F. A New Ex Vivo Model Based on Mouse Retinal Explants for the Study of Ocular Toxoplasmosis. Pathogens 2024, 13, 701. https://doi.org/10.3390/pathogens13080701
Rodriguez Fernandez V, Amato R, Piaggi S, Pinto B, Casini G, Bruschi F. A New Ex Vivo Model Based on Mouse Retinal Explants for the Study of Ocular Toxoplasmosis. Pathogens. 2024; 13(8):701. https://doi.org/10.3390/pathogens13080701
Chicago/Turabian StyleRodriguez Fernandez, Veronica, Rosario Amato, Simona Piaggi, Barbara Pinto, Giovanni Casini, and Fabrizio Bruschi. 2024. "A New Ex Vivo Model Based on Mouse Retinal Explants for the Study of Ocular Toxoplasmosis" Pathogens 13, no. 8: 701. https://doi.org/10.3390/pathogens13080701
APA StyleRodriguez Fernandez, V., Amato, R., Piaggi, S., Pinto, B., Casini, G., & Bruschi, F. (2024). A New Ex Vivo Model Based on Mouse Retinal Explants for the Study of Ocular Toxoplasmosis. Pathogens, 13(8), 701. https://doi.org/10.3390/pathogens13080701