Next Article in Journal
Geohelminths: Use in the Treatment of Selected Human Diseases
Previous Article in Journal
A New Ex Vivo Model Based on Mouse Retinal Explants for the Study of Ocular Toxoplasmosis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections

Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
*
Authors to whom correspondence should be addressed.
Pathogens 2024, 13(8), 702; https://doi.org/10.3390/pathogens13080702
Submission received: 13 June 2024 / Revised: 30 July 2024 / Accepted: 14 August 2024 / Published: 20 August 2024
(This article belongs to the Section Immunological Responses and Immune Defense Mechanisms)

Abstract

:
Bile acids (BAs) play a crucial role in the human body’s defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group’s previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.

1. Introduction

The modulation of BAs in mammalian systems constitutes an intricate procedure, jointly orchestrated by the liver, intestines, and intestinal microbiota [1]. PBAs, predominantly comprising cholic acid and chenodeoxycholic acid (CDCA) [2], are largely reabsorbed within the enterohepatic circulation. These are subsequently converted by the intestinal microbiota, yielding SBAs, largely comprising lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) [3,4]. In this metabolic cascading, enzymes engendered by the intestinal microbiota, particularly BSHs mediated by the bile salt hydrolase (BSH) gene and 7α hydroxylase facilitated by the bai operon, assume a pivotal role [5,6,7,8,9,10].
Both BAs and intestinal microbiota emerge as keystones in host metabolism, wherein their synthesized or regulated metabolites frequently function as signaling molecules, precluding the colonization of pathogens within the host [5,11].
The changes in the concentration and composition of intestinal BAs are not only pivotal in affecting the growth and colonization of various pathogens but also play a significant role in the mechanisms of disease prevention and pathogenesis [11,12]. Some studies have found that PBAs and SBAs play a vital role in maintaining intestinal homeostasis and combating infections [13,14,15]. For example, PBAs have been shown to facilitate the germination of C. difficile spores, while SBAs play a role in inhibiting its proliferation [16]. Interestingly, alterations in the intestinal microbiota significantly affect the host’s health and disease progression by profoundly influencing BAs’ conversion dynamics [17,18]. A wide array of intestinal microbiota exhibit BSH activity, which plays a crucial role in maintaining the balance of BA pools [9,10,19,20,21,22,23]. Moreover, the association between BSH activity and various health conditions, such as obesity, cancer, and inflammatory bowel disease, has become a burgeoning research hotspot [24,25,26,27,28,29,30], and BSHs are emerging as potential therapeutic targets for metabolic diseases [31,32,33,34,35].
Recent studies have highlighted the critical role of the bai operon-mediated 7α-dehydroxylation reaction in the intestinal microbiota, predominantly carried out by members of Clostridium cluster XIVa, particularly Clostridium hiranonis and C. scindens [36]. The bai operon consists of eight genes: seven encode enzymes and the eighth, baiG, encodes a transporter. This operon is conserved in every bacterial species known to 7α-dehydroxylate PBA, and its gene products are linked to specific steps in the pathway. The operon includes genes such as baiB, baiCD, baiA2, baiE, baiF, baiH, and baiI, each playing a unique role in the conversion of cholic acid to deoxycholic acid. The pathway involves both oxidative and reductive steps, with enzymes BaiB, BaiCD, BaiA2, BaiE, BaiF, and BaiH being necessary and sufficient for the complete conversion process [37]. This conversion not only increases the hydrophobicity of BAs but also triggers significant biological effects, including alterations in intestinal permeability, antibiotic biosynthesis, and activation of the Farnesoid X Receptor (FXR) [38,39,40]. The bai operon has shown effectiveness in reducing intestinal inflammation [41]. Furthermore, C. scindens, equipped with the bai operon, has demonstrated promise in combating C. difficile infections [42].
Among the diverse intestinal microbiota, Firmicutes, Lactobacillus, Bifidobacterium, Enterococcus, Clostridium, Corbacteriaceae, Ruminococcaceae, and Clostridiaceae exhibit BSH activity [36,43,44,45], while Clostridium cluster XIVa, particularly Clostridium hiranonis and C. scindens, as well as Eubacterium and Peptostreptococcus, possess 7α-dehydroxylase activity [36,37,46]. They are crucial for BA metabolism and maintaining intestinal homeostasis.
The dynamic interaction between BAs and the intestinal microbiota not only leads to changes in BA pools but also allows BAs to influence the structural composition of the intestinal microbiota [47]. Although earlier research focused on the interactions of PBAs or SBAs with specific intestinal microbiota, the transformation of PBAs to SBAs is an ongoing process facilitated by intestinal microbiota exhibiting BSH activity [48]. Increasing evidence suggests that the structure and function of the intestinal microbiota can exert long-lasting impacts on the host [49,50]. This review aims to offer a comprehensive exploration of the interactions between BAs and key intestinal microbes from the perspective of the intestinal microbiota. In the current era of widespread antibiotic use and rising microbial resistance [51], the role of BAs as preventive and therapeutic agents is becoming increasingly important.

2. Regulatory Mechanisms of BAs in Maintaining Intestinal Homeostasis and Counteracting Infections

BAs play a pivotal role in regulating intestinal homeostasis [52]. Some studies have shown that BAs can enhance intestinal epithelial permeability, thereby increasing susceptibility to infections [53]. Interestingly, natural BAs have demonstrated significant antimicrobial properties against a variety of organisms including bacteria, parasites, and fungi [54,55,56,57]. That is because the roles of PBAs and SBAs are different. For instance, PBAs like taurocholic acid (TCA) can promote C. difficile proliferation and facilitate C. albicans colonization [12,28,58,59,60]. In contrast, SBAs such as taurodeoxycholic acid can mitigate sepsis-induced intestinal inflammation, and deoxycholic acid and LCA encourage C. scindens proliferation and inhibit C. difficile spore germination [61,62,63,64]. These diverse effects could be attributed to specific BA species, the unique receptors they activate, and their interactions with intestinal microbiota.
BAs interact with various cellular receptors, including FXR, TGR5 (Takeda G Protein-Coupled Receptor 5), Pregnane X Receptor, Sphingosine-1-Phosphate Receptor 2, and Vitamin D Receptor. FXR is activated primarily by CDCA. FXR activation strengthens the intestinal barrier, influences microbial community composition, and modulates inflammatory responses [65,66,67]. Moreover, FXR promotes the proliferation of regulatory T cells, enhancing their antiviral capabilities [68,69,70]. Taurodeoxycholic acid-induced TGR5 activation, which can reduce cAMP levels, inhibit the Myosin Light-Chain Kinase pathway and thus mitigate Escherichia coli epithelial barrier damage [71,72]. Other receptors such as Sphingosine-1-Phosphate Receptor 2, Pregnane X Receptor, and Vitamin D Receptor also play important roles in inflammatory response modulation when activated by BAs [73,74] (Figure 1).

2.1. BAs and Fungi

2.1.1. Interactions between BAs and Candida albicans

C. albicans, an opportunistic fungus, primarily originates from its endogenous populations in the gastrointestinal tract [75,76,77,78,79,80,81]. C. albicans frequently causes invasive infections, particularly in immunocompromised individuals or in those with dysbiosis of the intestinal microbiota [58,78,82,83,84,85].
TCA, a primary bile acid, can modulate immune responses and microbial balance within the intestine, promoting the colonization and spread of fungi like C. albicans [86]. Specifically, TCA has been shown to suppress key immune molecules, such as angiogenin-4 and CX3CR1, which are crucial for maintaining intestinal barrier integrity [87,88,89]. Additionally, TCA is associated with reduced expression of tight junction proteins [90,91,92]. This may promote an increase in pathogen proliferation like C. difficile and facilitate C. albicans over-colonization [28,93,94,95,96]. In contrast, SBA, specifically LCA and DCA, can prevent C. albicans from transitioning from yeast to its virulent hyphal form and from its planktonic to biofilm phase, thereby restricting its proliferation in the intestine [96]. Additionally, SBAs can directly exhibit antimicrobial activity against C. albicans [96].
During mouse experiment investigations into intestinal microbiota composition following C. albicans infection, there was an increase in Bacteroides, Proteobacteria, Pseudomonas, and Enterococcus levels, while Firmicutes levels decreased [97,98]. These changes may facilitate enhanced C. albicans colonization by altering BSH activity and SBA concentrations in the intestine. Moreover, TCA supplementation can heighten C. albicans’s invasiveness and virulence by increasing specific bacterial populations, like enterohemorrhagic Escherichia coli [93] (Figure 2).

2.1.2. Interactions between BAs and Saccharomyces boulardii

Saccharomyces boulardii CNCM I-745 (SB) has been shown to effectively mitigate the risk of C. difficile enteritis following antibiotic therapy in a clinical randomized controlled trial [99,100]. Central to the protective mechanism of SB is its ability to inhibit bacterial proliferation while rapidly restoring the balance of the intestinal microbiota [101]. In detail, SB can not only thwart bacterial adhesion but can also accelerate the neutralization of enteric toxins and bolster the immune response within the intestinal mucosa [102,103,104]. Furthermore, research involving healthy volunteer cohorts has illuminated that SB can safeguard the health of the intestine by promoting the proliferation of microbiota with BSH activity [28]. Complementing this, in vitro studies have also discovered that SB can hinder the germination of C. difficile spores [105,106,107].

2.2. BAs and Bacteria

2.2.1. Interactions between BAs and Clostridioides difficile

C. difficile is a Gram-positive bacterium. C. difficile can produce two major protein toxins, TcdA and TcdB, which can disrupt host–cell signaling pathways and lead to apoptosis [108]. In clinical settings, C. difficile infections can range from mild diarrhea to severe pseudomembranous colitis [109].
In the lifecycle of C. difficile, BAs play a regulatory role [110,111]. Some studies have identified that BAs can affect the proliferation of C. difficile by influencing both the structural and functional aspects of the TcdB toxin [97,112]. In addition, C. difficile spores can detect specific BAs as environmental cues in the gastrointestinal tract and initiate germination processes [109,113,114]. Specifically, TCA, a primary bile acid, has been implicated in facilitating the in vitro germination of C. difficile spores, which can promote the subsequent release of toxins [115]. Conversely, SBAs like LCA and deoxycholic acid are known to inhibit the growth and toxic effects of C. difficile [110,116,117]. This inhibition includes (1) the activation of BA receptors such as FXR and TGR5 by SBAs, which enhances the innate immune response and inhibits C. difficile proliferation through signaling pathways, notably NF-κB [118], and (2) the direct interaction of SBAs with the C-terminal region of TcdB, leading to conformational changes in the toxin and preventing its binding and toxic effects on host cells [119] (Figure 3).

2.2.2. Interactions between BAs and Staphylococcus aureus

S. aureus, a Gram-positive bacterium, presents significant clinical management challenges, which are exacerbated by indiscriminate antibiotic use [120]. Recent studies, though limited in number, with only two studies identified so far, have begun to elucidate the significant role of SBAs in the response to S. aureus infections.
Deoxycholic acid, a secondary bile acid, has been observed to promote the repair of tight junction proteins in the blood–milk barrier and substantially reduce the expression of inflammation-associated markers in mouse experiments involving S. aureus-induced mastitis [8,120]. Furthermore, deoxycholic acids can also alleviate S. aureus-induced endometritis discovered in Hu J’s studies [121]. Their protective effects are thought to stem from deoxycholic acid’s influence on the TGR5/PKA-NF-κB-NLRP3 inflammasome signaling axis [122]. However, deoxycholic acid does not directly suppress the proliferation of S. aureus [8].
Additionally, studies indicate that an imbalance in intestinal microbiota leads to an exacerbated response to mastitis in mouse experiments challenged with S. aureus, thereby intensifying the clinical symptoms [123,124]. Remarkably, supplementing the intestinal microbiota of infected mice with BSH-active organisms, such as C. scindens, significantly reduces the inflammatory response to mastitis [8].

2.2.3. Interactions between BAs and Enterococci

In the gastrointestinal tract, Enterococcus faecalis (E. faecalis) is a commensal bacterium. However, under conditions of intestinal microbiota dysbiosis, E. faecalis may transition to a pathogenic state, particularly in elderly or immunocompromised individuals [125,126,127]. Recent clinical studies have elucidated that the elevation of deoxycholic acid levels or a reduction in TCA levels can effectively curtail the proliferation of E. faecalis. Further research suggests that deoxycholic acid’s growth-inhibitory effect on E. faecalis could be due to its impact on the expression of various ribosomal protein genes [128].
Vancomycin-resistant enterococci (VRE) present significant challenges in clinical settings due to their antibiotic resistance. The formation of biofilms is critical for the colonization of enterococci in various host environments [129]. Rahman’s study has revealed that LCA can curtail the growth of VRE by maintaining VRE in a diplococcal state and inhibiting the morphological transformation of VRE. Additionally, LCA exposure induces genetic mutations in VRE that result in persistent diplococcal morphology and reduced biofilm production [130] (Figure 4B–D).

2.2.4. Interactions between BAs and Other Bacteria (Extended-Spectrum Beta-Lactamase-Resistant Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, etc.)

The overuse of antibiotics has led to a widespread increase in the prevalence of extended-spectrum beta-lactamase-resistant Escherichia coli (ESBL-EAEC). The pathological hallmarks of ESBL-EAEC infection include inflammation, epithelial cell exfoliation, and compromised epithelial barrier functionality [131]. UDCA, a secondary bile acid, has shown significant inhibitory effects on ESBL-EAEC in mouse experiments. In the context of ESBL-EAEC infection, a notable reduction in the abundance of key intestinal microbial families with BSH activity such as Corbacteriaceae, Ruminococcaceae, and Lachnospiraceae has been observed. However, this change is effectively countered by UDCA treatment by repairing microbial imbalances [44]. Moreover, UDCA enhances tight junction functionality by upregulating TGR5 transcription and inhibiting IκB α phosphorylation [14,132] (Figure 4E,F,H).
M. tuberculosis, the causative agent of tuberculosis, shows a unique susceptibility pattern in the gastrointestinal tract [133]. Regions with lower BA concentrations, such as the terminal ileum and cecum, are more susceptible to intestinal tuberculosis [134]. BAs like CDCA, deoxycholic acid, and cholic acid have demonstrated inhibitory effects on the proliferation of M. tuberculosis. This inhibition could be due to the detrimental impact of BAs on the distinctive lipid-rich cell wall of M. tuberculosis [135] (Figure 4G).
Pseudomonas aeruginosa is known for its diverse infection profiles [136]. Surprisingly, TCA, as a primary bile acid, demonstrates a significant inhibitory effect on Pseudomonas aeruginosa. In detail, TCA is particularly effective in inhibiting biofilm formation and dispersing existing biofilms [137,138]. This effect is believed to originate from TCA’s modulation of Pseudomonas aeruginosa’s virulence factors, including its impact on metabolites like the siderophore pyochelin, thereby altering its toxicity and biofilm dynamics [139] (Figure 4A).
Moreover, BAs influence various other pathogenic bacteria. For example, deoxycholic acid has been shown to induce the transcription of genes involved in DNA repair and recombination in response to infections by bacteria such as Escherichia coli, Salmonella enterica serovar Typhimurium, Bacillus cereus, and Listeria monocytogenes [140]. However, BAs also have a dual role; their presence has been linked to increased virulence in Shigella dysenteriae, promoting infection [141].

2.2.5. Interactions between BAs and Bacteroidetes

The Bacteroidetes phylum significantly contributes to gastrointestinal health and the prevention of infections [142]. It has been reported that Bacteroides thetaiotaomicron (B. thetaiotaomicron), Bacteroides ovatus, and Bacteroides fragilis can alleviate colitis in mouse experiments by promoting the production of SBAs to inhibit the proliferation of C. difficile [143,144,145,146].
In related research, the Bacteroides dorei strain (BDX-01) and its therapeutic effects were investigated in a colitis mouse model by regulating BA metabolism, indicated by changes in total fecal BA levels and BA ratios, and by affecting the FXR-NLRP3 inflammasome signaling pathway, which led to reduced proinflammatory cytokine expression and diminished IL-1β secretion in the colon, thereby mitigating DSS-induced experimental colitis [9,147,148,149,150,151].
However, a potential adverse role of Bacteroides fragilis NCTC9343 in gastrointestinal health has been revealed, particularly concerning their BSH activity [152]. Elevated BSH gene expression in colonizing Bacteroidetes strains can lead to an increased influx of BAs, which may activate signaling pathways like WNT/β-catenin and NF-κB, resulting in oxidative DNA damage and enhanced cellular proliferation, eventually exacerbating colorectal cancer progression in mouse experiments [9,34,153] (Figure 5).

2.2.6. Interactions between BAs and Clostridium scindens

C. scindens harbors a bile acid-inducible operon, the bai operon [61]. This operon is essential for the synthesis of SBAs by regulating the expression of 7α-dehydroxylase [7,62]. Some studies have discovered that C. scindens plays a crucial role in preventing the colonization and proliferation of C. difficile [41]. In cases of acute C. difficile infection, a marked decrease in both BSH and 7α-dehydroxylase expression is observed in the cecal contents of mice, aligning with reduced gene expressions in the Lachnospiraceae and Clostridiaceae families [154]. However, introducing C. scindens into the gut of mice with acute C. difficile infection significantly enhances intestinal health. Particularly, C. scindens has been shown to suppress TcdA/TcdB toxin production by C. difficile and reduce its overall count by inhibiting biofilm formation [41,110,155,156]. Therefore, the synergistic action of SBAs and C. scindens is increasingly recognized as a critical strategy in countering intestinal colonization by this pathogenic bacterium [157] (Figure 6).

2.2.7. Interactions between BAs and Clostridium butyricum

C. butyricum can modulate lipid metabolism by influencing the BA profile within the liver and ileum [158,159]. Research has shown that C. butyricum supplementation can reshape the intestinal microbiota composition and BA distribution of intrauterine growth-restricted piglets, thereby optimizing their lipid metabolism. At the same time, it significantly reduces the abundance of specific intestinal microbiota Streptococcus and Enterococcus in the ileum of these piglets, leading to an increase in conjugated bile acid (CBA). This increase in CBA, which can be derived from both PBAs and SBAs through conjugation with amino acids like glycine or taurine, activates key liver receptors, such as liver X receptor α (LXRα) and FXR, which are crucial for reducing inflammatory responses and protecting normal liver function [107,160,161,162,163,164,165,166,167].
Specially, C. butyricum strain CCFM1299 administration leads to a significant increase in UDCA levels in feces and taurocholic acid levels in serum, thereby activating TGR5 and inhibiting FXR, subsequently enhancing GLP-1 production in the intestine, which helps regulate blood sugar and reduce obesity. This effect has been observed in experiments using a high-fat diet mouse model [168,169,170,171]. Furthermore, C. butyricum reshapes the microbiota by increasing butyric acid levels, maintaining SBA balance, and attenuating the inhibitory effects of the FXR/SHP pathway on lipid synthesis [172]. And it also activates the butyrate/GPR43 pathway, reducing damage to the intestinal barrier and restoring the intestinal immune microenvironment in rabbits with chronic pancreatitis [173] (Figure 7).

2.2.8. Interactions between BAs and Lactic Acid Bacteria

Pediococcus pentosaceus Li05 belong to the Pediococcus genus of the Lactobacillaceae family. Li05 can improve tight junction proteins and downregulate inflammatory responses in mouse experiments by modulating intestinal microbiota and BA metabolism [174]. Specifically, in an acute C. difficile infection mouse model, it has been shown to promote the growth of beneficial microbial taxa such as Lactobacillus, Prevotella, and Paraprevotella while inhibiting opportunistic pathogens. This modulation of the intestinal microbiota leads to alterations in BA composition, which subsequently influences liver injury processes [59,175]. Additionally, it has been reported that Li05 treatment notably reduced weight loss, liver damage, and bile stasis in 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine-induced cholestasis mouse experiments [176,177], which is likely linked to Li05’s modulation of the intestinal microbiota, particularly enhancing propionate- and butyrate-producing bacteria like Anaerostipes and Eubacterium. Anaerostipes and Eubacterium are known for metabolizing inositol into propionic and butyric acids and converting PBAs into SBAs via 7α-dehydroxylation [19,178,179].
Liu L et al. also revealed that Lactiplantibacillus plantarum LPJZ-658 modulates intestinal microbiota and BA metabolism in mouse models, which reveals the potential for treating non-alcoholic fatty liver disease [180]. Furthermore, Lactiplantibacillus plantarum LPJZ-658 increased the abundance of Firmicutes and Actinobacteria, suggesting a healthier intestinal environment conducive to non-alcoholic steatohepatitis mitigation [181,182,183].

2.2.9. Interactions between BAs and Streptococcus thermophilus

Streptococcus thermophilus MN002 (S. thermophilus), acknowledged as an efficacious probiotic [184,185], has shown promising potential in mitigating the risks associated with metabolic syndrome and colorectal tumors [186,187,188], as well as reducing the incidence of obesity, neonatal bacteremia, and meningitis caused by Escherichia coli K1 [189]. The consumption of a high-fat diet is known to disrupt the intestinal microbial equilibrium, leading to both intestinal and systemic inflammation [190,191,192]. Intriguingly, deoxycholic acid can reduce the inflammatory symptoms in high-fat diet mouse experiments. Specifically, S. thermophilus is capable of optimizing BA configurations and fostering a balanced intestinal microbiota [193,194]. This is achieved by augmenting the relative abundance of bacteria proficient in producing SBAs, including members of the Ruminococcaceae, Bacteroides, Clostridium, and Blautia families [45].

2.3. BAs and Viruses

2.3.1. Interactions between BAs and Coronavirus SARS-CoV-2

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) utilizes the receptor-binding domain within its spike protein to engage the host’s angiotensin-converting enzyme 2 (ACE2) receptor, facilitating cellular entry [195,196,197]. Recent investigations have revealed the potential of BAs, particularly UDCA and CDCA, in disrupting this critical virus–host interaction.
Some studies have identified that UDCA can directly bind the receptor-binding domain of SARS-CoV-2, thereby diminishing its affinity for ACE2 and potentially mitigating cellular damage [198,199,200]. Specifically, UDCA appears to alter the virus’s structural integrity, allowing the penetration of polar inhibitors and solvents into the viral cells, which could impede replication [200,201].
Beyond direct antiviral effects, UDCA can also modulate the host’s immune response. The cytokine storm, a critical factor in severe COVID-19 cases, can be mitigated by UDCA’s anti-inflammatory, antioxidant, immunomodulatory, and anti-apoptotic properties [202,203,204,205,206,207]. Notably, UDCA can also reduce FXR expression in various human and animal tissues by regulating ACE2 transcription [208,209,210,211,212]. In addition, retrospective studies have indicated that UDCA can improve clinical outcomes in patients [213]. However, UDCA did not demonstrate a reduction in susceptibility to SARS-CoV-2 infection in pediatric populations [214].
Emerging research suggests a correlation between the intestinal microbiome, particularly the Collinsella genus, and COVID-19 outcomes. Hirayama M et al. employed machine learning to uncover a potential link between intestinal Collinsella and reduced COVID-19 severity [215]. UDCA produced by Collinsella may prevent COVID-19 infection and ameliorate acute respiratory distress syndrome in COVID-19 by suppressing cytokine storm syndrome in clinical setting [216] (Figure 8).

2.3.2. Interactions between BAs and Other Viruses (Influenza Virus, Norovirus, etc.)

Influenza A virus (IAV) is a significant respiratory pathogen. Recent studies have uncovered the antiviral potential of CDCA and sodium taurocholate against IAV. They attenuate IAV infection by inhibiting the nuclear export of viral ribonucleoproteins and modulating the Toll-like receptor 4/NF-κB signaling pathway [217,218]. Specifically, CDCA, a secondary bile acid, shows promise in inhibiting IAV subtypes, including H5N1, H9N2, and H1N1, by interfering with viral ribonucleoproteins’ nuclear export and inhibiting viral replication [217]. Sodium taurocholate, a primary bile acid derivative, surprisingly exhibits antiviral efficacy against various influenza strains, including H5N6 and H3N2, by targeting the early stages of viral transcription and replication via the TLR4/NF-κB pathway [219].
BAs play a interesting role in norovirus infection [220,221]. Glycine deoxycholic acid, a secondary bile acid, enhances murine noroviruses’ infectivity [222]. In addition, the intestinal microbiota distinctly modulates norovirus infection dynamics in different intestinal regions, with BAs mediating their inhibitory effect in the proximal small intestine, while BA receptors regulate infection in the distal small intestine [223,224].
Moreover, CDCA has shown inhibitory effects against digestive system viruses, including rotavirus, hepatitis B, and hepatitis D viruses [68,225]. Specifically, CDCA activates FXR and TGR5 receptors in HBV infections in mouse experiments. Also, CDCA can inhibit the replication of rotavirus by reducing virus-induced lipid synthesis [69,218] (Figure 9).

3. Conclusions

The regulation of BAs is a complex process in mammalian systems. Intestinal microbiota play a crucial role in converting PBAs to SBAs by regulating the metabolic activities of BSHs and 7α-hydroxylase. Among the diverse intestinal microbiota, Firmicutes, Lactobacillus, Bifidobacterium, Enterococcus, Clostridium, Corbacteriaceae, Ruminococcaceae, and Clostridiaceae exhibit BSH activity [36,43,44,45] while Clostridium cluster XIVa, particularly Clostridium hiranonis and C. scindens, as well as Eubacterium and Peptostreptococcus, possess 7α-dehydroxylase activity [36,37,46]. They are crucial for BA metabolism and maintaining intestinal homeostasis.
Here, we explored the interactions between BAs and a comprehensive array of 16 key intestinal microbiota. Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of PBAs to SBAs. It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus.
SBAs combat infections in several ways. First, SBAs slow down the growth of pathogen proliferation, inhibit the transformation of C. albicans, reduce C. difficile spore sprouting, disrupt VRE biofilms, and weaken M. tuberculosis cell walls. SBAs also reduce SARS-CoV-2’s binding to ACE2 receptors and inhibit influenza virus replication. Second, SBAs modify the structure of C. difficile’s TcdB toxin and trigger the NF-κB signaling pathway via BA receptors like FXR and TGR5. This interaction boosts the body’s immune defenses, enhancing responses against pathogens like C. difficile and SARS-CoV-2. Last, the synergy between SBAs and some specific intestinal microbiota is crucial, particularly in enhancing their anti-infective potential. C. butyricum, for example, promotes intestinal health through enterohepatic circulation, reducing BSH-active microbiota and increasing CBA production. However, certain Bacteroidetes strains with high BSH gene expression may inadvertently increase BA entry into the colon, potentially triggering colorectal cancer.
The interaction between viruses and BAs is complex. Most SBAs preserve intestinal mucosal health, but glycine deoxycholic acid, a secondary bile acid, potentially exacerbates norovirus infection. In addition, STH is a primary bile acid derivative and surprisingly shows efficacy against the influenza virus.
BAs are diverse, each possessing unique physical structures and biological properties. The dynamic metabolism of BAs in the human body results in fluctuations in their types and concentrations along the intestinal tract. Current research, often utilizing fixed BA formulations, may not fully capture these variations. Additionally, it is important to note that most interactions between BAs and microbiota have been studied in vitro. However, the in vivo effects may differ significantly due to the complex intestinal environment. For example, BAs can alter the mucus layer, which in turn affects pathogenicity, the effectiveness of antimicrobials, and immune responses. These in vivo dynamics remain largely unstudied, indicating the need for further research to fully understand BAs’ therapeutic potential. Nonetheless, it is evident that SBAs generally exert a favorable anti-infectious influence against most microbiota-induced infections.
Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.

Author Contributions

W.L. was the main contributor to the writing of the manuscript. H.C. was responsible for the collection and collation of reference articles and participated in the writing of the manuscript. J.T. made great contributions to the subsequent revision and improvement work. The author order was determined on the basis of seniority. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Science and Technology Innovation Plan of Shanghai Science and Technology Commission (22ZR1448800) the Fifth People’s Hospital of Shanghai, Fudan University (grant number 2023WYZD03).

Acknowledgments

Figures in this review were created with BioRender.com (BioRender Inc., Toronto, ON, Canada).

Conflicts of Interest

The authors declare no competing interests.

Abbreviations

BAsBile acids
BSHsBile salt hydrolases
BSHBile salt hydrolase
CBAConjugated bile acid
PBAPrimary bile acid
CDCAChenodeoxycholic acid
TCATaurocholic acid
SBASecondary bile acid
LCALithocholic acid
UDCAUrsodeoxycholic acid
FXRFarnesoid X Receptor
LXRαLiver X receptor α
TGR5Takeda G Protein-Coupled Receptor 5
ACE2Angiotensin-converting enzyme 2
C. albicansCandida albicans
C. difficileClostridioides difficile
C. scindensClostridium scindens
E. coliEscherichia coli
S. aureusStaphylococcus aureus
E. faecalisEnterococcus faecalis
ESBL-EAECExtended-spectrum beta-lactamase-resistant Escherichia coli
VREVancomycin-resistant enterococci
M. tuberculosisMycobacterium tuberculosis
S. thermophilusStreptococcus thermophilus
SBSaccharomyces boulardii
C. butyricumClostridium butyricum
SARS-CoV-2Severe Acute Respiratory Syndrome Coronavirus 2
IAVInfluenza A virus
COVID-19Coronavirus Disease 2019
PBA ExamplesCholic acid, chenodeoxycholic acid, taurocholic acid, and sodium taurocholate
SBA ExamplesLithocholic acid, deoxycholic acid, ursodeoxycholic acid, taurodeoxycholic acid, and glycine deoxycholic acid

References

  1. Guzior, D.V.; Quinn, R.A. Review: Microbial transformations of human bile acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef]
  2. Martoni, C.J.; Labbe, A.; Ganopolsky, J.G.; Prakash, S.; Jones, M.L. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes 2015, 6, 57–65. [Google Scholar] [CrossRef]
  3. Di Ciaula, A.; Garruti, G.; Lunardi Baccetto, R.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.; Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16, s4–s14. [Google Scholar] [CrossRef]
  4. Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef]
  5. Wang, Y.; Zheng, L.; Zhou, Z.; Yao, D.; Huang, Y.; Liu, B.; Duan, Y.; Li, Y. Review article: Insights into the bile acid-gut microbiota axis in intestinal failure-associated liver disease-redefining the treatment approach. Aliment. Pharmacol. Ther. 2022, 55, 49–63. [Google Scholar] [CrossRef]
  6. Ma, J.; Hong, Y.; Zheng, N.; Xie, G.; Lyu, Y.; Gu, Y.; Xi, C.; Chen, L.; Wu, G.; Li, Y.; et al. Gut microbiota remodeling reverses aging-associated inflammation and dysregulation of systemic bile acid homeostasis in mice sex-specifically. Gut Microbes 2020, 11, 1450–1474. [Google Scholar] [CrossRef] [PubMed]
  7. Jose, S.; Mukherjee, A.; Horrigan, O.; Setchell, K.D.R.; Zhang, W.; Moreno-Fernandez, M.E.; Andersen, H.; Sharma, D.; Haslam, D.B.; Divanovic, S.; et al. Obeticholic acid ameliorates severity of Clostridioides difficile infection in high fat diet-induced obese mice. Mucosal Immunol. 2021, 14, 500–510. [Google Scholar] [CrossRef] [PubMed]
  8. Zhao, W.; Wang, J.; Li, X.; Li, Y.; Ye, C. Deoxycholic acid inhibits Staphylococcus aureus-induced endometritis through regulating TGR5/PKA/NF-kappaB signaling pathway. Int. Immunopharmacol. 2023, 118, 110004. [Google Scholar] [CrossRef] [PubMed]
  9. Jia, W.; Xie, G.; Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef]
  10. Ridlon, J.M.; Daniel, S.L.; Gaskins, H.R. The Hylemon-Bjorkhem pathway of bile acid 7-dehydroxylation: History, biochemistry, and microbiology. J. Lipid Res. 2023, 64, 100392. [Google Scholar] [CrossRef]
  11. Jia, W.; Li, Y.; Cheung, K.C.P.; Zheng, X. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. Sci. China Life Sci. 2023, 67, 865–878. [Google Scholar] [CrossRef] [PubMed]
  12. Guinan, J.; Thangamani, S. Antibiotic-induced alterations in taurocholic acid levels promote gastrointestinal colonization of Candida albicans. FEMS Microbiol. Lett. 2018, 365, fny196. [Google Scholar] [CrossRef]
  13. Winkler, E.S.; Shrihari, S.; Hykes, B.L., Jr.; Handley, S.A.; Andhey, P.S.; Huang, Y.S.; Swain, A.; Droit, L.; Chebrolu, K.K.; Mack, M.; et al. The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis. Cell 2020, 182, 901–918.e18. [Google Scholar] [CrossRef]
  14. Sun, X.; Winglee, K.; Gharaibeh, R.Z.; Gauthier, J.; He, Z.; Tripathi, P.; Avram, D.; Bruner, S.; Fodor, A.; Jobin, C. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice. Gastroenterology 2018, 154, 1751–1763.e2. [Google Scholar] [CrossRef]
  15. Wang, H.; Latorre, J.D.; Bansal, M.; Abraha, M.; Al-Rubaye, B.; Tellez-Isaias, G.; Hargis, B.; Sun, X. Microbial metabolite deoxycholic acid controls Clostridium perfringens-induced chicken necrotic enteritis through attenuating inflammatory cyclooxygenase signaling. Sci. Rep. 2019, 9, 14541. [Google Scholar] [CrossRef]
  16. Woollett, L.A.; Buckley, D.D.; Yao, L.; Jones, P.J.; Granholm, N.A.; Tolley, E.A.; Tso, P.; Heubi, J.E. Cholic acid supplementation enhances cholesterol absorption in humans. Gastroenterology 2004, 126, 724–731. [Google Scholar] [CrossRef]
  17. Missmer, S.A.; Tu, F.F.; Agarwal, S.K.; Chapron, C.; Soliman, A.M.; Chiuve, S.; Eichner, S.; Flores-Caldera, I.; Horne, A.W.; Kimball, A.B.; et al. Impact of Endometriosis on Life-Course Potential: A Narrative Review. Int. J. Gen. Med. 2021, 14, 9–25. [Google Scholar] [CrossRef]
  18. As-Sanie, S.; Black, R.; Giudice, L.C.; Gray Valbrun, T.; Gupta, J.; Jones, B.; Laufer, M.R.; Milspaw, A.T.; Missmer, S.A.; Norman, A.; et al. Assessing research gaps and unmet needs in endometriosis. Am. J. Obstet. Gynecol. 2019, 221, 86–94. [Google Scholar] [CrossRef]
  19. Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef]
  20. Xu, F.; Hu, X.J.; Singh, W.; Geng, W.; Tikhonova, I.G.; Lin, J. The complex structure of bile salt hydrolase from Lactobacillus salivarius reveals the structural basis of substrate specificity. Sci. Rep. 2019, 9, 12438. [Google Scholar] [CrossRef] [PubMed]
  21. Lundeen, S.G.; Savage, D.C. Multiple forms of bile salt hydrolase from Lactobacillus sp. strain 100-100. J. Bacteriol. 1992, 174, 7217–7220. [Google Scholar] [CrossRef]
  22. Tian, Y.; Gui, W.; Koo, I.; Smith, P.B.; Allman, E.L.; Nichols, R.G.; Rimal, B.; Cai, J.; Liu, Q.; Patterson, A.D. The microbiome modulating activity of bile acids. Gut Microbes 2020, 11, 979–996. [Google Scholar] [CrossRef]
  23. Long, S.L.; Gahan, C.G.M.; Joyce, S.A. Interactions between gut bacteria and bile in health and disease. Mol. Aspects Med. 2017, 56, 54–65. [Google Scholar] [CrossRef]
  24. Ma, C.; Han, M.; Heinrich, B.; Fu, Q.; Zhang, Q.; Sandhu, M.; Agdashian, D.; Terabe, M.; Berzofsky, J.A.; Fako, V.; et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018, 360, eaan5931. [Google Scholar] [CrossRef]
  25. Burgess, S.L.; Leslie, J.L.; Uddin, J.; Oakland, D.N.; Gilchrist, C.; Moreau, G.B.; Watanabe, K.; Saleh, M.; Simpson, M.; Thompson, B.A.; et al. Gut microbiome communication with bone marrow regulates susceptibility to amebiasis. J. Clin. Investig. 2020, 130, 4019–4024. [Google Scholar] [CrossRef]
  26. Alavi, S.; Mitchell, J.D.; Cho, J.Y.; Liu, R.; Macbeth, J.C.; Hsiao, A. Interpersonal Gut Microbiome Variation Drives Susceptibility and Resistance to Cholera Infection. Cell 2020, 181, 1533–1546.e13. [Google Scholar] [CrossRef]
  27. Wilson, K.H. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J. Clin. Microbiol. 1983, 18, 1017–1019. [Google Scholar] [CrossRef]
  28. Theriot, C.M.; Koenigsknecht, M.J.; Carlson, P.E., Jr.; Hatton, G.E.; Nelson, A.M.; Li, B.; Huffnagle, G.B.; Li, J.Z.; Young, V.B. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 2014, 5, 3114. [Google Scholar] [CrossRef] [PubMed]
  29. Mullish, B.H.; McDonald, J.A.K.; Pechlivanis, A.; Allegretti, J.R.; Kao, D.; Barker, G.F.; Kapila, D.; Petrof, E.O.; Joyce, S.A.; Gahan, C.G.M.; et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut 2019, 68, 1791–1800. [Google Scholar] [CrossRef]
  30. Stenman, L.K.; Holma, R.; Eggert, A.; Korpela, R. A novel mechanism for gut barrier dysfunction by dietary fat: Epithelial disruption by hydrophobic bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G227–G234. [Google Scholar] [CrossRef]
  31. Chiang, J.Y.L.; Ferrell, J.M. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol. Cell Endocrinol. 2022, 548, 111618. [Google Scholar] [CrossRef]
  32. Sun, L.; Xie, C.; Wang, G.; Wu, Y.; Wu, Q.; Wang, X.; Liu, J.; Deng, Y.; Xia, J.; Chen, B.; et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018, 24, 1919–1929. [Google Scholar] [CrossRef]
  33. Qi, X.; Yun, C.; Sun, L.; Xia, J.; Wu, Q.; Wang, Y.; Wang, L.; Zhang, Y.; Liang, X.; Wang, L.; et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat. Med. 2019, 25, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
  34. Sun, L.; Zhang, Y.; Cai, J.; Rimal, B.; Rocha, E.R.; Coleman, J.P.; Zhang, C.; Nichols, R.G.; Luo, Y.; Kim, B.; et al. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat. Commun. 2023, 14, 755. [Google Scholar] [CrossRef] [PubMed]
  35. Joyce, S.A.; MacSharry, J.; Casey, P.G.; Kinsella, M.; Murphy, E.F.; Shanahan, F.; Hill, C.; Gahan, C.G. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 2014, 111, 7421–7426. [Google Scholar] [CrossRef] [PubMed]
  36. Kang, J.D.; Myers, C.J.; Harris, S.C.; Kakiyama, G.; Lee, I.K.; Yun, B.S.; Matsuzaki, K.; Furukawa, M.; Min, H.K.; Bajaj, J.S.; et al. Bile Acid 7alpha-Dehydroxylating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. Cell Chem. Biol. 2019, 26, 27–34.e4. [Google Scholar] [CrossRef] [PubMed]
  37. Funabashi, M.; Grove, T.L.; Wang, M.; Varma, Y.; McFadden, M.E.; Brown, L.C.; Guo, C.; Higginbottom, S.; Almo, S.C.; Fischbach, M.A. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 2020, 582, 566–570. [Google Scholar] [CrossRef]
  38. Li, T.; Chiang, J.Y. Nuclear receptors in bile acid metabolism. Drug Metab. Rev. 2013, 45, 145–155. [Google Scholar] [CrossRef] [PubMed]
  39. Moschetta, A.; Bookout, A.L.; Mangelsdorf, D.J. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat. Med. 2004, 10, 1352–1358. [Google Scholar] [CrossRef]
  40. Jin, W.B.; Li, T.T.; Huo, D.; Qu, S.; Li, X.V.; Arifuzzaman, M.; Lima, S.F.; Shi, H.Q.; Wang, A.; Putzel, G.G.; et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 2022, 185, 547–562.e22. [Google Scholar] [CrossRef]
  41. Reed, A.D.; Nethery, M.A.; Stewart, A.; Barrangou, R.; Theriot, C.M. Strain-Dependent Inhibition of Clostridioides difficile by Commensal Clostridia Carrying the Bile Acid-Inducible (bai) Operon. J. Bacteriol. 2020, 202. [Google Scholar] [CrossRef] [PubMed]
  42. Hylemon, P.B.; Zhou, H.; Pandak, W.M.; Ren, S.; Gil, G.; Dent, P. Bile acids as regulatory molecules. J. Lipid Res. 2009, 50, 1509–1520. [Google Scholar] [CrossRef]
  43. Bourgin, M.; Kriaa, A.; Mkaouar, H.; Mariaule, V.; Jablaoui, A.; Maguin, E.; Rhimi, M. Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health. Microorganisms 2021, 9, 1122. [Google Scholar] [CrossRef] [PubMed]
  44. Verbeke, L.; Farre, R.; Verbinnen, B.; Covens, K.; Vanuytsel, T.; Verhaegen, J.; Komuta, M.; Roskams, T.; Chatterjee, S.; Annaert, P.; et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am. J. Pathol. 2015, 185, 409–419. [Google Scholar] [CrossRef]
  45. McFarland, L.V.; Surawicz, C.M.; Greenberg, R.N.; Fekety, R.; Elmer, G.W.; Moyer, K.A.; Melcher, S.A.; Bowen, K.E.; Cox, J.L.; Noorani, Z.; et al. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 1994, 271, 1913–1918. [Google Scholar] [CrossRef]
  46. Li, L.; Liu, T.; Gu, Y.; Wang, X.; Xie, R.; Sun, Y.; Wang, B.; Cao, H. Regulation of gut microbiota-bile acids axis by probiotics in inflammatory bowel disease. Front. Immunol. 2022, 13, 974305. [Google Scholar] [CrossRef]
  47. van Best, N.; Rolle-Kampczyk, U.; Schaap, F.G.; Basic, M.; Olde Damink, S.W.M.; Bleich, A.; Savelkoul, P.H.M.; von Bergen, M.; Penders, J.; Hornef, M.W. Bile acids drive the newborn’s gut microbiota maturation. Nat. Commun. 2020, 11, 3692. [Google Scholar] [CrossRef] [PubMed]
  48. Cai, J.; Rimal, B.; Jiang, C.; Chiang, J.Y.L.; Patterson, A.D. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol. Ther. 2022, 237, 108238. [Google Scholar] [CrossRef]
  49. Saffouri, G.B.; Shields-Cutler, R.R.; Chen, J.; Yang, Y.; Lekatz, H.R.; Hale, V.L.; Cho, J.M.; Battaglioli, E.J.; Bhattarai, Y.; Thompson, K.J.; et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat. Commun. 2019, 10, 2012. [Google Scholar] [CrossRef]
  50. Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef]
  51. Pilmis, B.; Le Monnier, A.; Zahar, J.R. Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms 2020, 8, 269. [Google Scholar] [CrossRef] [PubMed]
  52. Calzadilla, N.; Comiskey, S.M.; Dudeja, P.K.; Saksena, S.; Gill, R.K.; Alrefai, W.A. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front. Immunol. 2022, 13, 1021924. [Google Scholar] [CrossRef] [PubMed]
  53. di Gregorio, M.C.; Cautela, J.; Galantini, L. Physiology and Physical Chemistry of Bile Acids. Int. J. Mol. Sci. 2021, 22, 1780. [Google Scholar] [CrossRef] [PubMed]
  54. Luu, T.H.; Bard, J.M.; Carbonnelle, D.; Chaillou, C.; Huvelin, J.M.; Bobin-Dubigeon, C.; Nazih, H. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol. 2018, 41, 13–24. [Google Scholar] [CrossRef] [PubMed]
  55. Goldberg, A.A.; Titorenko, V.I.; Beach, A.; Sanderson, J.T. Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ 2013, 1, e122. [Google Scholar] [CrossRef] [PubMed]
  56. Huang, F.; Zheng, X.; Ma, X.; Jiang, R.; Zhou, W.; Zhou, S.; Zhang, Y.; Lei, S.; Wang, S.; Kuang, J.; et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun. 2019, 10, 4971. [Google Scholar] [CrossRef] [PubMed]
  57. Ma, J.; Huo, H.; Zhang, H.; Wang, L.; Meng, Y.; Jin, F.; Wang, X.; Zhao, Y.; Zhao, Y.; Tu, P.; et al. 2-(2-phenylethyl)chromone-enriched extract of the resinous heartwood of Chinese agarwood (Aquilaria sinensis) protects against taurocholic acid-induced gastric epithelial cells apoptosis through Perk/eIF2alpha/CHOP pathway. Phytomedicine 2022, 98, 153935. [Google Scholar] [CrossRef] [PubMed]
  58. Datta, A.; Hernandez-Franco, J.F.; Park, S.; Olson, M.R.; HogenEsch, H.; Thangamani, S. Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine. J. Fungi 2022, 8, 610. [Google Scholar] [CrossRef] [PubMed]
  59. Theriot, C.M.; Bowman, A.A.; Young, V.B. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. mSphere 2016, 1. [Google Scholar] [CrossRef]
  60. Wang, L.X.; Ren, C.; Yao, R.Q.; Luo, Y.N.; Yin, Y.; Wu, Y.; Dong, N.; Zhu, X.M.; Yao, Y.M. Sestrin2 protects against lethal sepsis by suppressing the pyroptosis of dendritic cells. Cell Mol. Life Sci. 2021, 78, 8209–8227. [Google Scholar] [CrossRef]
  61. Shen, A. A Gut Odyssey: The Impact of the Microbiota on Clostridium difficile Spore Formation and Germination. PLoS Pathog. 2015, 11, e1005157. [Google Scholar] [CrossRef]
  62. Greathouse, K.L.; Harris, C.C.; Bultman, S.J. Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile. Cell Metab. 2015, 21, 9–10. [Google Scholar] [CrossRef]
  63. Marion, S.; Studer, N.; Desharnais, L.; Menin, L.; Escrig, S.; Meibom, A.; Hapfelmeier, S.; Bernier-Latmani, R. In vitro and in vivo characterization of Clostridium scindens bile acid transformations. Gut Microbes 2019, 10, 481–503. [Google Scholar] [CrossRef]
  64. He, Z.; Ma, Y.; Yang, S.; Zhang, S.; Liu, S.; Xiao, J.; Wang, Y.; Wang, W.; Yang, H.; Li, S.; et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum beta-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome 2022, 10, 79. [Google Scholar] [CrossRef]
  65. Sorribas, M.; Jakob, M.O.; Yilmaz, B.; Li, H.; Stutz, D.; Noser, Y.; de Gottardi, A.; Moghadamrad, S.; Hassan, M.; Albillos, A.; et al. FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J. Hepatol. 2019, 71, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
  66. Xiao, Y.; Wang, Y.; Liu, Y.; Wang, W.; Tian, X.; Chen, S.; Lu, Y.; Du, J.; Cai, W. A nonbile acid farnesoid X receptor agonist tropifexor potently inhibits cholestatic liver injury and fibrosis by modulating the gut-liver axis. Liver Int. 2021, 41, 2117–2131. [Google Scholar] [CrossRef]
  67. Campbell, C.; McKenney, P.T.; Konstantinovsky, D.; Isaeva, O.I.; Schizas, M.; Verter, J.; Mai, C.; Jin, W.B.; Guo, C.J.; Violante, S.; et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 2020, 581, 475–479. [Google Scholar] [CrossRef] [PubMed]
  68. Kim, Y.; Chang, K.O. Inhibitory effects of bile acids and synthetic farnesoid X receptor agonists on rotavirus replication. J. Virol. 2011, 85, 12570–12577. [Google Scholar] [CrossRef]
  69. Chang, K.O.; George, D.W. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J. Virol. 2007, 81, 9633–9640. [Google Scholar] [CrossRef]
  70. Song, M.; Zhang, F.; Fu, Y.; Yi, X.; Feng, S.; Liu, Z.; Deng, D.; Yang, Q.; Yu, M.; Zhu, C.; et al. Tauroursodeoxycholic acid (TUDCA) improves intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets. J. Anim. Sci. Biotechnol. 2022, 13, 73. [Google Scholar] [CrossRef]
  71. Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed]
  72. Wang, X.; Chen, S.; Xiang, H.; Wang, X.; Xiao, J.; Zhao, S.; Shu, Z.; Ouyang, J.; Liang, Z.; Deng, M.; et al. S1PR2/RhoA/ROCK1 pathway promotes inflammatory bowel disease by inducing intestinal vascular endothelial barrier damage and M1 macrophage polarization. Biochem. Pharmacol. 2022, 201, 115077. [Google Scholar] [CrossRef]
  73. Venkatesh, M.; Mukherjee, S.; Wang, H.; Li, H.; Sun, K.; Benechet, A.P.; Qiu, Z.; Maher, L.; Redinbo, M.R.; Phillips, R.S.; et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014, 41, 296–310. [Google Scholar] [CrossRef]
  74. Zangerolamo, L.; Vettorazzi, J.F.; Rosa, L.R.O.; Carneiro, E.M.; Barbosa, H.C.L. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci. 2021, 272, 119252. [Google Scholar] [CrossRef] [PubMed]
  75. Low, C.Y.; Rotstein, C. Emerging fungal infections in immunocompromised patients. F1000 Med. Rep. 2011, 3, 14. [Google Scholar] [CrossRef] [PubMed]
  76. Perfect, J.R.; Hachem, R.; Wingard, J.R. Update on epidemiology of and preventive strategies for invasive fungal infections in cancer patients. Clin. Infect. Dis. 2014, 59 (Suppl. S5), S352–S355. [Google Scholar] [CrossRef]
  77. Zhai, B.; Ola, M.; Rolling, T.; Tosini, N.L.; Joshowitz, S.; Littmann, E.R.; Amoretti, L.A.; Fontana, E.; Wright, R.J.; Miranda, E.; et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat. Med. 2020, 26, 59–64. [Google Scholar] [CrossRef] [PubMed]
  78. Thangamani, S.; Monasky, R.; Lee, J.K.; Antharam, V.; HogenEsch, H.; Hazbun, T.R.; Jin, Y.; Gu, H.; Guo, G.L. Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. J. Fungi 2021, 7, 1030. [Google Scholar] [CrossRef]
  79. Nucci, M.; Anaissie, E. Revisiting the source of candidemia: Skin or gut? Clin. Infect. Dis. 2001, 33, 1959–1967. [Google Scholar] [CrossRef]
  80. Miranda, L.N.; van der Heijden, I.M.; Costa, S.F.; Sousa, A.P.; Sienra, R.A.; Gobara, S.; Santos, C.R.; Lobo, R.D.; Pessoa, V.P., Jr.; Levin, A.S. Candida colonisation as a source for candidaemia. J. Hosp. Infect. 2009, 72, 9–16. [Google Scholar] [CrossRef]
  81. Krause, R.; Krejs, G.J.; Wenisch, C.; Reisinger, E.C. Elevated fecal Candida counts in patients with antibiotic-associated diarrhea: Role of soluble fecal substances. Clin. Diagn. Lab. Immunol. 2003, 10, 167–168. [Google Scholar] [CrossRef] [PubMed]
  82. Samonis, G.; Gikas, A.; Anaissie, E.J.; Vrenzos, G.; Maraki, S.; Tselentis, Y.; Bodey, G.P. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrob. Agents Chemother. 1993, 37, 51–53. [Google Scholar] [CrossRef]
  83. Netea, M.G.; Joosten, L.A.; van der Meer, J.W.; Kullberg, B.J.; van de Veerdonk, F.L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 2015, 15, 630–642. [Google Scholar] [CrossRef]
  84. Koh, A.Y.; Kohler, J.R.; Coggshall, K.T.; Van Rooijen, N.; Pier, G.B. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog. 2008, 4, e35. [Google Scholar] [CrossRef]
  85. Drummond, R.A.; Gaffen, S.L.; Hise, A.G.; Brown, G.D. Innate Defense against Fungal Pathogens. Cold Spring Harb. Perspect. Med. 2014, 5, a019620. [Google Scholar] [CrossRef] [PubMed]
  86. Leonardi, I.; Li, X.; Semon, A.; Li, D.; Doron, I.; Putzel, G.; Bar, A.; Prieto, D.; Rescigno, M.; McGovern, D.P.B.; et al. CX3CR1(+) mononuclear phagocytes control immunity to intestinal fungi. Science 2018, 359, 232–236. [Google Scholar] [CrossRef] [PubMed]
  87. Hooper, L.V.; Stappenbeck, T.S.; Hong, C.V.; Gordon, J.I. Angiogenins: A new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 2003, 4, 269–273. [Google Scholar] [CrossRef]
  88. Medina-Contreras, O.; Geem, D.; Laur, O.; Williams, I.R.; Lira, S.A.; Nusrat, A.; Parkos, C.A.; Denning, T.L. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Investig. 2011, 121, 4787–4795. [Google Scholar] [CrossRef]
  89. Zarrinpar, A.; Chaix, A.; Xu, Z.Z.; Chang, M.W.; Marotz, C.A.; Saghatelian, A.; Knight, R.; Panda, S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun. 2018, 9, 2872. [Google Scholar] [CrossRef]
  90. Wahlstrom, A.; Sayin, S.I.; Marschall, H.U.; Backhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef]
  91. Fan, D.; Coughlin, L.A.; Neubauer, M.M.; Kim, J.; Kim, M.S.; Zhan, X.; Simms-Waldrip, T.R.; Xie, Y.; Hooper, L.V.; Koh, A.Y. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 2015, 21, 808–814. [Google Scholar] [CrossRef] [PubMed]
  92. Wilson, K.H.; Kennedy, M.J.; Fekety, F.R. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J. Clin. Microbiol. 1982, 15, 443–446. [Google Scholar] [CrossRef] [PubMed]
  93. Sorg, J.A.; Sonenshein, A.L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 2008, 190, 2505–2512. [Google Scholar] [CrossRef]
  94. Hsieh, S.H.; Brock, M. Lipid components of bile increase the protective effect of conjugated bile salts against antifungal drugs. Fungal Biol. 2017, 121, 929–938. [Google Scholar] [CrossRef] [PubMed]
  95. Hsieh, S.H.; Brunke, S.; Brock, M. Encapsulation of Antifungals in Micelles Protects Candida albicans during Gall-Bladder Infection. Front. Microbiol. 2017, 8, 117. [Google Scholar] [CrossRef]
  96. Guinan, J.; Villa, P.; Thangamani, S. Secondary bile acids inhibit Candida albicans growth and morphogenesis. Pathog. Dis. 2018, 76, fty038. [Google Scholar] [CrossRef]
  97. Hiengrach, P.; Panpetch, W.; Worasilchai, N.; Chindamporn, A.; Tumwasorn, S.; Jaroonwitchawan, T.; Wilantho, A.; Chatthanathon, P.; Somboonna, N.; Leelahavanichkul, A. Administration of Candida Albicans to Dextran Sulfate Solution Treated Mice Causes Intestinal Dysbiosis, Emergence and Dissemination of Intestinal Pseudomonas Aeruginosa and Lethal Sepsis. Shock 2020, 53, 189–198. [Google Scholar] [CrossRef]
  98. Yang, W.; Zhou, Y.; Wu, C.; Tang, J. Enterohemorrhagic Escherichia coli promotes the invasion and tissue damage of enterocytes infected with Candida albicans in vitro. Sci. Rep. 2016, 6, 37485. [Google Scholar] [CrossRef]
  99. Surawicz, C.M.; McFarland, L.V.; Greenberg, R.N.; Rubin, M.; Fekety, R.; Mulligan, M.E.; Garcia, R.J.; Brandmarker, S.; Bowen, K.; Borjal, D.; et al. The search for a better treatment for recurrent Clostridium difficile disease: Use of high-dose vancomycin combined with Saccharomyces boulardii. Clin. Infect. Dis. 2000, 31, 1012–1017. [Google Scholar] [CrossRef]
  100. Kelly, C.P.; Chong Nguyen, C.; Palmieri, L.J.; Pallav, K.; Dowd, S.E.; Humbert, L.; Seksik, P.; Bado, A.; Coffin, B.; Rainteau, D.; et al. Saccharomyces boulardii CNCM I-745 Modulates the Fecal Bile Acids Metabolism During Antimicrobial Therapy in Healthy Volunteers. Front. Microbiol. 2019, 10, 336. [Google Scholar] [CrossRef]
  101. Castagliuolo, I.; LaMont, J.T.; Nikulasson, S.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun. 1996, 64, 5225–5232. [Google Scholar] [CrossRef] [PubMed]
  102. Tasteyre, A.; Barc, M.C.; Karjalainen, T.; Bourlioux, P.; Collignon, A. Inhibition of in vitro cell adherence of Clostridium difficile by Saccharomyces boulardii. Microb. Pathog. 2002, 32, 219–225. [Google Scholar] [CrossRef] [PubMed]
  103. Chen, X.; Kokkotou, E.G.; Mustafa, N.; Bhaskar, K.R.; Sougioultzis, S.; O’Brien, M.; Pothoulakis, C.; Kelly, C.P. Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J. Biol. Chem. 2006, 281, 24449–24454. [Google Scholar] [CrossRef] [PubMed]
  104. Sorg, J.A.; Sonenshein, A.L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 2010, 192, 4983–4990. [Google Scholar] [CrossRef] [PubMed]
  105. Gurung, B.; Stricklin, M.; Wang, S. Gut Microbiota-Gut Metabolites and Clostridioides difficile Infection: Approaching Sustainable Solutions for Therapy. Metabolites 2024, 14, 74. [Google Scholar] [CrossRef] [PubMed]
  106. Weingarden, A.R.; Dosa, P.I.; DeWinter, E.; Steer, C.J.; Shaughnessy, M.K.; Johnson, J.R.; Khoruts, A.; Sadowsky, M.J. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. PLoS ONE 2016, 11, e0147210. [Google Scholar] [CrossRef] [PubMed]
  107. Wang, W.W.; Wang, J.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Supplemental Clostridium butyricum Modulates Lipid Metabolism Through Shaping Gut Microbiota and Bile Acid Profile of Aged Laying Hens. Front. Microbiol. 2020, 11, 600. [Google Scholar] [CrossRef] [PubMed]
  108. Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. Dis. Primers 2016, 2, 16020. [Google Scholar] [CrossRef]
  109. Icho, S.; Ward, J.S.; Tam, J.; Kociolek, L.K.; Theriot, C.M.; Melnyk, R.A. Intestinal bile acids provide a surmountable barrier against C. difficile TcdB-induced disease pathogenesis. Proc. Natl. Acad. Sci. USA 2023, 120, e2301252120. [Google Scholar] [CrossRef]
  110. Winston, J.A.; Rivera, A.J.; Cai, J.; Thanissery, R.; Montgomery, S.A.; Patterson, A.D.; Theriot, C.M. Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response during Clostridioides difficile Infection by Altering Gut Bile Acids. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef]
  111. Jose, S.; Mukherjee, A.; Abhyankar, M.M.; Leng, L.; Bucala, R.; Sharma, D.; Madan, R. Neutralization of macrophage migration inhibitory factor improves host survival after Clostridium difficile infection. Anaerobe 2018, 53, 56–63. [Google Scholar] [CrossRef] [PubMed]
  112. Pike, C.M.; Tam, J.; Melnyk, R.A.; Theriot, C.M. Tauroursodeoxycholic Acid Inhibits Clostridioides difficile Toxin-Induced Apoptosis. Infect. Immun. 2022, 90, e0015322. [Google Scholar] [CrossRef] [PubMed]
  113. Shrestha, R.; Sorg, J.A. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe 2018, 49, 41–47. [Google Scholar] [CrossRef] [PubMed]
  114. Shen, A. Clostridium difficile toxins: Mediators of inflammation. J. Innate Immun. 2012, 4, 149–158. [Google Scholar] [CrossRef] [PubMed]
  115. Winston, J.A.; Theriot, C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes 2020, 11, 158–171. [Google Scholar] [CrossRef] [PubMed]
  116. Thanissery, R.; Winston, J.A.; Theriot, C.M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017, 45, 86–100. [Google Scholar] [CrossRef] [PubMed]
  117. Winston, J.A.; Theriot, C.M. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe 2016, 41, 44–50. [Google Scholar] [CrossRef] [PubMed]
  118. Tam, J.; Icho, S.; Utama, E.; Orrell, K.E.; Gomez-Biagi, R.F.; Theriot, C.M.; Kroh, H.K.; Rutherford, S.A.; Lacy, D.B.; Melnyk, R.A. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc. Natl. Acad. Sci. USA 2020, 117, 6792–6800. [Google Scholar] [CrossRef]
  119. Donta, I.; Karayannacos, P.E.; Boudoulas, H.; Kostakis, A.; Sechas, M.; Varonos, D.; Scalkeas, G.R. Effect of beta-adrenergic blockade on physiologic growth in the Wistar rat. Res. Commun. Chem. Pathol. Pharmacol. 1982, 37, 147–150. [Google Scholar] [CrossRef] [PubMed]
  120. Zhao, C.; Wu, K.; Hao, H.; Zhao, Y.; Bao, L.; Qiu, M.; He, Y.; He, Z.; Zhang, N.; Hu, X.; et al. Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-kappaB/NLRP3 pathways in mice. NPJ Biofilms Microbiomes 2023, 9, 8. [Google Scholar] [CrossRef]
  121. Hu, J.; Wang, C.; Huang, X.; Yi, S.; Pan, S.; Zhang, Y.; Yuan, G.; Cao, Q.; Ye, X.; Li, H. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep. 2021, 36, 109726. [Google Scholar] [CrossRef] [PubMed]
  122. Hu, X.; Guo, J.; Zhao, C.; Jiang, P.; Maimai, T.; Yanyi, L.; Cao, Y.; Fu, Y.; Zhang, N. The gut microbiota contributes to the development of Staphylococcus aureus-induced mastitis in mice. ISME J. 2020, 14, 1897–1910. [Google Scholar] [CrossRef] [PubMed]
  123. Zhao, C.; Hu, X.; Bao, L.; Wu, K.; Feng, L.; Qiu, M.; Hao, H.; Fu, Y.; Zhang, N. Aryl hydrocarbon receptor activation by Lactobacillus reuteri tryptophan metabolism alleviates Escherichia coli-induced mastitis in mice. PLoS Pathog. 2021, 17, e1009774. [Google Scholar] [CrossRef] [PubMed]
  124. Valat, C.; Forest, K.; Auvray, F.; Metayer, V.; Meheut, T.; Polizzi, C.; Gay, E.; Haenni, M.; Oswald, E.; Madec, J.Y. Assessment of Adhesins as an Indicator of Pathovar-Associated Virulence Factors in Bovine Escherichia coli. Appl. Environ. Microbiol. 2014, 80, 7230–7234. [Google Scholar] [CrossRef] [PubMed]
  125. Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert. Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
  126. Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed]
  127. Repoila, F.; Le Bohec, F.; Guerin, C.; Lacoux, C.; Tiwari, S.; Jaiswal, A.K.; Santana, M.P.; Kennedy, S.P.; Quinquis, B.; Rainteau, D.; et al. Adaptation of the gut pathobiont Enterococcus faecalis to deoxycholate and taurocholate bile acids. Sci. Rep. 2022, 12, 8485. [Google Scholar] [CrossRef] [PubMed]
  128. Paganelli, F.L.; Willems, R.J.; Leavis, H.L. Optimizing future treatment of enterococcal infections: Attacking the biofilm? Trends Microbiol. 2012, 20, 40–49. [Google Scholar] [CrossRef] [PubMed]
  129. McKenney, P.T.; Yan, J.; Vaubourgeix, J.; Becattini, S.; Lampen, N.; Motzer, A.; Larson, P.J.; Dannaoui, D.; Fujisawa, S.; Xavier, J.B.; et al. Intestinal Bile Acids Induce a Morphotype Switch in Vancomycin-Resistant Enterococcus that Facilitates Intestinal Colonization. Cell Host Microbe 2019, 25, 695–705.e5. [Google Scholar] [CrossRef]
  130. Rahman, L.; Sarwar, Y.; Khaliq, S.; Inayatullah; Abbas, W.; Mobeen, A.; Ullah, A.; Hussain, S.Z.; Khan, W.S.; Kyriazi, M.E.; et al. Surfactin-Conjugated Silver Nanoparticles as an Antibacterial and Antibiofilm Agent against Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2023, 15, 43321–43331. [Google Scholar] [CrossRef] [PubMed]
  131. Vavassori, P.; Mencarelli, A.; Renga, B.; Distrutti, E.; Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 2009, 183, 6251–6261. [Google Scholar] [CrossRef] [PubMed]
  132. Biagioli, M.; Carino, A.; Cipriani, S.; Francisci, D.; Marchiano, S.; Scarpelli, P.; Sorcini, D.; Zampella, A.; Fiorucci, S. The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intestinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis. J. Immunol. 2017, 199, 718–733. [Google Scholar] [CrossRef] [PubMed]
  133. Sharma, M.P.; Bhatia, V. Abdominal tuberculosis. Indian J. Med. Res. 2004, 120, 305–315. [Google Scholar] [PubMed]
  134. Epstein, D.; Mistry, K.; Whitelaw, A.; Watermeyer, G.; Pettengell, K.E. The effect of physiological concentrations of bile acids on in vitro growth of Mycobacterium tuberculosis. S. Afr. Med. J. 2012, 102, 522–524. [Google Scholar] [CrossRef]
  135. Merritt, M.E.; Donaldson, J.R. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J. Med. Microbiol. 2009, 58, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
  136. Sanchez, L.M.; Cheng, A.T.; Warner, C.J.; Townsley, L.; Peach, K.C.; Navarro, G.; Shikuma, N.J.; Bray, W.M.; Riener, R.M.; Yildiz, F.H.; et al. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids. PLoS ONE 2016, 11, e0149603. [Google Scholar] [CrossRef] [PubMed]
  137. Sanchez, L.M.; Wong, W.R.; Riener, R.M.; Schulze, C.J.; Linington, R.G. Examining the fish microbiome: Vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS ONE 2012, 7, e35398. [Google Scholar] [CrossRef]
  138. Condren, A.R.; Kahl, L.J.; Boelter, G.; Kritikos, G.; Banzhaf, M.; Dietrich, L.E.P.; Sanchez, L.M. Biofilm Inhibitor Taurolithocholic Acid Alters Colony Morphology, Specialized Metabolism, and Virulence of Pseudomonas aeruginosa. ACS Infect. Dis. 2020, 6, 603–612. [Google Scholar] [CrossRef]
  139. Escalante, P.; Arias-Guillen, M.; Palacios Gutierrez, J.J. New Research Strategies in Latent Tuberculosis Infection. Arch. Bronconeumol. 2021, 57, 151–153. [Google Scholar] [CrossRef]
  140. Sistrunk, J.R.; Nickerson, K.P.; Chanin, R.B.; Rasko, D.A.; Faherty, C.S. Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin. Microbiol. Rev. 2016, 29, 819–836. [Google Scholar] [CrossRef]
  141. Fu, T.; Wang, Y.; Ma, M.; Dai, W.; Pan, L.; Shang, Q.; Yu, G. Isolation of Alginate-Degrading Bacteria from the Human Gut Microbiota and Discovery of Bacteroides xylanisolvens AY11-1 as a Novel Anti-Colitis Probiotic Bacterium. Nutrients 2023, 15, 1352. [Google Scholar] [CrossRef] [PubMed]
  142. Yao, L.; Seaton, S.C.; Ndousse-Fetter, S.; Adhikari, A.A.; DiBenedetto, N.; Mina, A.I.; Banks, A.S.; Bry, L.; Devlin, A.S. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 2018, 7, e37182. [Google Scholar] [CrossRef] [PubMed]
  143. Li, X.; Kang, Y.; Huang, Y.; Xiao, Y.; Song, L.; Lu, S.; Ren, Z. A strain of Bacteroides thetaiotaomicron attenuates colonization of Clostridioides difficile and affects intestinal microbiota and bile acids profile in a mouse model. Biomed. Pharmacother. 2021, 137, 111290. [Google Scholar] [CrossRef] [PubMed]
  144. Yoon, S.; Yu, J.; McDowell, A.; Kim, S.H.; You, H.J.; Ko, G. Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile. J. Microbiol. 2017, 55, 892–899. [Google Scholar] [CrossRef]
  145. Deng, H.; Yang, S.; Zhang, Y.; Qian, K.; Zhang, Z.; Liu, Y.; Wang, Y.; Bai, Y.; Fan, H.; Zhao, X.; et al. Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Front. Microbiol. 2018, 9, 2976. [Google Scholar] [CrossRef]
  146. Garrett, W.S. The gut microbiota and colon cancer. Science 2019, 364, 1133–1135. [Google Scholar] [CrossRef]
  147. Sun, X.; Chen, Z.; Yu, L.; Zeng, W.; Sun, B.; Fan, H.; Bai, Y. Bacteroides dorei BDX-01 alleviates DSS-induced experimental colitis in mice by regulating intestinal bile salt hydrolase activity and the FXR-NLRP3 signaling pathway. Front. Pharmacol. 2023, 14, 1205323. [Google Scholar] [CrossRef]
  148. Tiratterra, E.; Franco, P.; Porru, E.; Katsanos, K.H.; Christodoulou, D.K.; Roda, G. Role of bile acids in inflammatory bowel disease. Ann. Gastroenterol. 2018, 31, 266–272. [Google Scholar] [CrossRef]
  149. Zhen, Y.; Zhang, H. NLRP3 Inflammasome and Inflammatory Bowel Disease. Front. Immunol. 2019, 10, 276. [Google Scholar] [CrossRef]
  150. Thomas, J.P.; Modos, D.; Rushbrook, S.M.; Powell, N.; Korcsmaros, T. The Emerging Role of Bile Acids in the Pathogenesis of Inflammatory Bowel Disease. Front. Immunol. 2022, 13, 829525. [Google Scholar] [CrossRef]
  151. Chen, M.L.; Takeda, K.; Sundrud, M.S. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 2019, 12, 851–861. [Google Scholar] [CrossRef] [PubMed]
  152. Mullish, B.H.; Allegretti, J.R. The contribution of bile acid metabolism to the pathogenesis of Clostridioides difficile infection. Therap. Adv. Gastroenterol. 2021, 14, 17562848211017725. [Google Scholar] [CrossRef]
  153. Nusse, R.; Clevers, H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef]
  154. Allegretti, J.R.; Mullish, B.H.; Kelly, C.; Fischer, M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 2019, 394, 420–431. [Google Scholar] [CrossRef]
  155. Aguirre, A.M.; Yalcinkaya, N.; Wu, Q.; Swennes, A.; Tessier, M.E.; Roberts, P.; Miyajima, F.; Savidge, T.; Sorg, J.A. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog. 2021, 17, e1010015. [Google Scholar] [CrossRef]
  156. Saenz, C.; Fang, Q.; Gnanasekaran, T.; Trammell, S.A.J.; Buijink, J.A.; Pisano, P.; Wierer, M.; Moens, F.; Lengger, B.; Brejnrod, A.; et al. Clostridium scindens secretome suppresses virulence gene expression of Clostridioides difficile in a bile acid-independent manner. Microbiol. Spectr. 2023, 11, e0393322. [Google Scholar] [CrossRef] [PubMed]
  157. Aguirre, A.M.; Adegbite, A.O.; Sorg, J.A. Clostridioides difficile bile salt hydrolase activity has substrate specificity and affects biofilm formation. NPJ Biofilms Microbiomes 2022, 8, 94. [Google Scholar] [CrossRef] [PubMed]
  158. Seo, M.; Inoue, I.; Tanaka, M.; Matsuda, N.; Nakano, T.; Awata, T.; Katayama, S.; Alpers, D.H.; Komoda, T. Clostridium butyricum MIYAIRI 588 improves high-fat diet-induced non-alcoholic fatty liver disease in rats. Dig. Dis. Sci. 2013, 58, 3534–3544. [Google Scholar] [CrossRef]
  159. Zhang, X.; Yun, Y.; Lai, Z.; Ji, S.; Yu, G.; Xie, Z.; Zhang, H.; Zhong, X.; Wang, T.; Zhang, L. Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets. J. Anim. Sci. Biotechnol. 2023, 14, 36. [Google Scholar] [CrossRef] [PubMed]
  160. Bergogne-Berezin, E.; Towner, K.J. Acinetobacter spp. as nosocomial pathogens: Microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 1996, 9, 148–165. [Google Scholar] [CrossRef]
  161. Haenni, M.; Lupo, A.; Madec, J.Y. Antimicrobial Resistance in Streptococcus spp. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
  162. Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; Leon-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol. Spectr. 2018, 6, 185–227. [Google Scholar] [CrossRef] [PubMed]
  163. Ren, D.; Pichichero, M.E. Vaccine targets against Moraxella catarrhalis. Expert. Opin. Ther. Targets 2016, 20, 19–33. [Google Scholar] [CrossRef] [PubMed]
  164. Fatahi-Bafghi, M. Characterization of the Rothia spp. and their role in human clinical infections. Infect. Genet. Evol. 2021, 93, 104877. [Google Scholar] [CrossRef] [PubMed]
  165. Panzitt, K.; Wagner, M. FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166133. [Google Scholar] [CrossRef]
  166. Zhao, X.; Guo, Y.; Guo, S.; Tan, J. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl. Microbiol. Biotechnol. 2013, 97, 6477–6488. [Google Scholar] [CrossRef] [PubMed]
  167. Wang, W.C.; Kuo, C.Y.; Tzang, B.S.; Chen, H.M.; Kao, S.H. IL-6 augmented motility of airway epithelial cell BEAS-2B via Akt/GSK-3beta signaling pathway. J. Cell Biochem. 2012, 113, 3567–3575. [Google Scholar] [CrossRef]
  168. Liao, J.; Liu, Y.; Yao, Y.; Zhang, J.; Wang, H.; Zhao, J.; Chen, W.; Lu, W. Clostridium butyricum Strain CCFM1299 Reduces Obesity via Increasing Energy Expenditure and Modulating Host Bile Acid Metabolism. Nutrients 2023, 15, 4339. [Google Scholar] [CrossRef]
  169. Wu, Q.; Liang, X.; Wang, K.; Lin, J.; Wang, X.; Wang, P.; Zhang, Y.; Nie, Q.; Liu, H.; Zhang, Z.; et al. Intestinal hypoxia-inducible factor 2alpha regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab. 2021, 33, 1988–2003.e7. [Google Scholar] [CrossRef] [PubMed]
  170. Wang, K.; Liao, M.; Zhou, N.; Bao, L.; Ma, K.; Zheng, Z.; Wang, Y.; Liu, C.; Wang, W.; Wang, J.; et al. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 2019, 26, 222–235.e5. [Google Scholar] [CrossRef]
  171. Zheng, X.; Chen, T.; Jiang, R.; Zhao, A.; Wu, Q.; Kuang, J.; Sun, D.; Ren, Z.; Li, M.; Zhao, M.; et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021, 33, 791–803.e7. [Google Scholar] [CrossRef]
  172. Li, Z.; Chen, M.; Zhang, R.; Wang, Z.; He, H.; Wan, Z.; Li, H.; Cai, H.; Chen, Z.; Li, M.; et al. Clostridium butyricum Ameliorates the Effect of Coprophagy Prevention on Hepatic Lipid Synthesis in Rabbits via the Gut-Liver Axis. Int. J. Mol. Sci. 2023, 24, 17554. [Google Scholar] [CrossRef] [PubMed]
  173. Huang, P.; Cui, X.; Wang, Z.; Xiao, C.; Ji, Q.; Wei, Q.; Huang, Y.; Bao, G.; Liu, Y. Effects of Clostridium butyricum and a Bacteriophage Cocktail on Growth Performance, Serum Biochemistry, Digestive Enzyme Activities, Intestinal Morphology, Immune Responses, and the Intestinal Microbiota in Rabbits. Antibiotics 2021, 10, 1347. [Google Scholar] [CrossRef]
  174. Xu, Q.; Gu, S.; Chen, Y.; Quan, J.; Lv, L.; Chen, D.; Zheng, B.; Xu, L.; Li, L. Protective Effect of Pediococcus pentosaceus LI05 Against Clostridium difficile Infection in a Mouse Model. Front. Microbiol. 2018, 9, 2396. [Google Scholar] [CrossRef]
  175. Antharam, V.C.; McEwen, D.C.; Garrett, T.J.; Dossey, A.T.; Li, E.C.; Kozlov, A.N.; Mesbah, Z.; Wang, G.P. An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection. PLoS ONE 2016, 11, e0148824. [Google Scholar] [CrossRef]
  176. Fickert, P.; Pollheimer, M.J.; Beuers, U.; Lackner, C.; Hirschfield, G.; Housset, C.; Keitel, V.; Schramm, C.; Marschall, H.U.; Karlsen, T.H.; et al. Characterization of animal models for primary sclerosing cholangitis (PSC). J. Hepatol. 2014, 60, 1290–1303. [Google Scholar] [CrossRef]
  177. Han, S.; Wang, K.; Shen, J.; Xia, H.; Lu, Y.; Zhuge, A.; Li, S.; Qiu, B.; Zhang, S.; Dong, X.; et al. Probiotic Pediococcus pentosaceus Li05 Improves Cholestasis through the FXR-SHP and FXR-FGF15 Pathways. Nutrients 2023, 15, 4864. [Google Scholar] [CrossRef]
  178. Bui, T.P.N.; Manneras-Holm, L.; Puschmann, R.; Wu, H.; Troise, A.D.; Nijsse, B.; Boeren, S.; Backhed, F.; Fiedler, D.; deVos, W.M. Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health. Nat. Commun. 2021, 12, 4798. [Google Scholar] [CrossRef] [PubMed]
  179. Chiang, J.Y. Bile acids: Regulation of synthesis. J. Lipid Res. 2009, 50, 1955–1966. [Google Scholar] [CrossRef]
  180. Jones, B.V.; Begley, M.; Hill, C.; Gahan, C.G.; Marchesi, J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 2008, 105, 13580–13585. [Google Scholar] [CrossRef] [PubMed]
  181. Deng, L.; Liu, L.; Fu, T.; Li, C.; Jin, N.; Zhang, H.; Li, C.; Liu, Y.; Zhao, C. Genome Sequence and Evaluation of Safety and Probiotic Potential of Lactiplantibacillus plantarum LPJZ-658. Microorganisms 2023, 11, 1620. [Google Scholar] [CrossRef]
  182. Zhao, D.; Cao, J.; Jin, H.; Shan, Y.; Fang, J.; Liu, F. Beneficial impacts of fermented celery (Apium graveolens L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food Funct. 2021, 12, 9151–9164. [Google Scholar] [CrossRef] [PubMed]
  183. Chen, M.; Hui, S.; Lang, H.; Zhou, M.; Zhang, Y.; Kang, C.; Zeng, X.; Zhang, Q.; Yi, L.; Mi, M. SIRT3 Deficiency Promotes High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Correlation with Impaired Intestinal Permeability through Gut Microbial Dysbiosis. Mol. Nutr. Food Res. 2019, 63, e1800612. [Google Scholar] [CrossRef]
  184. Kumar, A.; Sundaram, K.; Mu, J.; Dryden, G.W.; Sriwastva, M.K.; Lei, C.; Zhang, L.; Qiu, X.; Xu, F.; Yan, J.; et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat. Commun. 2021, 12, 213. [Google Scholar] [CrossRef] [PubMed]
  185. Li, Q.; Hu, W.; Liu, W.X.; Zhao, L.Y.; Huang, D.; Liu, X.D.; Chan, H.; Zhang, Y.; Zeng, J.D.; Coker, O.O.; et al. Streptococcus thermophilus Inhibits Colorectal Tumorigenesis Through Secreting beta-Galactosidase. Gastroenterology 2021, 160, 1179–1193.e14. [Google Scholar] [CrossRef] [PubMed]
  186. Wang, D.; Zhao, R.; Qu, Y.Y.; Mei, X.Y.; Zhang, X.; Zhou, Q.; Li, Y.; Yang, S.B.; Zuo, Z.G.; Chen, Y.M.; et al. Colonic Lysine Homocysteinylation Induced by High-Fat Diet Suppresses DNA Damage Repair. Cell Rep. 2018, 25, 398–412.e6. [Google Scholar] [CrossRef]
  187. Wang, D.; Fu, L.; Wei, J.; Xiong, Y.; DuBois, R.N. PPARdelta Mediates the Effect of Dietary Fat in Promoting Colorectal Cancer Metastasis. Cancer Res. 2019, 79, 4480–4490. [Google Scholar] [CrossRef]
  188. Zhao, M.; Jiang, Z.; Cai, H.; Li, Y.; Mo, Q.; Deng, L.; Zhong, H.; Liu, T.; Zhang, H.; Kang, J.X.; et al. Modulation of the Gut Microbiota during High-Dose Glycerol Monolaurate-Mediated Amelioration of Obesity in Mice Fed a High-Fat Diet. mBio 2020, 11. [Google Scholar] [CrossRef] [PubMed]
  189. Kim, J.D.; Yoon, N.A.; Jin, S.; Diano, S. Microglial UCP2 Mediates Inflammation and Obesity Induced by High-Fat Feeding. Cell Metab. 2019, 30, 952–962.e5. [Google Scholar] [CrossRef]
  190. Tian, B.; Zhao, J.; Zhang, M.; Chen, Z.; Ma, Q.; Liu, H.; Nie, C.; Zhang, Z.; An, W.; Li, J. Lycium ruthenicum Anthocyanins Attenuate High-Fat Diet-Induced Colonic Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota. Mol. Nutr. Food Res. 2021, 65, e2000745. [Google Scholar] [CrossRef]
  191. Wei, M.; Gao, X.; Liu, L.; Li, Z.; Wan, Z.; Dong, Y.; Chen, X.; Niu, Y.; Zhang, J.; Yang, G. Visceral Adipose Tissue Derived Exosomes Exacerbate Colitis Severity via Pro-inflammatory MiRNAs in High Fat Diet Fed Mice. ACS Nano 2020, 14, 5099–5110. [Google Scholar] [CrossRef]
  192. Bisanz, J.E.; Upadhyay, V.; Turnbaugh, J.A.; Ly, K.; Turnbaugh, P.J. Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host Microbe 2019, 26, 265–272.e4. [Google Scholar] [CrossRef] [PubMed]
  193. Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Li, H.; Wang, R.; Tang, J.; Huang, T.; et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut 2019, 68, 1417–1429. [Google Scholar] [CrossRef] [PubMed]
  194. Luo, Y.; Cheng, R.; Liang, H.; Miao, Z.; Wang, J.; Zhou, Q.; Chen, J.; He, F.; Shen, X. Influence of high-fat diet on host animal health via bile acid metabolism and benefits of oral-fed Streptococcus thermophilus MN-ZLW-002. Exp. Anim. 2022, 71, 468–480. [Google Scholar] [CrossRef]
  195. Li, F.; Berardi, M.; Li, W.; Farzan, M.; Dormitzer, P.R.; Harrison, S.C. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J. Virol. 2006, 80, 6794–6800. [Google Scholar] [CrossRef]
  196. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
  197. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
  198. Thuy, P.X.; Bao, T.D.D.; Moon, E.Y. Ursodeoxycholic acid ameliorates cell migration retarded by the SARS-CoV-2 spike protein in BEAS-2B human bronchial epithelial cells. Biomed. Pharmacother. 2022, 150, 113021. [Google Scholar] [CrossRef]
  199. Rodal Canales, F.J.; Perez-Campos Mayoral, L.; Hernandez-Huerta, M.T.; Sanchez Navarro, L.M.; Matias-Cervantes, C.A.; Martinez Cruz, M.; Cruz Parada, E.; Zenteno, E.; Ramos-Martinez, E.G.; Perez-Campos Mayoral, E.; et al. Interaction of Spike protein and lipid membrane of SARS-CoV-2 with Ursodeoxycholic acid, an in-silico analysis. Sci. Rep. 2021, 11, 22288. [Google Scholar] [CrossRef]
  200. Carino, A.; Moraca, F.; Fiorillo, B.; Marchiano, S.; Sepe, V.; Biagioli, M.; Finamore, C.; Bozza, S.; Francisci, D.; Distrutti, E.; et al. Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Front. Chem. 2020, 8, 572885. [Google Scholar] [CrossRef] [PubMed]
  201. Yadav, R.; Choudhury, C.; Kumar, Y.; Bhatia, A. Virtual repurposing of ursodeoxycholate and chenodeoxycholate as lead candidates against SARS-Cov2-Envelope protein: A molecular dynamics investigation. J. Biomol. Struct. Dyn. 2022, 40, 5147–5158. [Google Scholar] [CrossRef]
  202. Subramanian, S.; Iles, T.; Ikramuddin, S.; Steer, C.J. Merit of an Ursodeoxycholic Acid Clinical Trial in COVID-19 Patients. Vaccines 2020, 8, 320. [Google Scholar] [CrossRef]
  203. Kim, Y.J.; Jeong, S.H.; Kim, E.K.; Kim, E.J.; Cho, J.H. Ursodeoxycholic acid suppresses epithelial-mesenchymal transition and cancer stem cell formation by reducing the levels of peroxiredoxin II and reactive oxygen species in pancreatic cancer cells. Oncol. Rep. 2017, 38, 3632–3638. [Google Scholar] [CrossRef] [PubMed]
  204. Lapenna, D.; Ciofani, G.; Festi, D.; Neri, M.; Pierdomenico, S.D.; Giamberardino, M.A.; Cuccurullo, F. Antioxidant properties of ursodeoxycholic acid. Biochem. Pharmacol. 2002, 64, 1661–1667. [Google Scholar] [CrossRef]
  205. Talebian, R.; Panahipour, L.; Gruber, R. Ursodeoxycholic acid attenuates the expression of proinflammatory cytokines in periodontal cells. J. Periodontol. 2020, 91, 1098–1104. [Google Scholar] [CrossRef]
  206. Ko, W.K.; Lee, S.H.; Kim, S.J.; Jo, M.J.; Kumar, H.; Han, I.B.; Sohn, S. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages. PLoS ONE 2017, 12, e0180673. [Google Scholar] [CrossRef]
  207. Ko, W.K.; Kim, S.J.; Jo, M.J.; Choi, H.; Lee, D.; Kwon, I.K.; Lee, S.H.; Han, I.B.; Sohn, S. Ursodeoxycholic Acid Inhibits Inflammatory Responses and Promotes Functional Recovery After Spinal Cord Injury in Rats. Mol. Neurobiol. 2019, 56, 267–277. [Google Scholar] [CrossRef]
  208. Willart, M.A.; van Nimwegen, M.; Grefhorst, A.; Hammad, H.; Moons, L.; Hoogsteden, H.C.; Lambrecht, B.N.; Kleinjan, A. Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor. Allergy 2012, 67, 1501–1510. [Google Scholar] [CrossRef]
  209. Kim, E.K.; Cho, J.H.; Kim, E.; Kim, Y.J. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth. PLoS ONE 2017, 12, e0181183. [Google Scholar] [CrossRef] [PubMed]
  210. Brevini, T.; Maes, M.; Webb, G.J.; John, B.V.; Fuchs, C.D.; Buescher, G.; Wang, L.; Griffiths, C.; Brown, M.L.; Scott, W.E., 3rd; et al. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023, 615, 134–142. [Google Scholar] [CrossRef] [PubMed]
  211. Kumar, Y.; Yadav, R.; Bhatia, A. Can natural detergent properties of bile acids be used beneficially in tackling coronavirus disease-19? Future Virol. 2020, 15, 779–782. [Google Scholar] [CrossRef]
  212. Abdulrab, S.; Al-Maweri, S.; Halboub, E. Ursodeoxycholic acid as a candidate therapeutic to alleviate and/or prevent COVID-19-associated cytokine storm. Med. Hypotheses 2020, 143, 109897. [Google Scholar] [CrossRef] [PubMed]
  213. Xiao, X.; Chen, H.; Yang, L.; Xie, G.; Shimuzu, R.; Murai, A. Concise review: Cancer cell reprogramming and therapeutic implications. Transl. Oncol. 2022, 24, 101503. [Google Scholar] [CrossRef] [PubMed]
  214. Liu, T.; Wang, J.S. Ursodeoxycholic acid administration did not reduce susceptibility to SARS-CoV-2 infection in children. Liver Int. 2023, 43, 1950–1954. [Google Scholar] [CrossRef] [PubMed]
  215. Liu, L.; Aigner, A.; Schmid, R.D. Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7beta-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Appl. Microbiol. Biotechnol. 2011, 90, 127–135. [Google Scholar] [CrossRef]
  216. Hirayama, M.; Nishiwaki, H.; Hamaguchi, T.; Ito, M.; Ueyama, J.; Maeda, T.; Kashihara, K.; Tsuboi, Y.; Ohno, K. Intestinal Collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate. PLoS ONE 2021, 16, e0260451. [Google Scholar] [CrossRef] [PubMed]
  217. Luo, L.; Han, W.; Du, J.; Yang, X.; Duan, M.; Xu, C.; Zeng, Z.; Chen, W.; Chen, J. Chenodeoxycholic Acid from Bile Inhibits Influenza A Virus Replication via Blocking Nuclear Export of Viral Ribonucleoprotein Complexes. Molecules 2018, 23, 3315. [Google Scholar] [CrossRef] [PubMed]
  218. Sun, X.; Hu, X.; Zhang, Q.; Zhao, L.; Sun, X.; Yang, L.; Jin, M. Sodium taurocholate hydrate inhibits influenza virus replication and suppresses influenza a Virus-triggered inflammation in vitro and in vivo. Int. Immunopharmacol. 2023, 122, 110544. [Google Scholar] [CrossRef]
  219. Kumar, N.; Xin, Z.T.; Liang, Y.; Ly, H.; Liang, Y. NF-kappaB signaling differentially regulates influenza virus RNA synthesis. J. Virol. 2008, 82, 9880–9889. [Google Scholar] [CrossRef]
  220. Chang, K.O.; Sosnovtsev, S.V.; Belliot, G.; Kim, Y.; Saif, L.J.; Green, K.Y. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc. Natl. Acad. Sci. USA 2004, 101, 8733–8738. [Google Scholar] [CrossRef]
  221. Ettayebi, K.; Crawford, S.E.; Murakami, K.; Broughman, J.R.; Karandikar, U.; Tenge, V.R.; Neill, F.H.; Blutt, S.E.; Zeng, X.L.; Qu, L.; et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016, 353, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
  222. Nelson, C.A.; Wilen, C.B.; Dai, Y.N.; Orchard, R.C.; Kim, A.S.; Stegeman, R.A.; Hsieh, L.L.; Smith, T.J.; Virgin, H.W.; Fremont, D.H. Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor. Proc. Natl. Acad. Sci. USA 2018, 115, E9201–E9210. [Google Scholar] [CrossRef] [PubMed]
  223. Grau, K.R.; Zhu, S.; Peterson, S.T.; Helm, E.W.; Philip, D.; Phillips, M.; Hernandez, A.; Turula, H.; Frasse, P.; Graziano, V.R.; et al. The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nat. Microbiol. 2020, 5, 84–92. [Google Scholar] [CrossRef] [PubMed]
  224. Baldridge, M.T.; Nice, T.J.; McCune, B.T.; Yokoyama, C.C.; Kambal, A.; Wheadon, M.; Diamond, M.S.; Ivanova, Y.; Artyomov, M.; Virgin, H.W. Commensal microbes and interferon-lambda determine persistence of enteric murine norovirus infection. Science 2015, 347, 266–269. [Google Scholar] [CrossRef]
  225. Yan, H.; Peng, B.; Liu, Y.; Xu, G.; He, W.; Ren, B.; Jing, Z.; Sui, J.; Li, W. Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J. Virol. 2014, 88, 3273–3284. [Google Scholar] [CrossRef]
Figure 1. The mechanism of BAs regulating infection. BAs (A) regulate the abundance of intestinal microbiota. PBAs (B) promote pathogen proliferation and (C) increase intestinal epithelial permeability. SBAs (D) exhibit anti-inflammatory effects; (E) inhibit pathogen proliferation; and (F) strengthen intestinal barrier function. BA: bile acid; PBA: primary bile acid; SBA: secondary bile acid.
Figure 1. The mechanism of BAs regulating infection. BAs (A) regulate the abundance of intestinal microbiota. PBAs (B) promote pathogen proliferation and (C) increase intestinal epithelial permeability. SBAs (D) exhibit anti-inflammatory effects; (E) inhibit pathogen proliferation; and (F) strengthen intestinal barrier function. BA: bile acid; PBA: primary bile acid; SBA: secondary bile acid.
Pathogens 13 00702 g001
Figure 2. Interactions between BAs and Candida albicans. PBAs (A) reduce the tight junction proteins in the intestine; (B) inhibit the production of immune active substances angiogenin-4 and CX3CR1; (C) and increase the abundance of enterohemorrhagic Escherichia coli. SBAs (D) inhibit the transition of C. albicans from yeast to virulent hyphal form and from planktonic to biofilm phase and (E) direct antimicrobial activity against C. albicans. C. albicans (F) reduces the abundance of intestinal bacteria exhibiting BSH activity. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; C. albicans: Candida albicans.
Figure 2. Interactions between BAs and Candida albicans. PBAs (A) reduce the tight junction proteins in the intestine; (B) inhibit the production of immune active substances angiogenin-4 and CX3CR1; (C) and increase the abundance of enterohemorrhagic Escherichia coli. SBAs (D) inhibit the transition of C. albicans from yeast to virulent hyphal form and from planktonic to biofilm phase and (E) direct antimicrobial activity against C. albicans. C. albicans (F) reduces the abundance of intestinal bacteria exhibiting BSH activity. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; C. albicans: Candida albicans.
Pathogens 13 00702 g002
Figure 3. Interactions between BAs and Clostridioides difficile. PBAs (A) promote the spore germination of C. difficile. SBAs (B) bind to FXR and TGR5 receptors, activating NF-κB and other signaling pathways, enhancing innate immunity, and inhibiting the growth of C. difficile, and (C) interact with the C-terminus of toxin TcdB directly, inducing toxin structural changes, and preventing toxin binding with host cells. C. difficile (D) promotes the release of C. difficile toxins TcdA and TcdB and (E) induces intestinal inflammation. PBA: primary bile acid; SBA: secondary bile acid; FXR: Farnesoid X Receptor; TGR5: Takeda G Protein-Coupled Receptor 5; C. difficile: Clostridioides difficile.
Figure 3. Interactions between BAs and Clostridioides difficile. PBAs (A) promote the spore germination of C. difficile. SBAs (B) bind to FXR and TGR5 receptors, activating NF-κB and other signaling pathways, enhancing innate immunity, and inhibiting the growth of C. difficile, and (C) interact with the C-terminus of toxin TcdB directly, inducing toxin structural changes, and preventing toxin binding with host cells. C. difficile (D) promotes the release of C. difficile toxins TcdA and TcdB and (E) induces intestinal inflammation. PBA: primary bile acid; SBA: secondary bile acid; FXR: Farnesoid X Receptor; TGR5: Takeda G Protein-Coupled Receptor 5; C. difficile: Clostridioides difficile.
Pathogens 13 00702 g003
Figure 4. Interactions between BAs and Enterococci and other pathogenic bacteria. PBAs (A) regulate the synthesis of virulence-related metabolites, such as the iron chelator pyochelin, thereby affecting Pseudomonas aeruginosa’s toxicity, and inhibit its biofilm formation. SBAs (B) inhibit the expression of ribosomal protein genes, suppressing the growth of E. faecalis; (C) maintain VRE in a diplococcal state and inhibit the morphological transformation of VRE; (D) inhibit the formation of VRE biofilms; (E) optimize the structure of the intestinal microbiota; (F) increase TGR5 transcription, thereby enhancing innate immunity, and strengthen the intestinal barrier; and (G) disrupt the cell wall of lipid-rich M. tuberculosis. ESBL-EAEC (H) reduces the abundance of intestinal bacteria exhibiting BSH activity. PBA: primary bile acid; SBA: secondary bile acid; VRE: vancomycin-resistant enterococci. TGR5: Takeda G Protein-Coupled Receptor 5.
Figure 4. Interactions between BAs and Enterococci and other pathogenic bacteria. PBAs (A) regulate the synthesis of virulence-related metabolites, such as the iron chelator pyochelin, thereby affecting Pseudomonas aeruginosa’s toxicity, and inhibit its biofilm formation. SBAs (B) inhibit the expression of ribosomal protein genes, suppressing the growth of E. faecalis; (C) maintain VRE in a diplococcal state and inhibit the morphological transformation of VRE; (D) inhibit the formation of VRE biofilms; (E) optimize the structure of the intestinal microbiota; (F) increase TGR5 transcription, thereby enhancing innate immunity, and strengthen the intestinal barrier; and (G) disrupt the cell wall of lipid-rich M. tuberculosis. ESBL-EAEC (H) reduces the abundance of intestinal bacteria exhibiting BSH activity. PBA: primary bile acid; SBA: secondary bile acid; VRE: vancomycin-resistant enterococci. TGR5: Takeda G Protein-Coupled Receptor 5.
Pathogens 13 00702 g004
Figure 5. Interactions between BAs and Bacteroidetes. (A) Bacteroidetes exhibit BSH activity, facilitate SBA production, and alleviate colitis; (B) Bacteroides with high BSH gene expression will promote the massive production of SBA, which can induce colorectal cancer; (C) BDX-01 enhances intestinal health by modulating BA metabolism and the FXR-NLRP3 inflammasome signaling pathway, thus mitigating experimental colitis. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; FXR: Farnesoid X Receptor.
Figure 5. Interactions between BAs and Bacteroidetes. (A) Bacteroidetes exhibit BSH activity, facilitate SBA production, and alleviate colitis; (B) Bacteroides with high BSH gene expression will promote the massive production of SBA, which can induce colorectal cancer; (C) BDX-01 enhances intestinal health by modulating BA metabolism and the FXR-NLRP3 inflammasome signaling pathway, thus mitigating experimental colitis. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; FXR: Farnesoid X Receptor.
Pathogens 13 00702 g005
Figure 6. Interactions between BAs and Clostridium scindens. C. scindens (A) exhibits BSH and 7α-dehydroxylase activity, facilitates SBA production, and inhibits C. difficile infection; (B) inhibitd the toxin production of C. difficile; and (C) reduces C. difficile overall count. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; C. difficile: Clostridioides difficile; C. scindens: Clostridium scindens.
Figure 6. Interactions between BAs and Clostridium scindens. C. scindens (A) exhibits BSH and 7α-dehydroxylase activity, facilitates SBA production, and inhibits C. difficile infection; (B) inhibitd the toxin production of C. difficile; and (C) reduces C. difficile overall count. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; C. difficile: Clostridioides difficile; C. scindens: Clostridium scindens.
Pathogens 13 00702 g006
Figure 7. Interactions between BAs and Clostridium butyricum. C. butyricum (A) modulates the ratio of PBAs to SBAs and (B) promotes the production of CBA. CBA improves intrauterine growth restriction and reduce liver inflammation by activating LXRα and FXR; (C) enhances the production of butyric acid, which ameliorates chronic pancreatitis and strengthens the tight junctions of intestinal epithelial cells, thereby reducing intestinal barrier damage and restoring the intestinal immune microenvironment; (D) inhibits lipid synthesis; and (E) coordinates SBA regulation to activate FXR and inhibit TGR5, thereby regulating blood sugar and reducing obesity. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; LXRα: liver X receptor alpha; FXR: Farnesoid X Receptor; CBA: conjugated bile acid; C. butyricum: Clostridium butyricum.
Figure 7. Interactions between BAs and Clostridium butyricum. C. butyricum (A) modulates the ratio of PBAs to SBAs and (B) promotes the production of CBA. CBA improves intrauterine growth restriction and reduce liver inflammation by activating LXRα and FXR; (C) enhances the production of butyric acid, which ameliorates chronic pancreatitis and strengthens the tight junctions of intestinal epithelial cells, thereby reducing intestinal barrier damage and restoring the intestinal immune microenvironment; (D) inhibits lipid synthesis; and (E) coordinates SBA regulation to activate FXR and inhibit TGR5, thereby regulating blood sugar and reducing obesity. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; LXRα: liver X receptor alpha; FXR: Farnesoid X Receptor; CBA: conjugated bile acid; C. butyricum: Clostridium butyricum.
Pathogens 13 00702 g007
Figure 8. Interactions between UDCA and Coronavirus SARS-CoV-2. UDCA (A) directly damages the virus structure, inhibiting its replication; (B) reduces the affinity between the receptor-binding domain of coronavirus SARS-CoV-2 and the host ACE2; (C) inhibits FXR gene expression, thereby suppressing ACE2 expression; (D) increases the abundance of Collinsella and promotes the synthesis of 7β-Hydroxysteroid dehydrogenase, ameliorating acute respiratory distress syndrome in COVID-19; and (E) possesses anti-inflammatory, antioxidative, immunomodulatory, and anti-apoptotic properties. UDCA: ursodeoxycholic acid; SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2; FXR: Farnesoid X Receptor; ACE2: angiotensin-converting enzyme 2; SBA: secondary bile acid.
Figure 8. Interactions between UDCA and Coronavirus SARS-CoV-2. UDCA (A) directly damages the virus structure, inhibiting its replication; (B) reduces the affinity between the receptor-binding domain of coronavirus SARS-CoV-2 and the host ACE2; (C) inhibits FXR gene expression, thereby suppressing ACE2 expression; (D) increases the abundance of Collinsella and promotes the synthesis of 7β-Hydroxysteroid dehydrogenase, ameliorating acute respiratory distress syndrome in COVID-19; and (E) possesses anti-inflammatory, antioxidative, immunomodulatory, and anti-apoptotic properties. UDCA: ursodeoxycholic acid; SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2; FXR: Farnesoid X Receptor; ACE2: angiotensin-converting enzyme 2; SBA: secondary bile acid.
Pathogens 13 00702 g008
Figure 9. Interactions between BAs and Other Viruses. (A) STH manifests antiviral activity against IVA infections through the modulation of signaling pathways, including TLR4/NF-κB; (B) CDCA demonstrates the capacity to attenuate IAV infections by inhibiting the nuclear export of vRNPs; (C) CDCA can reduce virus-induced lipid synthesis, inhibiting the replication of rotavirus; (D) CDCA activates FXR and TGR5 receptors to counteract HBV infection; (E) GCDCA enhances the virulence of norovirus through a mechanism that is not yet clarified. STH: sodium taurocholate; TLR4: Toll-like receptor 4; CDCA: chenodeoxycholic acid; vRNPs: viral ribonucleoproteins; IAV: influenza A virus; GCDCA: glycine deoxycholic acid; FXR: Farnesoid X Receptor; TGR5: Takeda G Protein-Coupled Receptor 5; HBV: hepatitis B virus.
Figure 9. Interactions between BAs and Other Viruses. (A) STH manifests antiviral activity against IVA infections through the modulation of signaling pathways, including TLR4/NF-κB; (B) CDCA demonstrates the capacity to attenuate IAV infections by inhibiting the nuclear export of vRNPs; (C) CDCA can reduce virus-induced lipid synthesis, inhibiting the replication of rotavirus; (D) CDCA activates FXR and TGR5 receptors to counteract HBV infection; (E) GCDCA enhances the virulence of norovirus through a mechanism that is not yet clarified. STH: sodium taurocholate; TLR4: Toll-like receptor 4; CDCA: chenodeoxycholic acid; vRNPs: viral ribonucleoproteins; IAV: influenza A virus; GCDCA: glycine deoxycholic acid; FXR: Farnesoid X Receptor; TGR5: Takeda G Protein-Coupled Receptor 5; HBV: hepatitis B virus.
Pathogens 13 00702 g009
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, W.; Chen, H.; Tang, J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024, 13, 702. https://doi.org/10.3390/pathogens13080702

AMA Style

Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens. 2024; 13(8):702. https://doi.org/10.3390/pathogens13080702

Chicago/Turabian Style

Li, Wenweiran, Hui Chen, and Jianguo Tang. 2024. "Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections" Pathogens 13, no. 8: 702. https://doi.org/10.3390/pathogens13080702

APA Style

Li, W., Chen, H., & Tang, J. (2024). Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens, 13(8), 702. https://doi.org/10.3390/pathogens13080702

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop