Genetic Diversity, Virulence, and Antibiotic Resistance Determinants of Campylobacter jejuni Isolates in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Antimicrobial Susceptibility
2.3. Genetic Support of Resistance and Virulence
2.4. Multilocus Sequence Typing (MLST)
3. Results
3.1. Virulence Genes
3.2. Resistance
3.3. Sequence Typing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. Campylobacter Annual Epidemiological Report for 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/CAMP_AER_2022_final.pdf (accessed on 22 July 2024).
- European Food Safety Authority. Scientific Report on Campylobacter from EFSA 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/EFS2_8442.pdf (accessed on 20 June 2024).
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.J.; Ferreira, V.; Truninger, M.; Maia, R.; Teixeira, P. Cross-Contamination Events of Campylobacter spp. in Domestic Kitchens Associated with Consumer Handling Practices of Raw Poultry. Int. J. Food Microbiol. 2021, 338, 108989. [Google Scholar] [CrossRef] [PubMed]
- Santos-Ferreira, N.; Alves, A.; Cardoso, M.J.; Langsrud, S.; Malheiro, A.R.; Fernandes, R.; Maia, R.; Truninger, M.; Junqueira, L.; Teixeira, P.; et al. Cross-Contamination of Lettuce with Campylobacter spp. via Cooking Salt during Handling Raw Poultry. PLoS ONE 2021, 16, e0250643. [Google Scholar] [CrossRef]
- Noreen, Z.; Siddiqui, F.; Javed, S.; Wren, B.W.; Bokhari, H. Transmission of Multidrug-Resistant Campylobacter jejuni to Children from Different Sources in Pakistan. J. Glob. Antimicrob. Resist. 2020, 20, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Kayman, T.; Abay, S.; Aydin, F.; Şahin, O. Antibiotic Resistance of Campylobacter jejuni Isolates Recovered from Humans with Diarrhoea in Turkey. J. Med. Microbiol. 2019, 68, 136–142. [Google Scholar] [CrossRef]
- Myintzaw, P.; Jaiswal, A.K.; Jaiswal, S. A Review on Campylobacteriosis Associated with Poultry Meat Consumption. Food Rev. Int. 2021, 39, 2107–2121. [Google Scholar] [CrossRef]
- Whelan, M.V.X.; Ardill, L.; Koide, K.; Nakajima, C.; Suzuki, Y.; Simpson, J.C.; Ó Cróinín, T. Acquisition of Fluoroquinolone Resistance Leads to Increased Biofilm Formation and Pathogenicity in Campylobacter jejuni. Sci. Rep. 2019, 9, 18216. [Google Scholar] [CrossRef]
- Hormeño, L.; Campos, M.J.; Vadillo, S.; Quesada, A. Occurrence of tet(O/M/O) Mosaic Gene in Tetracycline-Resistant Campylobacter. Microorganisms 2020, 8, 1710. [Google Scholar] [CrossRef]
- Konkel, M.E.; Gray, S.A.; Kim, B.J.; Garvis, S.T.; Yoon, J. Identification of the Enteropathogens Campylobacter jejuni and Campylobacter coli Based on the cadF Virulence Gene and Its Products. J. Clin. Microbiol. 1999, 37, 510–517. [Google Scholar] [CrossRef]
- Gonzalez, I.; Grant, K.A.; Richardson, P.T.; Park, S.F.; Collins, M.D. Specific Identification of the Enteropathogens Campylobacter jejuni and Campylobacter coli by Using a PCR Test Based on the ceuE Gene Encoding a Putative Virulence Determinant. J. Clin. Microbiol. 1997, 35, 759–763. [Google Scholar] [CrossRef]
- Bacon, D.J.; Alm, R.A.; Burr, D.H.; Hu, L.; Kopecko, D.J.; Ewing, C.P.; Trust, T.J.; Guerry, P. Involvement of a Plasmid in Virulence of Campylobacter jejuni 81–176. Infect. Immun. 2000, 68, 4384–4390. [Google Scholar] [CrossRef]
- Nachamkin, I.; Bohachick, K.; Patton, C.M. Flagellin Gene Typing of Campylobacter jejuni by Restriction Fragment Length Polymorphism Analysis. J. Clin. Microbiol. 1993, 31, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Pickett, C.L.; Pesci, E.C.; Cottle, D.L.; Russell, G.; Erdem, A.N.; Zeytin, H. Prevalence of Cytolethal Distending Toxin Production in Campylobacter jejuni and Relatedness of Campylobacter spp. cdtB Genes. Infect. Immun. 1996, 64, 2070–2078. [Google Scholar] [CrossRef]
- Zirnstein, G.; Li, Y.; Swaminathan, B.; Angulo, F. Ciprofloxacin Resistance in Campylobacter jejuni Isolates: Detection of gyrA Resistance Mutations by Mismatch Amplification Mutation Assay PCR and DNA Sequence Analysis. J. Clin. Microbiol. 1999, 37, 3276–3280. [Google Scholar] [CrossRef]
- Alonso, R.; Mateo, E.; Churruca, E.; Martinez, I.; Girbau, C.; Fernandez-Astorga, A. MAMA-PCR Assay for the Detection of Point Mutations Associated with High-Level Erythromycin Resistance in Campylobacter jejuni and Campylobacter coli Strains. J. Microbiol. Methods 2005, 63, 99–103. [Google Scholar] [CrossRef]
- Gibreel, A.; Tracz, D.M.; Nonaka, L.; Ngo, T.M.; Connell, S.R.; Taylor, D.E. Incidence of Antibiotic Resistance in Campylobacter jejuni Isolated in Alberta, Canada, from 1999 to 2002, with Special Reference to tet(O)-Mediated Tetracycline Resistance. Antimicrob. Agents Chemother. 2004, 48, 3442–3450. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wai Mun Huang, W.M.; Taylor, D.E. Cloning and Nucleotide Sequence of the Campylobacter jejuni gyrA Gene and Characterization of Quinolone Resistance Mutations. Antimicrob. Agents Chemother. 1993, 37, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Dingle, K.E.; Colles, F.M.; Wareing, D.R.A.; Ure, R.; Fox, A.J.; Bolton, F.E.; Bootsma, H.J.; Willems, R.J.L.; Urwin, R.; Maiden, M.C.J. Multilocus Sequence Typing System for Campylobacter jejuni. J. Clin. Microbiol. 2001, 39, 14–23. [Google Scholar] [CrossRef]
- PubMLST.org. Campylobacter. Available online: http://pubmlst.org/campylobacter (accessed on 2 January 2024).
- World Health Organization. The Increasing Incidence of Human Campylobacteriosis. Report and Proceedings of a WHO Consultation of Experts, Copenhagen, Denmark, 21–25 November 2000. Available online: https://apps.who.int/iris/handle/10665/66488 (accessed on 2 August 2024).
- Engberg, J.; Aarestrup, F.; Taylor, D.; Gerner-Smidt, P.; Nachamkin, I. Quinolone and Macrolide Resistance in Campylobacter jejuni and C. coli: Resistance Mechanisms and Trends in Human Isolates. Emerg. Infect. Dis. 2001, 7, 24–34. [Google Scholar] [CrossRef]
- Allos, B.M. Campylobacter jejuni Infections: Update on Emerging Issues and Trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar]
- Koolman, L.; Whyte, P.; Burgess, C.; Bolton, D. Distribution of Virulence-Associated Genes in a Selection of Campylobacter Isolates. Foodborne Pathol. Dis. 2016, 12, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Panzenhagen, P.; Portes, A.B.; dos Santos, A.M.P.; Silva Duque, S.; Conte Junior, C.A. The Distribution of Campylobacter jejuni Virulence Genes in Genomes Worldwide Derived from the NCBI Pathogen Detection Database. Genes 2021, 12, 1538. [Google Scholar] [CrossRef]
- Connell, S.R.; Trieber, C.A.; Dinos, G.P.; Einfeldt, E.; Taylor, D.E.; Nierhaus, K.H. Mechanism of Tet(O)-Mediated Tetracycline Resistance. EMBO J. 2003, 22, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.T.K.; Thongprachum, A.; Tran, D.N.; Nishimura, S.; Shimizu-Onda, Y.; Trinh, Q.D.; Khamrin, P.; Ukarapol, N.; Kongsricharoern, T.; Komine-Aizawa, S.; et al. Antibiotic Resistance of Campylobacter jejuni and C. coli Isolated from Children with Diarrhea in Thailand and Japan. Jpn. J. Infect. Dis. 2016, 69, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Dasti, J.I.; Groß, U.; Pohl, S.; Lugert, R.; Weig, M.; Schmidt-Ott, R. Role of the plasmid-encoded tet(O) in tetracycline-resistant clinical isolates of Campylobacter jejuni and Campylobacter coli. J. Med. Microbiol. 2007, 56, 833–837. [Google Scholar] [CrossRef]
- Roberts, M.C. Update on Acquired Tetracycline Resistance Genes. FEMS Microbiol. Lett. 2005, 245, 195–203. [Google Scholar] [CrossRef]
- European Food Safety Authority. Data Visualization on Antimicrobial Resistance in Campylobacter. Available online: https://multimedia.efsa.europa.eu/dataviz-202 (accessed on 20 August 2024).
- European Union Reference Laboratory for Antimicrobial Resistance. Available online: https://www.eurl-ar.eu (accessed on 20 August 2024).
- Gao, F.; Tu, L.; Chen, M.; Chen, H.; Zhang, X.; Zhuang, Y.; Luo, J.; Chen, M. Erythromycin Resistance of Clinical Campylobacter jejuni and Campylobacter coli in Shanghai, China. Front. Microbiol. 2023, 14, 1145581. [Google Scholar] [CrossRef]
- Smith, J.; Doe, A.; Johnson, B. Global Epidemiology of Campylobacter Infection: A Review of Trends and Patterns from 2014 to 2021. Front. Cell. Infect. Microbiol. 2022, 12, 100–115. [Google Scholar]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.; Zhang, Q. Antibiotic Resistance in Campylobacter: Emergence, Transmission and Persistence. Future Microbiol. 2009, 4, 189–200. [Google Scholar] [CrossRef]
- Ge, B.; Wang, F.; Sjolund-Karlsson, M.; McDermott, P. Antimicrobial Resistance in Campylobacter: Susceptibility Testing Methods and Resistance Trends. J. Microbiol. Methods 2013, 95, 57–67. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Report on Campylobacter from EFSA 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/efs2_7209_Rev2.pdf (accessed on 20 August 2024).
- European Centre for Disease Prevention and Control. Campylobacter Data Atlas. Available online: http://atlas.ecdc.europa.eu/public/index.aspx (accessed on 18 August 2024).
- Maiden, M.C.J. High-Throughput Sequencing in the Population Analysis of Bacterial Pathogens. Int. J. Med. Microbiol. 2000, 290, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Altekruse, S.F.; Stern, N.J.; Fields, P.I.; Swerdlow, D.L. Campylobacter jejuni: An Emerging Foodborne Pathogen. Emerg. Infect. Dis. 1999, 5, 28–35. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Sequence 5′-3′ | Amplicon Length (bp) | Amplification Program | Reference |
---|---|---|---|---|
CadF | F2B:5′TGGAGGGTAATTTAGATATG3′ R1B: 5′CTAATACCTAAAGTTGAAAC3′ | 400 | 94 °C 1 min 45 °C 1 min × 30 72 °C 3 min | Konkel et al., 1999 [11] |
CeuE | JEJ1:5′CCTGCTCGGTGAAAGTTTTG3′ JEJ2:5′GATCTTTTTGTTTTGTGCTGC3′ | 794 | −93 °C 3 min −95 °C 30 s −57 °C 30 s × 30 −72 °C 1 min | Gonzalez et al., 1997 [12] |
virB11 | VirBF:5′GAACAGGAAGTGGAAAAACTAGC-3′ VirBR:5′TTCCGCATTGGGCTATATG-3′ | 708 | −95 °C 2min −95 °C 30 s −52 °C 30 s × 35 −72 °C 1min | Bacon et al., 2000 [13] |
flaA | flaAF:5′GGATTTCGTATTAACACAAATGGTGC3′ flaAR:5′CTGTAGTAATCTTAAAACATTTTG3′ | 1728 | −94 °C 1min −45°C 1 min × 30 −72 °C 3 min | Nachamkim et al., 1993a [14] |
cdtA | GNW:5′GGAAATTGGATTTGGGGCTATACT-3′ IVH:5′ATCACAAGGATAATGGACAAT-3′ | 165 | 94 °C 1min −42 °C 1 min × 30 −72 °C 3 min | Pickett et al., 1996 [15] |
cdtB | VAT2: 5′GTTAAAATCCCCTGCTATCAACCA 3′ WMI-R:5′GTTGGCACTTGGAATTTGCAAGGC3′ | 495 | −94 °C 1min −42 °C 1 min × 30 −72 °C 3 min | Pickett et al., 1996 [15] |
cdtC | WMI-F:5′TGGATGATAGCAGGGGATTTTAAC3′ LPF-X:5′TTGCACATAACCAAAAGGAAG-3′ | 555 | −94 °C 1min −42 °C 1 min × 30 −72 °C 3 min | Pickett et al., 1996 [15] |
GZgyrA5 GZgyrA6 | F: ATTTTTAGCAAAGATTCTGAT R: CCATAAATTATTCCACCTGT | 673 | −94 °C 3 min −94 °C 1 min −50 °C 1 min × 30 −72 °C 3 min −72 °C 5 min | Gerald Zirnstei n et al.,1999. [16] |
used for sequencing GZgyrA7 GZgyrA8 | F:TTATTATAGGTCGTGCTTTG R:TAGAAGGTAAAACATCAGGTT | 673 | −96 °C 2 min −96 °C 20 s −50 °C 20 s × 40 −60 °C 4 min | Gerald Zirnstei n et al., 1999. [16] |
23S RNA-F ERY2074-R | F: TTAGCTAATGTTGCCCGTACCG R: AGTAAAGGTCCACGGGGTCTGG | 485 | −94 °C 5 min −94 °C 30 s −59 °C 30 s × 30 −72 °C 45 s −72 °C 5 min | Alonso et al., 2005 [17] |
23S RNA-F ERY2075-R | F: TTAGCTAATGTTGCCCGTACCG R: TAGTAAAGGTCCACGGGGTCGC | 485 | −94 °C 5 min −94 °C 30 s −59 °C 30 s × 30 −72 °C 45 s −72 °C 5min | Alonso et al., 2005 [17] |
used for sequencing 23S RNA-F 23S RNA-R | F: TTAGCTAATGTTGCCCGTACCG R: AGCCAACCTTTGTAAGCCTCCG | 697 | −96 °C 2 min −96 °C 20 s −50 °C 20 s × 40 −60 °C 4 min | Alonso et al., 2005 [17] |
tetO | DMT1 DMT2 | 559 | −95 °C 5 min −94 °C 1 min −57 °C 1 min × 30 −72 °C 1 min −72 °C 5 min | Gibreel A et al, 2004 [18] |
Target Locus | Primer Amplification | Primer Sequencing | Amplicon Size |
---|---|---|---|
aspA | A9 AGTACTAATGATGCTTATCC | S3 CCAACTGCAAGATGCTGTACC | 899 bp |
A10 ATTTCATCAATTTGTTCTTTGC | S6 TTCATTTGCGGTAATACCATC | ||
glnA | A1 TAGGAACTTGGCATCATATTACC | S3 CATGCAATCAATGAAGAAAC | 1262 bp |
A2 TTGGACGAGCTTCTACTGGC | S6 TTCCATAAGCTCATATGAAC | ||
gltA | A1 GGGCTTGACTTCTACAGCTACTTG | S3 CTTATATTGATGGAGAAAATGG | 1012 bp |
A2 CCAAATAAAGTTGTCTTGGACGG | S6 CCAAAGCGCACCAATACCTG | ||
glyA | A1 GAGTTAGAGCGTCAATGTGAAGG | S3 AGCTAATCAAGGTGTTTATGCGG | 816 bp |
A2 AAACCTCTGGCAGTAAGGGC | S4 AGGTGATTATCCGTTCCATCGC | ||
tkt | A3 GCAAACTCAGGACACCCAGG | S5 GCTTAGCAGATATTTTAAGTG | 1102 bp |
A6 AAAGCATTGTTAATGGCTGC | S6 AAGCCTGCTTGTTCTTTGGC | ||
pgm | A3 TCAGGGCTTACTTCTATAGG | S5 GGTTTTAGATGTGGCTCATG | 1150 bp |
A4 AGCTTAATATCTCTGGCTTC | S2 TCCAGAATAGCGAAATAAGG |
Virulence Gene | No. of Positive Strains | Prevalence (%) |
---|---|---|
CadF | 66 | 100 |
CeuE | 66 | 100 |
virB11 | 14 | 21 |
flaA | 66 | 100 |
cdtA | 62 | 93 |
cdtB | 65 | 98 |
cdtC | 65 | 98 |
Locus | Fragment Size (bp) | Total Number of Alleles | Allele Frequency |
---|---|---|---|
aspA | 477 | 12 | 2, 7, 8, 9 |
glnA | 477 | 14 | 2, 17 |
gltA | 402 | 11 | 2, 5 |
glyA | 507 | 17 | 2, 10 and 838 new allele |
pgm | 498 | 16 | 10, 11 |
tkt | 459 | 16 | 1, 3, 5 |
uncA | 489 | 13 | 5, 6 and 632 new allele |
C. jejuni Strains | Complex Type | Number | Frequency (%) |
---|---|---|---|
ST824 | CC 257 | 9 | 13.63 |
ST50 | CC21 | 5 | 7.57 |
ST51 | CC443 | 4 | 6.06 |
ST400/ST353 | CC353 | 4 | 6.06 |
ST2079 | CC52 | 3 | 4.54 |
ST2066 | CC48 | 3 | 4.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltoiu, M.; Gradisteanu Pircalabioru, G.; Cristea, D.; Sorokin, M.; Dragomirescu, C.C.; Stoica, I. Genetic Diversity, Virulence, and Antibiotic Resistance Determinants of Campylobacter jejuni Isolates in Romania. Pathogens 2024, 13, 716. https://doi.org/10.3390/pathogens13090716
Baltoiu M, Gradisteanu Pircalabioru G, Cristea D, Sorokin M, Dragomirescu CC, Stoica I. Genetic Diversity, Virulence, and Antibiotic Resistance Determinants of Campylobacter jejuni Isolates in Romania. Pathogens. 2024; 13(9):716. https://doi.org/10.3390/pathogens13090716
Chicago/Turabian StyleBaltoiu, Madalina, Gratiela Gradisteanu Pircalabioru, Daniela Cristea, Marilena Sorokin, Cristiana Cerasella Dragomirescu, and Ileana Stoica. 2024. "Genetic Diversity, Virulence, and Antibiotic Resistance Determinants of Campylobacter jejuni Isolates in Romania" Pathogens 13, no. 9: 716. https://doi.org/10.3390/pathogens13090716
APA StyleBaltoiu, M., Gradisteanu Pircalabioru, G., Cristea, D., Sorokin, M., Dragomirescu, C. C., & Stoica, I. (2024). Genetic Diversity, Virulence, and Antibiotic Resistance Determinants of Campylobacter jejuni Isolates in Romania. Pathogens, 13(9), 716. https://doi.org/10.3390/pathogens13090716