Filamentous Fungi Associated with Disease Symptoms in Non-Native Giant Sequoia (Sequoiadendron giganteum) in Germany—A Gateway for Alien Fungal Pathogens?
Abstract
:1. Introduction
- To isolate and identify the filamentous Dikaria D. S. Hibbett, T. Y. James & Vilgalys species associated with the disease symptoms;
- To determine whether alien invasive fungal species were involved in the studied cases of disease;
- To discuss the risk to native tree species from alien fungal pathogens on giant sequoia in Germany.
2. Materials and Methods
2.1. Cases of Disease in Giant Sequoia in Northwest Germany
Disease Case | Forest Site | Sequoiadendron giganteum | |||||||
---|---|---|---|---|---|---|---|---|---|
No | Year of Report | m asl | Bed Rock | Average Annual Precipitation Sum (mm) 1 | Deviation in 2018 from the Annual Average Precipitation 1 | Average Precipitation Sum of the Vegetation Period (mm) 1 | Precipitation Deficit in the Vegetation Period 2018 (%) 1 | Tree Age (y) | Observed Symptoms (Figure 2) |
1 | 2018 | 10 | Sand | 726 | −22.4 | 388 | 39.7 | Approx. 27 | Dieback of the crown, shoot dieback, dead, brown leaves |
2 | 2018 | 20 | Sand | 671 | −29.7 | 355 | 60.2 | 12 | |
3 | 2018 | 20 | Sand | 612 | +6.4 | 327 | 9.3 | 18 | |
4 | 2018 | 23 | Sand | 671 | −29.7 | 355 | 60.2 | 25 | |
5 | 2018 | 10 | Sand | 671 | −29.7 | 355 | 60.2 | 28 | |
6 | 2018 | 13 | Sand | 726 | −22.4 | 388 | 39.7 | 21 | |
7 | 2021 | 172 | Loess loam, which is anthropogenically modified in the urban area | 820 | −25.5 | 406 | 59.1 | Approx. 60 | Wood discolouration at the stem base along a tension crack |
8 | 2021 | 212 | Loam, which is anthropogenically modified in the urban area | 606 | −28.7 | 356 | 58.4 | Approx. 12 | Dieback of the crown (brown needles, shoots and branches) since 2020 |
9 | 2022 | 357 | Buntsandstein | 705 | −24.7 | 370 | 51.1 | Approx. 33 | Dieback of the crown (brown needles, shoots and branches), wood discolouration and rot at the stem base and in branches |
10 | 2023 | 300 | Volcanic rocks of the Miocene | 865 | −21.3 | 420 | 45.7 | Approx. 90 | Dieback of the crown (brown needles, shoots and branches) since 2019 |
2.2. Isolation of Fungi
2.3. Detection of Heterobasidion annosum and Armillaria at the Stem Collar
2.4. Identification of Isolated Fungi
DNA-Region 1 | Primer Pairs 1 | PCR Conditions | Primer Reference |
---|---|---|---|
ITS | ITS-1F + ITS4 | See Bien et al. (2020) [48] | Gardes & Bruns (1993) [49], White et al. (1990) [50] |
LSU | LROR + LR5 | See Paulin & Harrington (2000) [51] | Rehner & Samuels (1994), Vilgalys & Hester (1990) [46,47] |
RPB2 | RPB2-5F2 + RPB2-7cR | See Braun et al. (2018) for species of Amycosphaerella [52]; see Tanney & Seifert (2018) for species of Phacidiopycnis [53] | Liu et al. (1999) [54] |
EF-1α | EF1-983F + EF1-2218R | See Arnold et al. (2021) for species of Coniochaeta [55] | Rehner & Buckley (2005) [56] |
TUB | T1 + Bt-2b | See Liu et al. (2019) for species of Pestalotiopsis [54] | Glass & Donaldson (1995), O’Donnell & Cigelnik (1997) [57,58] |
Species | Order | NW-FVA ID | Accession No | Disease Case | Shoot | Needle | Stem/Branch |
---|---|---|---|---|---|---|---|
Amycosphaerella africana 1,2 | Mycosphaerellales | 4336 | PP913385 | 1–6 | 1 | 1 | - |
Botryosphaeria dothidea | Botryophaeriales | 9830 | PP913404 | 5, 9, 10 | 1 | 1 | 1 |
Botryosphaeria parva (anamorph: Neofusicoccum parvum) 2 | Botryophaeriales | 11986 | PP913460 | 10 | 1 | - | - |
Botrytis cinerea | Helotiales | 7912 | PP913415 | 1–6, 8 | 1 | 1 | - |
Coniochaeta acaciae 1,2 | Coniochaetales | 9903 | PP913418 | 9 | 1 | - | - |
Coniochaeta velutina 1 | Coniochaetales | 4360 | PP913419 | 1 | 1 | - | - |
Coprinellus micaceus | Agaricales | 9842 | PP913421 | 9 | 1 | 1 | 1 |
Diaporthe eres A | Diaporthales | 7949 11993 | PP913426 PP913425 | 8, 10 | 1 | 1 | - |
Diaporthe eres B | Diaporthales | 9864 7953 11989 | PP913428, PP913427, PP913431 | 8–10 | 1 | 1 | - |
Diaporthe nobilis | Diaporthales | 4447 4460 11994 | PP913434 PP913433 PP913435 | 2, 3, 6, 10 | 1 | 1 | - |
Diaporthe rudis | Diaporthales | 4359 9869 | PP913436 PP913437 | 1, 9 | 1 | 1 | - |
Muriformistrickeria rubi 1,2 | Pleosporales | 12037 | PP913455 | 10 | 1 | - | - |
Nothophoma cf. quercina | Pleosporales | 7950 | PP913464 | 8 | - | 1 | - |
Ophiostoma quercus | Microascales | 6920 | PP913465 | 7 | - | - | 1 |
Pestalotiopsis australis 1,2 | Amphisphaeriales | 4349 4341 4462 4497 4466 | PP913472 PP913473 PP913474 PP913483 PP913475 | 1, 3, 5 | 1 | 1 | - |
Pestalotiopsis monochaeta 1,2 | Amphisphaeriales | 9837 9836 9832 11997 | PP913476 PP913477 PP913478 PP913479 | 9, 10 | 1 | 1 | 1 |
Pestalotiopsis cf. verruculosa | Amphisphaeriales | 7952 | PP913480 | 8 | - | 1 | - |
Pestalotiopsis cf. hollandica | Amphisphaeriales | 12038 | PP913481 | 10 | 1 | - | - |
Phacidiopycnis washingtonensis 1,2 | Rhytismatales | 9901 | PP913500 | 9 | 1 | ||
Phacidium lacerum | Rhytismatales | 4362 4449 4468 | PP913501 PP913503 PP913502 | 1, 5, 6 | 1 | - | - |
Phacidium sp. | Rhytismatales | 4488 | PP913505 | 3 | 1 | - | 1 |
Pseudocercospora sp. | Mycosphaerellales | 4456 4454 | PP913506 PP913507 | 2 | 1 | - | - |
Rhizosphaera minteri 1,2 | Venturiales | 4358 | PP913508 | 1 | 1 |
3. Results
3.1. Cases of Disease in Giant Sequoia in Northwest Germany
3.2. Associated Fungi
3.3. New Records for Giant Sequoia or Germany
4. Discussion
4.1. Triggering Factors for Disease Outbreak
4.2. Associated Fungi
4.3. New Records for Giant Sequoia or Germany
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langer, G.J.; Bußkamp, J. Fungi Associated with Woody Tissues of European Beech and Their Impact on Tree Health. Front. Microbiol. 2021, 12, 702467. [Google Scholar] [CrossRef]
- Langer, G.J.; Bußkamp, J. Vitality Loss of Beech: A Serious Threat to Fagus sylvatica in Germany in the Context of Global Warming. J. Plant Dis. Prot. 2023, 130, 1101–1115. [Google Scholar] [CrossRef]
- Panzavolta, T.; Panichi, A.; Bracalini, M.; Croci, F.; Ginetti, B.; Ragazzi, A.; Tiberi, R.; Moricca, S. Dispersal and Propagule Pressure of Botryosphaeriaceae Species in a Declining Oak Stand Is Affected by Insect Vectors. Forests 2017, 8, 228. [Google Scholar] [CrossRef]
- Urbez-Torres, J.R.; Castro-Medina, F.; Mohali, S.R.; Gubler, W.D. Botryosphaeriaceae Species Associated with Cankers and Dieback Symptoms of Acacia mangium and Pinus caribaea Var. Hondurensis in Venezuela. Plant Dis. 2016, 100, 2455–2464. [Google Scholar] [CrossRef]
- Langer, G.; Hartung, T.; Bußkamp, J. Pilzliche und komplexe Schäden an Douglasie. AFZ-DerWald 2023, 78, 26–29. [Google Scholar]
- Ghelardini, L.; Pepori, A.L.; Luchi, N.; Capretti, P.; Santini, A. Drivers of Emerging Fungal Diseases of Forest Trees. For. Ecol. Manag. 2016, 381, 235–246. [Google Scholar] [CrossRef]
- Cameron, E.K.; Vilà, M.; Cabeza, M. Global Meta-Analysis of the Impacts of Terrestrial Invertebrate Invaders on Species, Communities and Ecosystems. Glob. Ecol. Biogeogr. 2016, 25, 596–606. [Google Scholar] [CrossRef]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.; Jarošík, V.; Maron, J.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological Impacts of Invasive Alien Plants: A Meta-Analysis of Their Effects on Species, Communities and Ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Hultberg, T.; Sandström, J.; Felton, A.; Öhman, K.; Rönnberg, J.; Witzell, J.; Cleary, M. Ash Dieback Risks an Extinction Cascade. Biol. Conserv. 2020, 244, 108516. [Google Scholar] [CrossRef]
- Lovett, G.; Weiss, M.; Liebhold, A.; Holmes, T.; Leung, B.; Lambert, K.; Orwig, D.; Campbell, F.; Rosenthal, J.; Mccullough, D.; et al. Nonnative Forest Insects and Pathogens in the United States: Impacts and Policy Options. Ecol. Appl. 2016, 26, 1437–1455. [Google Scholar] [CrossRef]
- Langer, G.J.; Fuchs, S.; Osewold, J.; Peters, S.; Schrewe, F.; Ridley, M.; Kätzel, R.; Bubner, B.; Grüner, J. FraxForFuture—Research on European Ash Dieback in Germany. J. Plant Dis. Prot. 2022, 129, 1285–1295. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The Ravages of Guns, Nets and Bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef]
- Santini, A.; Ghelardini, L.; De Pace, C.; Desprez-Loustau, M.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.; Gaitniekis, T.; et al. Biogeographical Patterns and Determinants of Invasion by Forest Pathogens in Europe. New Phytol. 2012, 197, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P. Trade, Transport and Trouble: Managing Invasive Species Pathways in an Era of Globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Brasier, C.M. The Biosecurity Threat to the UK and Global Environment from International Trade in Plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Frederiksen, R.A. Contemporary Global Movement of Emerging Plant Diseases. Ann. N. Y. Acad. Sci. 1999, 894, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee on Emerging Microbial Threats to Health. Emerging Infections: Microbial Threats to Health in the United States; Lederberg, J., Shope, R.E., Oaks, S.C., Eds.; National Academies Press (US): Washington, DC, USA, 1992; ISBN 978-0-309-04741-8. [Google Scholar]
- Daszak, P.; Cunningham, A.; Hyatt, A. Emerging Infectious Diseases of Wildlife-- Threats to Biodiversity and Human Health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging Infectious Diseases of Plants: Pathogen Pollution, Climate Change and Agrotechnology Drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef]
- Plants of the World Online Sequoiadendron giganteum (Lindl.) J. Buchholz. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:234727-2 (accessed on 2 February 2024).
- Schütt, P.; Schuck, H.J.; Aas, G.; Lang, U.M. Enzyklopädie der Holzgewächse; M. & H. Schaper: Hannover, Germany, 1992. [Google Scholar]
- Neumann, H. Bisherige Erfahrungen in Nordrhein-Westfalen Mit Dem Anbau Und Der Anzucht Des Riesenmammutbaums—Sequoiadendron giganteum (Lindl.) Buchh. Mitteilungen Der Dtsch. Dendrol. Ges. 1984. [Google Scholar]
- Melchior, G.H.; Herrmann, S. Ergebnisse aus einem Versuch mit vier Herkünften des Mammutbaumes (Sequoiadendron giganteum (Lindl.) Buchholz). In Anbau Fremdländischer Baumarten Im Lichte Der Gegenwärtigen Wald. [Verhandlungen Einer Vortragstagung Der Arbeitsgemeinschaft Für Forstgenet. Und Forstpflanzenzüchtung]; Landwirtschaftsverlag: Münster, Germany, 1989; pp. 211–221. [Google Scholar]
- Cech, T.L.; Tomiczek, C. Botryosphaeria-Krebs (Botryosphaeria dothidea) des Mammutbaumes nimmt in Ostösterreich zu. Forstsch. Aktuell 2013, 57/58, 37–40. [Google Scholar]
- Kehr, R. Triebschäden an Mammutbaum (Sequoiadendron giganteum) durch Botryosphaeria dothidea auch in Deutschland nachgewiesen. Nachrichtenblatt Des Dtsch. Pflanzenschutzdienstes 2004, 56, 37–43. [Google Scholar]
- Morelet, M.; Andréoli, C.; Chandelier, P.; Ménard, J.-E. Botryosphaeria Dothidea, Agent de Chancre Sur Sequoiadendron giganteum. Rev. For. Française 1993, 45, 37–42. [Google Scholar] [CrossRef]
- Scharpf, R.P. Diseases of Pacific Coast Conifers U.S; United States Government Printing Department of Agriculture, Forest Service: Washington, DC, USA, 1993; Volume 521, ISBN 978-0-16-041765-8. [Google Scholar]
- Haenzi, M.; Cochard, B.; Chablais, R.; Crovadore, J.; Lefort, F. Neofusicoccum parvum, A New Agent of Sequoia Canker and Dieback Identified in Geneva, Switzerland. Forests 2021, 12, 434. [Google Scholar] [CrossRef]
- Slippers, B.; Crous, P.W.; Denman, S.; Coutinho, T.A.; Wingfield, B.D.; Wingfield, M.J. Combined Multiple Gene Genealogies and Phenotypic Characters Differentiate Several Species Previously Identified as Botryosphaeria dothidea. Mycologia 2004, 96, 83–101. [Google Scholar] [CrossRef]
- Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.; Postma, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.; Hesse, C.N.; et al. Botryosphaeria dothidea: A Latent Pathogen of Global Importance to Woody Plant Health. Mol. Plant Pathol. 2017, 18, 477–488. [Google Scholar] [CrossRef]
- Piškur, B.; Pavlic, D.; Slippers, B.; Ogris, N.; Maresi, G.; Wingfield, M.J.; Jurc, D. Diversity and Pathogenicity of Botryosphaeriaceae on Declining Ostrya carpinifolia in Slovenia and Italy Following Extreme Weather Conditions. Eur. J. For. Res. 2011, 130, 235–249. [Google Scholar] [CrossRef]
- Kovač, M.; Diminić, D.; Orlović, S.; Zlatković, M. Botryosphaeria dothidea and Neofusicoccum yunnanense Causing Canker and Die-Back of Sequoiadendron giganteum in Croatia. Forests 2021, 12, 695. [Google Scholar] [CrossRef]
- CABI International. Pestalotiopsis Funerea, Set. No 52, Published 1976; CMI Descriptions of Pathogenic Fungi and Bacteria; CABI International: Wallingford, UK, 1998. [Google Scholar]
- Guba, E.F. Monograph of Monochaetia and Pestalotia; Harvard University Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Manion, P.D. Tree Disease Concepts; Prentice-Hall: Saddle River, NJ, USA, 1981. [Google Scholar]
- Sinclair, W.A.; Lyon, H.H. Diseases of Trees and Shrubs, 2nd ed.; Cornel University Press: Ithaca, NY, USA, 2005. [Google Scholar]
- Peters, S.; Fuchs, S.; Bien, S.; Bußkamp, J.; Langer, G.J.; Langer, E.J. Fungi Associated with Stem Collar Necroses of Fraxinus excelsior Affected by Ash Dieback. Mycol. Progress. 2023, 22, 52. [Google Scholar] [CrossRef]
- Bußkamp, J.; Langer, G.J.; Langer, E.J. Sphaeropsis sapinea and Fungal Endophyte Diversity in Twigs of Scots Pine (Pinus sylvestris) in Germany. Mycol. Prog. 2020, 19, 985–999. [Google Scholar] [CrossRef]
- Langer, G.J.; Bressem, U. Phlebiopsis gigantea als Antagonist des Wurzelschwamms. AFZ/Der Wald. 2017, 72, 39–43. [Google Scholar]
- Damm, U.; Mostert, L.; Crous, P.W.; Fourie, P.H. Novel Phaeoacremonium Species Associated with Necrotic Wood of Prunus Trees. Pers. Int. Mycol. J. 2008, 20, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. In Nucleic Acids Symposium Series; Oxford University Press: Oxford, UK, 1999; Volume 41, pp. 95–98. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Rehner, S.A.; Samuels, G.J. Taxonomy and Phylogeny of Gliocladium Analysed from Nuclear Large Subunit Ribosomal DNA Sequences. Mycol. Res. 1994, 98, 625–634. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid Genetic Identification and Mapping of Enzymatically Amplified Ribosomal DNA from Several Cryptococcus Species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef]
- Bien, S.; Kraus, C.; Damm, U. Novel Collophorina-like Genera and Species from Prunus Trees and Vineyards in Germany. Persoonia Mol. Phylogeny Evol. Fungi 2020, 45, 46–67. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS Primers with Enhanced Specificity for Basidiomycetes-application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Paulin, A.E.; Harrington, T.C. Phylogenetic Placement of Anamorphic Species of Chalara among Ceratocystis Species and Other Ascomycetes. Stud. Mycol. 2000, 45, 209–222. [Google Scholar]
- Braun, U.; Nakashima, C.; Crous, P.W.; Groenewald, J.Z.; Moreno-Rico, O.; Rooney-Latham, S.; Blomquist, C.L.; Haas, J.; Marmolejo, J. Phylogeny and Taxonomy of the Genus Tubakia s. Lat. Fungal Syst. Evol. 2018, 1, 41–99. [Google Scholar] [CrossRef]
- Tanney, J.B.; Seifert, K.A. Phacidiaceae Endophytes of Picea Rubens in Eastern Canada. Botany 2018, 96, 555–588. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic Relationships among Ascomycetes: Evidence from an RNA Polymerse II Subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E.; Harrington, A.H.; Huang, Y.-L.; U’Ren, J.M.; Massimo, N.C.; Knight-Connoni, V.; Inderbitzin, P. Coniochaeta elegans Sp. Nov., Coniochaeta montana Sp. Nov. and Coniochaeta nivea Sp. Nov., Three New Species of Endophytes with Distinctive Morphology and Functional Traits. Int. J. Syst. Evol. Microbiol. 2021, 71, 005003. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria Phylogeny Inferred from Nuclear ITS and EF1-α Sequences: Evidence for Cryptic Diversification and Links to Cordyceps Teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of Primer Sets Designed for Use with the PCR to Amplify Conserved Genes from Filamentous Ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Cigelnik, E. Two Divergent Intragenomic RDNA ITS2 Types within a Monophyletic Lineage of the Fungus Fusarium Are Nonorthologous. Mol. Phylogenetics Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef]
- Langer, G.J.; Bußkamp, J.; Blumenstein, K.; Terhonen, E. Fungi Inhabiting Woody Tree Tissues—Stems, Branches, and Twigs. In Forest Microbiome; Forest Microbiology; Elsevier: London, UK; San Diego, CA, USA; Cambridge, UK; Oxford, UK, 2021; Volume 1, pp. 175–205. ISBN 978-0-12-822542-4. [Google Scholar]
- Maharachchikumbura, S.S.N.; Hyde, K.D.; Groenewald, J.Z.; Xu, J.; Crous, P.W. Pestalotiopsis Revisited. Stud. Mycol. 2014, 79, 121–186. [Google Scholar] [CrossRef]
- Bastos, A.; Fu, Z.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Weber, U.; Reichstein, M.; Anthoni, P.; Arneth, A.; et al. Impacts of Extreme Summers on European Ecosystems: A Comparative Analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190507. [Google Scholar] [CrossRef]
- Gharun, M.; Shekhar, A.; Xiao, J.; Li, X.; Buchmann, N. Effect of the 2022 Summer Drought across Forest Types in Europe. EGUsphere 2024. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global Convergence in the Vulnerability of Forests to Drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D. Darcy’s Law Predicts Widespread Forest Mortality under Climate Warming. Nat. Clim. Chang. 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying Impacts of the 2018 Drought on European Ecosystems in Comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of Tree Mortality under Drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Rohner, B.; Kumar, S.; Liechti, K.; Gessler, A.; Ferretti, M. Tree Vitality Indicators Revealed a Rapid Response of Beech Forests to the 2018 Drought. Ecol. Indic. 2021, 120, 106903. [Google Scholar] [CrossRef]
- Rebollo, P.; Moreno-Fernández, D.; Cruz-Alonso, V.; Gazol, A.; Rodríguez-Rey, M.; Astigarraga, J.; Zavala, M.A.; Gómez-Aparicio, L.; Andivia, E.; Miguel-Romero, S.; et al. Recent Increase in Tree Damage and Mortality and Their Spatial Dependence on Drought Intensity in Mediterranean Forests. Landsc. Ecol. 2024, 39, 38. [Google Scholar] [CrossRef]
- Dämmrich, F.; Lotz-Winter, H.; Schmidt, M.; Pätzold, W.; Otto, P.; Schmitt, J.A.; Scholler, M.; Schurig, B.; Winterhoff, W.; Gminder, A.; et al. Rote Liste der Großpilze und Vorläufige Gesamtartenliste der Ständer—Und Schlauchpilze (Basidiomycota und Ascomycota) Deutschlands mit Ausnahme der Flechten und der Phytoparasitischen Kleinpilze; Matzke-Hajek, G., Hofbauer, N., Ludwig, G., Eds.; Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 8: Pilze (Teil 1)—Großpilze; Landwirtschaftsverlag: Münster, Germany, 2016; Volume 70, p. 8. [Google Scholar]
- Smith, H.; Wingfield, M.J.; Petrini, O. Botryosphaeria dothidea Endophytic in Eucalyptus grandis and Eucalyptus nitens in South Africa. For. Ecol. Manag. 1996, 89, 189–195. [Google Scholar] [CrossRef]
- Blanco-Ulate, B.; Rolshausen, P.; Cantu, D. Draft Genome Sequence of Neofusicoccum parvum Isolate UCR-NP2, a Fungal Vascular Pathogen Associated with Grapevine Cankers. Genome Announc. 2013, 1, e00339-13. [Google Scholar] [CrossRef]
- Nazar Pour, F.; Pedrosa, B.; Oliveira, M.; Fidalgo, C.; Devreese, B.; Driessche, G.V.; Félix, C.; Rosa, N.; Alves, A.; Duarte, A.S.; et al. Unveiling the Secretome of the Fungal Plant Pathogen Neofusicoccum parvum Induced by In Vitro Host Mimicry. J. Fungi 2022, 8, 971. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and Species Known from Culture. Stud. Mycol. 2013, 76, 51–167. [Google Scholar] [CrossRef] [PubMed]
- Golzar, H.; Burgess, T. Neofusicoccum parvum, a Causal Agent Associated with Cankers and Decline of Norfolk Island Pine in Australia. Australas. Plant Pathol. 2011, 40, 484–489. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.-H.; Back, C.-G.; Lee, S.-Y.; Kang, I.; Jung, H.-Y. First Report of Botryosphaeria parva Causing Stem Blight on Rubus crataegifolius in Korea. Res. Plant Dis. 2016, 22, 116–121. [Google Scholar] [CrossRef]
- Slippers, B.; Wingfield, M.J. Botryosphaeriaceae as Endophytes and Latent Pathogens of Woody Plants: Diversity, Ecology and Impact. Fungal Biol. Rev. 2007, 21, 90–106. [Google Scholar] [CrossRef]
- Crous, P.W.; Braun, U.; Hunter, G.C.; Wingfield, M.J.; Verkley, G.J.M.; Shin, H.-D.; Nakashima, C.; Groenewald, J.Z. Phylogenetic Lineages in Pseudocercospora. Stud. Mycol. 2013, 75, 37–114. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Braun, U.; Crous, P.; Si, J.; Zhang, Y. Taxonomy and Phylogeny of Cercosporoid Fungi (Mycosphaerellaceae) from China 1. Phytotaxa 2016, 278, 212–224. [Google Scholar] [CrossRef]
- Crous, P.W. Mysocphaerella spp. & Their Anamorphs Associated with Leaf Spot Diseases of Eucalyptus; Amer Phytopathological Society: St. Paul, MN, USA, 1998; ISBN 978-0-89054-190-6. [Google Scholar]
- Videira, S.I.R.; Groenewald, J.Z.; Nakashima, C.; Braun, U.; Barreto, R.W.; de Wit, P.J.G.M.; Crous, P.W. Mycosphaerellaceae: Chaos or Clarity? Stud. Mycol. 2017, 87, 257–421. [Google Scholar] [CrossRef] [PubMed]
- Crous, P.W.; Wingfield, M.J. Species of Mycosphaerella and Their Anamorphs Associated with Leaf Blotch Disease of Eucalyptus in South Africa. Mycologia 1996, 88, 441–458. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Cheewangkoon, R.; Carnegie, A.J.; Burgess, T.I.; Summerell, B.A.; Edwards, J.; Taylor, P.W.J.; Groenewald, J.Z. Foliar Pathogens of Eucalypts. Stud. Mycol. 2019, 94, 125–298. [Google Scholar] [CrossRef]
- Crous, P.W.; Summerell, B.A.; Taylor, J.E.; Bullock, S. Fungi Occurring on Proteaceae in Australia: Selected Foliicolous Species. Austral. Plant Pathol. 2000, 29, 267–278. [Google Scholar] [CrossRef]
- Aguilera-Cogley, V.A.; Berbegal, M.; Català, S.; Brentu, F.C.; Armengol, J.; Vicent, A. Characterization of Mycosphaerellaceae Species Associated with Citrus Greasy Spot in Panama and Spain. PLoS ONE 2017, 12, e0189585. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Sieber, T.N.; Schlegel, M. Communities of Fungal Endophytes in Leaves of Fraxinus ornus Are Highly Diverse. Fungal Ecol. 2017, 29, 10–19. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J. New Species of Mycosphaerella Occurring on Eucalyptus Leaves in Indonesia and Africa. Can. J. Bot. 1997, 75, 781–790. [Google Scholar] [CrossRef]
- Crous, P.W.; Schumacher, R.K.; Akulov, A.; Thangavel, R.; Hernández-Restrepo, M.; Carnegie, A.J.; Cheewangkoon, R.; Wingfield, M.J.; Summerell, B.A.; Quaedvlieg, W.; et al. New and Interesting Fungi. 2. Fungal Syst. Evol. 2019, 3, 57–134. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.A.; Wingfield, M.J.; Altier, N.A.; Blanchette, R.A. Mycosphaerellaceae and Teratosphaeriaceae Associated with Eucalyptus Leaf Diseases and Stem Cankers in Uruguay. For. Pathol. 2009, 39, 349–360. [Google Scholar] [CrossRef]
- Aguín, O.; Sainz, M.J.; Ares, A.; Otero, L.; Pedro Mansilla, J. Incidence, Severity and Causal Fungal Species of Mycosphaerella and Teratosphaeria Diseases in Eucalyptus Stands in Galicia (NW Spain). For. Ecol. Manag. 2013, 302, 379–389. [Google Scholar] [CrossRef]
- Hunter, G.C.; Crous, P.W.; Carnegie, A.J.; Burgess, T.I.; Wingfield, M.J. Mycosphaerella and Teratosphaeria Diseases of Eucalyptus; Easily Confused and with Serious Consequences. Fungal Divers. 2011, 50, 145–166. [Google Scholar] [CrossRef]
- Hunter, G.C.; Crous, P.W.; Carnegie, A.J.; Wingfield, M.J. Teratosphaeria nubilosa, a Serious Leaf Disease Pathogen of Eucalyptus spp. in Native and Introduced Areas. Mol. Plant Pathol. 2009, 10, 1–14. [Google Scholar] [CrossRef]
- Cheah, L.-H.; Hartill, W.F.T. Ascospore Release in Mycosphaerella cryptica (Cooke) Hansford. Eur. J. For. Pathol. 1987, 17, 129–141. [Google Scholar] [CrossRef]
- Hunter, G.C. Taxonomy, Phylogeny and Population Biology of Mycosphaerella Species Occurring on Eucalyptus; University of Pretoria: Pretoria, South Africa, 2006. [Google Scholar]
- Mondal, S.N.; Gottwald, T.R.; Timmer, L.W. Environmental Factors Affecting the Release and Dispersal of Ascospores of Mycosphaerella citri. Phytopathology 2003, 93, 1031–1036. [Google Scholar] [CrossRef]
- Samarakoon, M.C.; Gafforov, Y.; Liu, N.; Maharachchikumbura, S.S.N.; Bhat, J.D.; Liu, J.-K.; Promputtha, I.; Hyde, K.D. Combined Multi-Gene Backbone Tree for the Genus Coniochaeta with Two New Species from Uzbekistan. Phytotaxa 2018, 336, 43. [Google Scholar] [CrossRef]
- Damm, U.; Fourie, P.H.; Crous, P.W. Coniochaeta (Lecythophora), Collophora Gen. Nov. and Phaeomoniella Species Associated with Wood Necroses of Prunus Trees. Pers. Int. Mycol. J. 2010, 24, 60–80. [Google Scholar] [CrossRef]
- Harrington, A.H.; del Olmo-Ruiz, M.; U’Ren, J.M.; Garcia, K.; Pignatta, D.; Wespe, N.; Arnold, A.E. Coniochaeta endophytica Sp. Nov., a Foliar Endophyte Associated with Healthy Photosynthetic Tissue of Platycladus orientalis (Cupressaceae). Plant Fungal Syst. 2019, 64, 65–79. [Google Scholar] [CrossRef]
- Perdomo, H.; García, D.; Gené, J.; Cano, J.; Sutton, D.A.; Summerbell, R.; Guarro, J. Phialemoniopsis, a New Genus of Sordariomycetes, and New Species of Phialemonium and Lecythophora. Mycologia 2013, 105, 398–421. [Google Scholar] [CrossRef]
- Troy, G.C.; Panciera, D.L.; Pickett, J.P.; Sutton, D.A.; Gene, J.; Cano, J.F.; Guarro, J.; Thompson, E.H.; Wickes, B.L. Mixed Infection Caused by Lecythophora canina Sp. Nov. and Plectosphaerella cucumerina in a German Shepherd Dog. Med. Mycol. 2013, 51, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Campos, X.; Kinsela, A.S.; Waite, T.D.; Collins, R.N.; Neilan, B.A. Fodinomyces uranophilus Gen. Nov. Sp. Nov. and Coniochaeta fodinicola Sp. Nov., Two Uranium Mine-Inhabiting Ascomycota Fungi from Northern Australia. Mycologia 2014, 106, 1073–1089. [Google Scholar] [CrossRef]
- Weber, E. The Lecythophora-Coniochaeta Complex: I. Morphological Studies on Lecythophora Species Isolated from Picea abies. Nova Hedwig. 2002, 74, 159–185. [Google Scholar] [CrossRef]
- Bilański, P.; Kowalski, T. Fungal Endophytes in Fraxinus Excelsior Petioles and Their in Vitro Antagonistic Potential against the Ash Dieback Pathogen Hymenoscyphus fraxineus. Microbiol. Res. 2022, 257, 126961. [Google Scholar] [CrossRef]
- Chethana, K.W.T.; Niranjan, M.; Dong, W.; Samarakoon, M.C.; Bao, D.F.; Calabon, M.S.; Chaiwan, N.; Chuankid, B.; Dayarathne, M.C.; De Silva, N.I.; et al. AJOM New Records and Collections of Fungi: 101–150. Asian J. Mycol. 2021, 4, 113–260. [Google Scholar] [CrossRef]
- Si, H.-L.; Su, Y.-M.; Zheng, X.-X.; Ding, M.-Y.; Bose, T.; Chang, R.-L. Phylogenetic and Morphological Analyses of Coniochaeta Isolates Recovered from Inner Mongolia and Yunnan Revealed Three New Endolichenic Fungal Species. MycoKeys 2021, 83, 105–121. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, Q.; Shi, G.; Liu, Y.; Du, G.; Feng, H. Can Nitrogen Supersede Host Identity in Shaping the Community Composition of Foliar Endophytic Fungi in an Alpine Meadow Ecosystem? Front. Microbiol. 2022, 13, 895533. [Google Scholar] [CrossRef]
- Wanasinghe, D.N.; Phukhamsakda, C.; Hyde, K.D.; Jeewon, R.; Lee, H.B.; Gareth Jones, E.B.; Tibpromma, S.; Tennakoon, D.S.; Dissanayake, A.J.; Jayasiri, S.C.; et al. Fungal Diversity Notes 709–839: Taxonomic and Phylogenetic Contributions to Fungal Taxa with an Emphasis on Fungi on Rosaceae. Fungal Divers. 2018, 89, 1–236. [Google Scholar] [CrossRef]
- Nasr, S.; Bien, S.; Soudi, M.R.; Alimadadi, N.; Shahzadeh Fazeli, S.A.; Damm, U. Novel Collophorina and Coniochaeta Species from Euphorbia polycaulis, an Endemic Plant in Iran. Mycol. Progress. 2018, 17, 755–771. [Google Scholar] [CrossRef]
- Judith-Hertz, C. Systematics and Species Delimitation in Pestalotia and Pestalotiopsis s.l. (Amphisphaeriales, Ascomycota); Goethe-Universität Frankfurt, Fachbereich Biowissenschaften: Frankfurt am Main, Germany, 2016. [Google Scholar]
- Bußkamp, J.; Bien, S.; Neumann, L.; Blumenstein, K.; Terhonen, E.; Langer, G.J. Endophytic Community in Juvenile Acer Pseudoplatanus and Pathogenicity of Cryptostroma corticale and Other Associated Fungi under Controlled Conditions. J. Plant Pathol. 2024, 106, 565–577. [Google Scholar] [CrossRef]
- Jacobs, V.G.; Halleen, F.; Mostert, L. Fungi Associated with Dieback of Apple Trees to Be Excavated and the Assessment of Diplodia seriata Fruiting Structures on Chipped Apple Wood Used for Mulch. Sci. Hortic. 2024, 324, 112613. [Google Scholar] [CrossRef]
- Kim, M.-J.; Shin, H.-K.; Choi, Y.-S.; Kim, G.-C.; Kim, G.-H. An Aeromycological Study of Various Wooden Cultural Heritages in Korea. J. Cult. Herit. 2016, 17, 123–130. [Google Scholar] [CrossRef]
- Xie, J.; Strobel, G.A.; Feng, T.; Ren, H.; Mends, M.T.; Zhou, Z.; Geary, B. An Endophytic Coniochaeta velutina Producing Broad Spectrum Antimycotics. J. Microbiol. 2015, 53, 390–397. [Google Scholar] [CrossRef]
- Tian, Q.; Liu, J.K.; Hyde, K.D.; Wanasinghe, D.N.; Boonmee, S.; Jayasiri, S.C.; Luo, Z.L.; Taylor, J.E.; Phillips, A.J.L.; Bhat, D.J.; et al. Phylogenetic Relationships and Morphological Reappraisal of Melanommataceae (Pleosporales). Fungal Divers. 2015, 74, 267–324. [Google Scholar] [CrossRef]
- Xiao, C.L.; Rogers, J.D.; Kim, Y.K.; Liu, Q. Phacidiopycnis washingtonensis—A New Species Associated with Pome Fruits from Washington State. Mycologia 2005, 97, 464–473. [Google Scholar] [CrossRef]
- Garibaldi, A.; Bertetti, D.; Amatulli, M.T.; Gullino, M.L. First Report of Postharvest Fruit Rot in Persimmon Caused by Phacidiopycnis washingtonensis in Italy. Plant Dis. 2010, 94, 788. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Xiao, C.L. A Postharvest Fruit Rot in Apple Caused by Phacidiopycnis washingtonensis. Plant Dis. 2006, 90, 1376–1381. [Google Scholar] [CrossRef]
- Weber, R.W.S. Phacidiopycnis washingtonensis, Cause of a New Storage Rot of Apples in Northern Europe: Phacidiopycnis washingtonensis on Stored Apples in Europe. J. Phytopathol. 2011, 159, 682–686. [Google Scholar] [CrossRef]
- Elliott, M.; Chastagner, G.A.; Coats, K.P.; Sikdar, P.; Xiao, C.L. First Report of a New Leaf Blight Caused by Phacidiopycnis washingtonensis on Pacific Madrone in Western Washington and Oregon. Plant Dis. 2014, 98, 1741. [Google Scholar] [CrossRef]
- Børve, J.; Talgø, V.; Brurberg, M.B.; Stensvand, A. Fruit Rot Caused by Phacidiopycnis washingtonensis on Apple in Norway. In Proceedings of the IOBC/WPRS Bulletin, Plovdiv, Bulgaria, 4 September 2023; Volume 164, pp. 101–102. [Google Scholar]
- Díaz, G.A.; Latorre, B.A.; Ferrada, E.; Lolas, M. Identification and Characterization of Diplodia mutila, D. seriata, Phacidiopycnis washingtonensis and Phacidium lacerum Obtained from Apple (Malus x Domestica) Fruit Rot in Maule Region, Chile. Eur. J. Plant Pathol. 2019, 153, 1259–1273. [Google Scholar] [CrossRef]
- Crous, P.W.; Quaedvlieg, W.; Hansen, K.; Hawksworth, D.L.; Groenewald, J.Z. Phacidium and Ceuthospora (Phacidiaceae) Are Congeneric: Taxonomic and Nomenclatural Implications. IMA Fungus 2014, 5, 173–193. [Google Scholar] [CrossRef]
- Hahn, G.G. A New Species of Phacidiella Causing the So-Called Phomopsis Disease of Conifers. Mycologia 1957, 49, 226–239. [Google Scholar] [CrossRef]
- Amiri, A. Phacidiopycnis Rots 2020. WSU Tree Fruit Comprehensive Tree Fruit Site. Washington State University. Available online: https://treefruit.wsu.edu/crop-protection/disease-management/phacidiopycnis-rot/ (accessed on 5 February 2024).
- Kowalski, T.; Bilański, P. Fungi Detected in the Previous Year’s Leaf Petioles of Fraxinus excelsior and Their Antagonistic Potential against Hymenoscyphus fraxineus. Forests 2021, 12, 1412. [Google Scholar] [CrossRef]
- Ozturk, I.K.; Amiri, A. Pathogenicity and Control of Phacidium lacerum, an Emerging Pome Fruit Pathogen in Washington State. Plant Dis. 2020, 104, 3124–3130. [Google Scholar] [CrossRef]
- Bajo, J.; Santamaría, O.; Diez, J.J. Cultural Characteristics and Pathogenicity of Pestalotiopsis funerea on Cupressus arizonica. For. Pathol. 2008, 38, 263–274. [Google Scholar] [CrossRef]
- Gonthier, P.; Nicolotti, G. First Report of Pestalotiopsis funerea on Cupressocyparis leylandii in Italy. Plant Dis. 2002, 86, 1402. [Google Scholar] [CrossRef]
- Madar, Z.; Solel, Z.; Kimchi, M. Pestalotiopsis Canker of Cypress in Israel. Phytoparasitica 1991, 19, 79–81. [Google Scholar] [CrossRef]
- Sousa, M.F.; Tavares, R.M.; Gerós, H.; Neto, T.L. First Report of Hakea sericea Leaf Infection Caused by Pestalotiopsis Funerea in Portugal. Plant Pathol. 2004, 53, 503. [Google Scholar] [CrossRef]
- Liu, F.; Bonthond, G.; Groenewald, J.Z.; Cai, L.; Crous, P.W. Sporocadaceae, a Family of Coelomycetous Fungi with Appendage-Bearing Conidia. Stud. Mycol. 2019, 92, 287–415. [Google Scholar] [CrossRef]
- Silva, A.; Diogo, E.; Henriques, J.; Ramos, A.; Sandoval-Denis, M.; Crous, P.W.; Bragança, H. Pestalotiopsis pini Sp. Nov., an Emerging Pathogen on Stone Pine (Pinus pinea L.). Forests 2020, 11, 805. [Google Scholar] [CrossRef]
- Santos, J.; Hilário, S.; Pinto, G.; Alves, A. Diversity and Pathogenicity of Pestalotioid Fungi Associated with Blueberry Plants in Portugal, with Description of Three Novel Species of Neopestalotiopsis. Eur. J. Plant Pathol. 2022, 162, 539–555. [Google Scholar] [CrossRef]
- Crous, P.W.; Schumacher, R.K.; Wingfield, M.J.; Akulov, A.; Denman, S.; Roux, J.; Braun, U.; Burgess, T.I.; Carnegie, A.J.; Váczy, K.Z.; et al. New and Interesting Fungi. 1. Fungal Syst. Evol. 2018, 1, 169–215. [Google Scholar] [CrossRef]
- Solarte, F.; Muñoz, C.; Maharachchikumbura, S.; Alvarez, E. Diversity of Neopestalotiopsis and Pestalotiopsis spp., Causal Agents of Guava Scab in Colombia. Plant Dis. 2017, 102, 49–59. [Google Scholar] [CrossRef]
- Marqua, J.; Fischer, C. Die Pilzflora des Ehinger Raumes. Available online: http://www.pilzflora-ehingen.de/pilzflora/arthtml/pmonochaeta.php (accessed on 12 June 2024).
- Taylor, J.E.; Koukol, O. Towards Resolving Nothophaeocryptopus and Rhizosphaera Inhabitants of Spruce Needles. For. Pathol. 2023, 53, e12807. [Google Scholar] [CrossRef]
- Gadgil, P.D. Fungi on Trees and Shrubs in New Zealand; Fungal Diversity Research Series; Fungal Diversity Press: Hong Kong, China, 2005; ISBN 978-962-86765-9-0. [Google Scholar]
- Pennycook, S.R.; Young, J.M.; Fletcher, M.J.; Fry, P.A. Plant Diseases Recorded in New Zealand; Plant Diseases Division, DSIR: Auckland, New Zealand, 1989; ISBN 978-0-477-02547-8. [Google Scholar]
- Mack, R.N.; Simberloff, D.; Mark Lonsdale, W.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic Invasions: Causes, Epidemiology, Global Consequences, and Control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Bhunjun, C.S.; Phillips, A.J.L.; Jayawardena, R.S.; Promputtha, I.; Hyde, K.D. Importance of Molecular Data to Identify Fungal Plant Pathogens and Guidelines for Pathogenicity Testing Based on Koch’s Postulates. Pathogens 2021, 10, 1096. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langer, G.J.; Bien, S.; Bußkamp, J. Filamentous Fungi Associated with Disease Symptoms in Non-Native Giant Sequoia (Sequoiadendron giganteum) in Germany—A Gateway for Alien Fungal Pathogens? Pathogens 2024, 13, 715. https://doi.org/10.3390/pathogens13090715
Langer GJ, Bien S, Bußkamp J. Filamentous Fungi Associated with Disease Symptoms in Non-Native Giant Sequoia (Sequoiadendron giganteum) in Germany—A Gateway for Alien Fungal Pathogens? Pathogens. 2024; 13(9):715. https://doi.org/10.3390/pathogens13090715
Chicago/Turabian StyleLanger, Gitta Jutta, Steffen Bien, and Johanna Bußkamp. 2024. "Filamentous Fungi Associated with Disease Symptoms in Non-Native Giant Sequoia (Sequoiadendron giganteum) in Germany—A Gateway for Alien Fungal Pathogens?" Pathogens 13, no. 9: 715. https://doi.org/10.3390/pathogens13090715
APA StyleLanger, G. J., Bien, S., & Bußkamp, J. (2024). Filamentous Fungi Associated with Disease Symptoms in Non-Native Giant Sequoia (Sequoiadendron giganteum) in Germany—A Gateway for Alien Fungal Pathogens? Pathogens, 13(9), 715. https://doi.org/10.3390/pathogens13090715