Diversity and Distribution of Phytophthora Species Along an Elevation Gradient in Natural and Semi-Natural Forest Ecosystems in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Surveys and Sampling Procedure
2.2. Isolation of Pathogens
2.3. Identification of Pathogens
2.4. Phylogenetic Analysis
2.5. Pathogenicity Test
2.6. Geographic Distribution of Phytophthora Species
3. Results
3.1. Field Survey
3.2. Phytophthora Diversity in Portugal
3.3. Phytophthora Distribution in Portugal
3.4. ITS Phylogeny
3.5. Pathogenicity Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunes, L.J.; Meireles, C.I.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M. Historical development of the portuguese forest: The introduction of invasive species. Forests 2019, 10, 974. [Google Scholar] [CrossRef]
- IFN6 Áreas dos Usos do Solo e das Espécies Florestais de Portugal. In Relatorio Final; ICNF: Lisboa, Portugal, 2015.
- Costa, R.; Fraga, H.; Fernandes, P.M.; Santos, J.A. Implications of future bioclimatic shifts on Portuguese forests. Reg. Environ. Change 2017, 17, 117–127. [Google Scholar] [CrossRef]
- Ferreira-Leite, F.; Bento-Gonçalves, A.; Vieira, A.; Nunes, A.; Lourenço, L. Incidence and recurrence of large forest fires in mainland Portugal. Nat. Hazards 2016, 84, 1035–1053. [Google Scholar] [CrossRef]
- Mateus, P.; Fernandes, P.M. Forest fires in Portugal: Dynamics, causes and policies. In Forest Context and Policies in Portugal: Present and Future Challenges; Springer: Berlin/Heidelberg, Germany, 2016; pp. 97–115. [Google Scholar]
- Tonini, M.; Parente, J.; Pereira, M.G. Global assessment of rural–urban interface in Portugal related to land cover changes. Nat. Hazards Earth Syst. Sci. 2018, 18, 1647–1664. [Google Scholar] [CrossRef]
- Bousfield, C.G.; Lindenmayer, D.B.; Edwards, D. Substantial and increasing global losses of timber-producing forest due to wildfires. Nat. Geosci. 2023, 16, 1145–1150. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J.; Worral, A.J.; Woods, A.J. Climate change and forest diseases. Plant Pathol. 2011, 60, 133–149. [Google Scholar] [CrossRef]
- Soares, P.M.; Cardoso, R.M.; Ferreira, J.J.; Miranda, P.M. Climate change and the Portuguese precipitation: ENSEMBLES regional climate models result. Clim. Dyn. 2015, 45, 1771–1787. [Google Scholar] [CrossRef]
- Serrano, M.S.; Romero, M.Á.; Homet, P.; Gómez-Aparicio, L. Climate change impact on the population dynamics of exotic pathogens: The case of the worldwide pathogen Phytophthora cinnamomi. Agric. For. Meteorol. 2022, 322, 109002. [Google Scholar] [CrossRef]
- Russo, A.; Gouveia, C.M.; Páscoa, P.; DaCamara, C.C.; Sousa, P.M.; Trigo, R.M. Assessing the role of drought events on wildfires in the Iberian Peninsula. Agric. For. Meteorol. 2017, 237, 50–59. [Google Scholar] [CrossRef]
- Turbelin, A.; Catford, J.A. Invasive plants and climate change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 515–539. [Google Scholar]
- Branco, M.; Bragança, H.; Sousa, E.; Phillips, A.J. Pests and diseases in Portuguese forestry: Current and new threats. In Forest Context and Policies in Portugal: Present and Future Challenges; Springer: Berlin/Heidelberg, Germany, 2014; pp. 117–154. [Google Scholar]
- Barradas, C.; Phillips, A.J.; Correia, A.; Diogo, E.; Bragança, H.; Alves, A. Diversity and potential impact of Botryosphaeriaceae species associated with Eucalyptus globulus plantations in Portugal. Eur. J. Plant Pathol. 2016, 146, 245–257. [Google Scholar] [CrossRef]
- Diez-Hermano, S.; Ahmad, F.; Nino-Sanchez, J.; Benito, A.; Hidalgo, E.; Escudero, L.M.; Morel, W.A.; Diez, J.J. Health condition and mycobiome diversity in Mediterranean tree species. Front. For. Glob. Change 2022, 5, 1056980. [Google Scholar] [CrossRef]
- Batista, E.; Lopes, A.; Alves, A. What do we know about Botryosphaeriaceae? An overview of a worldwide cured dataset. Forests 2021, 12, 313. [Google Scholar] [CrossRef]
- Bregant, C.; Rossetto, G.; Meli, L.; Sasso, N.; Montecchio, L.; Brglez, A.; Ogris, N.; Piskur, B.; Maddau, L.; Linaldeddu, B.T. Diversity of Phytophthora Species Involved in New Diseases of Mountain Vegetation in Europe with the Description of Phytophthora pseudogregata sp. nov. Forests 2023, 14, 1515. [Google Scholar] [CrossRef]
- Linaldeddu, B.T.; Scanu, B.; Maddau, L.; Franceschini, A. Diplodia corticola and Phytophthora cinnamomi: The main pathogens involved in holm oak decline on Caprera Island (Italy). For. Pathol. 2014, 44, 191–200. [Google Scholar] [CrossRef]
- Linaldeddu, B.T.; Rossetto, G.; Maddau, L.; Vatrano, T.; Bregant, C. Diversity and pathogenicity of Botryosphaeriaceae and Phytophthora species associated with emerging olive diseases in Italy. Agriculture 2023, 13, 1575. [Google Scholar] [CrossRef]
- Benigno, A.; Bregant, C.; Aglietti, C.; Rossetto, G.; Tolio, B.; Moricca, S.; Linaldeddu, B.T. Pathogenic fungi and oomycetes causing dieback on Fraxinus species in the Mediterranean climate change hotspot region. Front. For. Glob. Change 2023, 6, 1253022. [Google Scholar] [CrossRef]
- Alves, A.; Barradas, C.; Phillips, A.J.L.; Correia, A. Diversity of Botryosphaeriaceae species associated with conifers in Portugal. Eur. J. Plant Pathol. 2004, 135, 791–804. [Google Scholar] [CrossRef]
- Alves, A.; Linaldeddu, B.T.; Deidda, A.; Scanu, B.; Phillips, A.J.L. The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal. Fungal Divers. 2014, 67, 143–156. [Google Scholar] [CrossRef]
- Lopes, A.; Barradas, C.; Phillips, A.J.L.; Alves, A. Diversity and phylogeny of Neofusicoccum species occurring in forest and urban environments in Portugal. Mycosphere 2016, 7, 906–920. [Google Scholar] [CrossRef]
- Batista, E.; Lopes, A.; Alves, A. Botryosphaeriaceae species on forest trees in Portugal: Diversity, distribution and pathogenicity. Eur. J. Plant Pathol. 2020, 158, 693–720. [Google Scholar] [CrossRef]
- Maia, C.; Horta Jung, M.; Carella, G.; Milenković, I.; Janoušek, J.; Tomšovský, M.; Mosca, S.; Schena, L.; Cravador, A.; Moricca, S.; et al. Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus. Persoonia 2022, 48, 54–90. [Google Scholar] [CrossRef] [PubMed]
- Bregant, C.; Batista, E.; Hilário, S.; Linaldeddu, B.T.; Alves, A. Phytophthora species involved in Alnus glutinosa decline in Portugal. Pathogens 2023, 12, 276. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Jung, M.H.; Cacciola, S.O.; Cech, T.; Bakonyi, J.; Seress, D.; Mosca, S.; Schena, L.; Seddaiu, S.; Pane, A.; et al. Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus 2017, 8, 219–244. [Google Scholar] [CrossRef] [PubMed]
- Diogo, E.; Machado, H.; Reis, A.; Valente, C.; Phillips, A.J.L.; Bragança, H. Phytophthora alticola and Phytophthora cinnamomi on Eucalyptus globulus in Portugal. Eur. J. Plant Pathol. 2022, 165, 255–269. [Google Scholar] [CrossRef]
- Bregant, C.; Batista, E.; Hilário, S.; Linaldeddu, B.T.; Alves, A. First report of Phytophthora hibernalis, P. multivora and P. niederhauserii causing root rot and bleeding cankers on Eucalyptus globulus in Portugal. New Dis. Rep. 2023, 47, e12171. [Google Scholar] [CrossRef]
- Moreira, A.C.; Ferraz, J.F.P.; Clegg, J. The involvement of Phytophthora cinnamomi in cork and holm oak decline in Portugal. In Proceedings of the First International Meeting on Phytophthoras in Forest and Wildland Ecosystems, Grand Pass, OR, USA, 30 August–3 September 1999; pp. 132–135. [Google Scholar]
- Moreira, A.C.; Martins, J.M.S. Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. For. Pathol. 2005, 35, 145–162. [Google Scholar] [CrossRef]
- Martins, L.; Castro, J.; Macedo, W.; Marques, C.; Abreu, C. Assessment of the spread of chestnut ink disease using remote sensing and geostatistical methods. Eur. J. Plant Pathol. 2007, 119, 159–164. [Google Scholar] [CrossRef]
- Serrano, M.S.; De Vita, P.; Fernàndez-Rebollo, P.; Coelho, A.C.; Belbarhi, L.; Sanchez, M.E. Phytophthora cinnamomi and Pythium spiculum as main agents of Quercus decline in southern Spain and Portugal. In Proceedings of the IOBC-WPRS 6th Meeting Integrated Protection in Oak Forests, Integrated Protection in Oak Forests IOBC/WPRS Bulletin, Tempio Pausania, Italy, 4–7 October 2010; Volume 76, pp. 97–100. [Google Scholar]
- de Sampaio e Paiva Camilo-Alves, C.; da Clara, M.I.E.; de Almeida Ribeiro, N.M.C. Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: A review. Eur. J. For. Res. 2013, 132, 411–432. [Google Scholar] [CrossRef]
- Fernandes, P.; Machado, H.; Silva, M.D.C.; Costa, R.L. A histopathological study reveals new insights into responses of chestnut (Castanea spp.) to root infection by Phytophthora cinnamomi. Phytopathology 2017, 111, 345–355. [Google Scholar] [CrossRef]
- Kanoun-Boulé, M.; Vasconcelos, T.; Gaspar, J.; Vieira, S.; Dias-Ferreira, C.; Husson, C. Phytophthora ×alni and Phytophthora lacustris associated with common alder decline in Central Portugal. For. Pathol. 2016, 46, 174–176. [Google Scholar] [CrossRef]
- Jung, M.H.; Maia, C.; Mora-Sala, B.; Abad-Campos, P.; Schena, L.; Mosca, S.; Carella, G.; Moricca, S.; Nechwatal, J.; Dionísio, L.; et al. High diversity of Phytophthora species in natural ecosystems and nurseries of Portugal: Detrimental side effect of plant introductions from the age of discovery to modern globalization. Plant Pathol. 2025, 74, 330–362. [Google Scholar] [CrossRef]
- Koppen, W. Das Geographische System der Klimate, Handbuch der Klimatologie [The Geographical System of the Climate, Handbook of Climatology]; Borntraeger: Berlin, Germany, 1936. [Google Scholar]
- Bregant, C.; Sanna, G.P.; Bottos, A.; Maddau, L.; Montecchio, L.; Linaldeddu, B.T. Diversity and pathogenicity of Phytophthora species associated with declining alder trees in Italy and description of Phytophthora alpina sp. nov. Forests 2020, 11, 848. [Google Scholar] [CrossRef]
- Erwin, C.D.; Ribeiro, O.K. Phytophthora Diseases Worldwide; APS Press: Saint Paul, MN, USA, 1996. [Google Scholar]
- Möller, E.M.; Bahnweg, G.; Sandermann, H.; Geiger, H.H. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 1992, 20, 6115–6116. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Yang, X.; Tyler, B.M.; Hong, C. An expanded phylogeny for the genus Phytophthora. IMA Fungus 2017, 8, 355–384. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Lopes-Pimentel, A.A. O sobreiro também é parasitado pela Phytophthora cambivora (Petri) Buis., agente da “doença da tinta” do castanheiro. Lisboa. Dir. Geral Dos. Serv. Florestais E Aquícolas 1946, 13, 45–49. [Google Scholar]
- Grandall, B.S. The distribution and significance of the chestnut root rot Phytophthoras, P. cinnamomi and P. cambivora. Plant Dis. Rep. 1950, 34, 194–196. [Google Scholar]
- Mullett, M.S.; Harris, A.R.; Scanu, B.; Van Poucke, K.; LeBoldus, J.; Stamm, E.; Bourret, T.B.; Christova, P.K.; Oliva, J.; Redondo, M.A.; et al. Phylogeography, origin and population structure of the self-fertile emerging plant pathogen Phytophthora pseudosyringae. Mol. Plant Pathol. 2024, 25, e13450. [Google Scholar] [CrossRef]
- Pimentel, A. A Phytophthora cinnamomi Rands, um outro agente, extremamente virulento, da “doença da tinta” do castanheiro. Sep. Agron. Lusit. 1947, 9, 181–191. [Google Scholar]
- Brasier, C.M.; Robredo, F.; Ferraz, J.F.P. Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol. 1993, 42, 140–145. [Google Scholar] [CrossRef]
- Jung, T.; Milenković, I.; Balci, Y.; Janoušek, J.; Kudláček, T.; Nagy, Z.Á.; Baharuddin, B.; Bakonyi, J.; Broders, K.D.; Cacciola, S.O.; et al. Worldwide Forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Stud. Mycol. 2024, 107, 251–388. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Gomes, M.; Amaro, P.T. Ocorrência de Phytophthora ramorum em Portugal sobre Viburnum spp. Rev. Cienc. Agrar. 2008, 31, 105–111. [Google Scholar]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database; Invasive Species Specialist Group: Auckland, New Zealand, 2000; Volume 12, p. 12. [Google Scholar]
- McDougall, K.; Summerell, B.; Coburn, D.; Newton, M. Phytophthora cinnamomi causing disease in subalpine vegetation in New South Wales. Aus Plant Pathol. 2003, 32, 113–115. [Google Scholar] [CrossRef]
- Burgess, T.I.; Scott, J.K.; McDougall, K.L.; Stukely, M.J.; Crane, C.; Dunstan, W.A.; Brigg, F.; Andjic, V.; White, D.; Rudman, T.; et al. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob. Change Biol. 2017, 23, 1661–1674. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, I.; Hardy, G.E.S.J.; Burgess, T.I. Phytophthora cinnamomi exhibits phenotypic plasticity in response to cold temperatures. Mycol. Prog. 2020, 19, 405–415. [Google Scholar] [CrossRef]
- Bregant, C.; Mulas, A.A.; Rossetto, G.; Deidda, A.; Maddau, L.; Piras, G.; Linaldeddu, B.T. Phytophthora mediterranea sp. nov., a New Species Closely Related to Phytophthora cinnamomi from Nursery Plants of Myrtus communis in Italy. Forests 2021, 12, 682. [Google Scholar] [CrossRef]
- Nechwatal, J.; Jung, T. A study of Phytophthora spp. in declining highbush blueberry in Germany reveals that P. cinnamomi can thrive under Central European outdoor conditions. J. Plant Dis. Prot. 2021, 128, 769–774. [Google Scholar] [CrossRef]
- Jansen, J.; Castro, P.; Costa, L. Economic-ecologic interactions in the Serra da Estrela, Portugal. In Economy and Ecology of Heathlands; KNNV Publishing: Leiden, The Netherlands, 2013; pp. 63–89. [Google Scholar]
- Bregant, C.; Rossetto, G.; Sasso, N.; Montecchio, L.; Maddau, L.; Linaldeddu, B.T. Diversity and distribution of Phytophthora species across different types of riparian vegetation in Italy with the description of Phytophthora heteromorpha sp. nov. Int. J. Syst. Evol. Microbiol. 2024, 74, 006272. [Google Scholar] [CrossRef] [PubMed]
- Schoebel, C.N.; Stewart, J.; Gruenwald, N.J.; Rigling, D.; Prospero, S. Population history and pathways of spread of the plant pathogen Phytophthora plurivora. PLoS ONE 2014, 9, e85368. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Martínez-Álvarez, P.; Lomba, J.M.; Martín-García, J.; Diez, J.J. First report of Phytophthora plurivora causing collar rot on common alder in Spain. Plant Dis. 2014, 98, 425. [Google Scholar] [CrossRef]
- Mora-Sala, B.; León, M.; Pérez-Sierra, A.; Abad-Campos, P. New reports of Phytophthora species in plant nurseries in Spain. Pathogens 2022, 11, 826. [Google Scholar] [CrossRef] [PubMed]
- Pintos, C.; Rial, C.; Piñón, P.; Salinero, C.; Aguín, O. Occurrence of Phytophthora ramorum and Other Phytophthora Species on Woody Ornamentals in Public Gardens and Parks in Northwestern Spain. Plant Health Prog. 2023, 24, 37–46. [Google Scholar] [CrossRef]
- Jung, T.; La Spada, F.; Pane, A.; Aloi, F.; Evoli, M.; Horta Jung, M.; Scanu, B.; Faedda, R.; Rizza, C.; Puglisi, I.; et al. Diversity and distribution of Phytophthora species in protected natural areas in Sicily. Forests 2019, 10, 259. [Google Scholar] [CrossRef]
- Tsykun, T.; Prospero, S.; Schoebel, C.N.; Rea, A.; Burgess, T.I. Global invasion history of the emerging plant pathogen Phytophthora multivora. BMC Genom. 2022, 23, 153. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.M.; Burgess, T.I.; Barber, P.A.; Shearer, B.L.; Stukely, M.J.C.; Hardy, G.E.S.J.; Jung, T. Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia. Persoonia 2009, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bose, T.; Wingfield, M.J.; Roux, J.; Vivas, M.; Burgess, T.I. Community composition and distribution of Phytophthora species across adjacent native and non-native forests of South Africa. Fungal Ecol. 2018, 36, 17–25. [Google Scholar] [CrossRef]
- Migliorini, D.; Khdiar, M.Y.; Padrón, C.R.; Vivas, M.; Barber, P.A.; Hardy, G.E.S.J.; Burgess, T.I. Extending the host range of Phytophthora multivora, a pathogen of woody plants in horticulture, nurseries, urban environments and natural ecosystems. Urban For. Urban Green. 2019, 46, 126460. [Google Scholar] [CrossRef]
- Jung, T.; Burgess, T.I. Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia 2009, 22, 95–110. [Google Scholar] [CrossRef]
- Henricot, B.; Pérez Sierra, A.; Jung, T. Phytophthora pachypleura sp. nov., a new species causing root rot of Aucuba japonica and other ornamentals in the United Kingdom. Plant Pathol. 2014, 63, 1095–1109. [Google Scholar] [CrossRef]
- Brasier, C.M.; Cooke, D.E.; Duncan, J.M.; Hansen, E.M. Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides–P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycol. Res. 2003, 107, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Corcobado, T.; Cech, T.L.; Daxer, A.; Ďatková, H.; Janoušek, J.; Patra, S.; Jahn, D.; Hüttler, C.; Milenković, I.; Tomšovský, M.; et al. Phytophthora, Nothophytophthora and Halophytophthora diversity in rivers, streams and riparian alder ecosystems of Central Europe. Mycol. Prog. 2023, 22, 50. [Google Scholar] [CrossRef]
- Jung, T.; Stukely, M.J.C.; Hardy, G.E.S.J.; White, D.; Paap, T.; Dunstan, W.A.; Burgess, T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Pers. Mol. Phylogeny Evol. Fungi 2011, 26, 13–39. [Google Scholar] [CrossRef] [PubMed]
- Nagel, J.H.; Slippers, B.; Wingfield, M.J.; Gryzenhout, M. Multiple Phytophthora species associated with a single riparian ecosystem in South Africa. Mycologia 2015, 107, 915–925. [Google Scholar] [CrossRef]
- Nagel, J.H.; Gryzenhout, M.; Slippers, B.; Wingfield, M.J.; Hardy, G.E.S.J.; Stukely, M.J.; Burgess, T.I. Characterization of Phytophthora hybrids from ITS clade 6 associated with riparian ecosystems in South Africa and Australia. Fungal Biol. 2013, 117, 329–347. [Google Scholar] [CrossRef]
- Burgess, T.I. Molecular characterization of natural hybrids formed between five related indigenous clade 6 Phytophthora species. PLoS ONE 2015, 10, e0134225. [Google Scholar] [CrossRef] [PubMed]
Study Site | Climate Zone | Elevation (m a.s.l.) | Coordinates | Number of Samples | ||
---|---|---|---|---|---|---|
Latitude | Longitude | Rhizosphere | Necrotic Tissues | |||
1 | A | 40 | 37.118918 | −8.567076 | Pl(5), Pp(2), Qc(2), Eg(1) | - |
2 | A | 50 | 37.162606 | −8.251300 | Ces(3), Ph(1) | - |
3 | A | 4 | 41.071134 | −8.657429 | Ce(1) | - |
4 | A | 0 | 40.598795 | −8.755363 | Al(6), Ce(2) | Ce(2) |
5 | B | 12 | 40.724190 | −8.570960 | Psp(6) | - |
6 | B | 16 | 40.718277 | −8.569993 | Qr(3), Ssp(2) | Qr(1) |
7 | B | 6 | 40.704444 | −8.607099 | Fa(2), Al(1) | - |
8 | B | 5 | 40.695340 | −8.633084 | Eg(3), Fa(1) | - |
9 | B | 18 | 40.551664 | −8.575524 | Eg(3) | - |
10 | B | 437 | 41.554036 | −8.375251 | Qr(7), Qs(2) | - |
11 | B | 400 | 38.783018 | −9.416210 | Cs(5), Ap(4), Qc(3), Rp(2), Eg(1) | Rp(21), Vm(2), Vt(4) |
12 | B | 300 | 38.781366 | −9.386651 | Cs(7), Qr(6), Qs(2), Fm(2) | - |
13 | C | 1056 | 40.490891 | −7.520354 | Bc(4) | - |
14 | C | 500 | 40.612330 | −7.519114 | Qp(1) | - |
15 | C | 1092 | 40.442888 | −7.511881 | Fe(2), Bc(1), Ps(1) | - |
16 | C | 1107 | 40.541458 | −7.454340 | Cs(2), Qp(1) | - |
17 | C | 1300 | 40.299541 | −7.537996 | Ld(2), Sa(1) | - |
18 | C | 1450 | 40.328321 | −7.587890 | Bc(2), Ld(1) | - |
19 | C | 1900 | 40.332200 | −7.611709 | Jc(2) | Jc(2) |
20 | C | 900 | 40.327858 | −7.677459 | Cs(1) | - |
21 | C | 680 | 40.383422 | −7.700445 | Cs(2) | - |
Species | ITS Clade | Collection No. | Host | ITS GenBank Accession No. |
---|---|---|---|---|
Phytophthora cactorum | 1 | CBS231.30 | Syringa vulgaris | MG783385 |
P. cactorum | 1 | CBP168 | Castanea sativa | PQ571399 |
P. hedraiandra | 1 | CBS111725 | Viburnum sp. | MG865504 |
P. hedraiandra | 1 | CBP188 | Betula celtiberica | PQ571404 |
P. citricola | 2 | CBS221.88 | Citrus sinensis | MG865475 |
P. citricola | 2 | CBP150 | Acer pseudoplatanus | PQ571402 |
P. multivora | 2 | CBS124094 | Eucalyptus marginata | FJ237521 |
P. multivora | 2 | CBP154 | C. sativa | PQ571407 |
P. pachypleura | 2 | IMI502404 | Aucuba japonica | KC855330 |
P. pachypleura | 2 | CBP158 | C. sativa | PQ571408 |
P. plurivora | 2 | CBS124093 | Fagus sylvatica | MG865568 |
P. plurivora | 2 | CBP164 | C. sativa | PQ571409 |
P. ilicis | 3 | P3939 | Ilex aquifolium | MG865511 |
P. pseudosyringae | 3 | CBS111772 | Quercus robur | MG865574 |
P. pseudosyringae | 3 | CBP195 | B. celtiberica | PQ571411 |
P. alticola | 4 | CBS141718 | Eucalyptus grandis | KX247599 |
P. palmivora | 4 | CBS305.62 | Areca catechu | LC595875 |
P. cocois | 5 | P19948 | Cocos nucifera | MG865478 |
P. heveae | 5 | CBS296.29 | Hevea brasiliensis | MG865505 |
P. amnicola | 6 | CBS131652 | water | JQ029956 |
P. amnicola | 6 | CBP134 | Rhododendron ponticum | PQ571396 |
P. asparagi | 6 | CBS132095 | Lomandra sonderi | EU301168 |
P. asparagi | 6 | CBP179 | Pistacia lentiscus | PQ571397 |
P. bilorbang | 6 | CBS161653 | Rubus anglicandicans | JQ256377 |
P. bilorbang | 6 | CBP140 | R. ponticum | PQ571398 |
P. chlamydospora | 6 | P6133 | Prunus sp. | MG865471 |
P. chlamydospora | 6 | CBP148 | A. pseudoplatanus | PQ571400 |
P. gonapodyides | 6 | P7050 | Alnus sp. | MG865501 |
P. gonapodyides | 6 | CBP186 | B. celtiberica | PQ571403 |
P. inundata | 6 | CBS216.85 | Salix matsudana | MG865516 |
P. inundata | 6 | CBP78 | Eucalyptus globulus | PQ571405 |
P. lacustris | 6 | IMI389725 | S. matsundana | JQ626605 |
P. lacustris | 6 | CBP162 | Populus sp. | PQ571406 |
P. rosacearum | 6 | CBS124696 | Malus sp. | EU925376 |
P. rosacearum | 6 | CBP116 | Acacia longifolia | PQ571412 |
P. thermophila | 6 | CBS127954 | E. marginata | EU301155 |
P. thermophila | 6 | CBP90 | Q. robur | PQ571414 |
P. cinnamomi | 7 | CBS144.22 | Cinnamomum burmannii | MG865473 |
P. cinnamomi | 7 | CBP185 | C. sativa | PQ571401 |
P. niederhauserii | 7 | CBS149824 | Hedera helix | MG865552 |
P. pseudocryptogea | 8 | CBS139749 | Isopogon buxifolius | KP288376 |
P. pseudocryptogea | 8 | CBP166 | C. sativa | PQ571410 |
P. syringae | 8 | CBS110161 | S. vulgaris | MG865590 |
P. syringae | 8 | CBP220 | Q. robur | PQ571413 |
P. parsiana | 9 | IMI395329 | Ficus carica | MG865562 |
P. polonica | 9 | CBS119650 | Alnus glutinosa | AB511828 |
P. boehmeriae | 10 | CBS 291.29 | Boehmeria nivea | MG783382 |
P. kernoviae | 10 | IMI393170 | F. sylvatica | AY940661 |
P. lilii | 11 | CBS135746 | Lilium longiflorum | MG865523 |
P. castanetorum | 12 | CBS142299 | C. sativa | MF036182 |
P. quercina | 12 | CBS784.95 | Q. robur | MG865578 |
Halophytophthora avicennae | - | CBS188.85 | Avicennia marina | HQ643147 |
H. avicenniae | - | CBP98 | E. globulus | PQ571415 |
Nothophytophthora caduca | - | CBS142350 | water | KY788401 |
N. caduca | - | CBP163 | Vinca major | PQ571416 |
Plant Species | Symptoms Observed | Disease Incidence (%) | Mortality Rate (%) |
---|---|---|---|
Acacia longifolia | Root rot, bleeding cankers, canopy decline, sudden death | 60–83 | 15–28 |
Acer pseudoplatanus | Root rot, exudates, bleeding cankers, chlorosis, stunted growth | nd | nd |
Betula celtiberica | Root rot, bleeding cankers, canopy decline, sudden death | 95 | 55 |
Carpobrotus edulis | Leaf necrosis, wilting | nd | nd |
Castanea sativa | Root rot, bleeding cankers, chlorosis, canopy decline, sudden death | 60–100 | 17–26 |
Ceratonia siliqua | Root rot, chlorosis, canopy decline | nd | nd |
Eucalyptus globulus | Root rot, bleeding cankers, chlorosis, canopy decline, sudden death | 80 | 20 |
Ficus macrophylla | Root rot, bleeding cankers, chlorosis, canopy decline, sudden death | nd | nd |
Fraxinus angustifolia | Root and collar rot, canopy decline | nd | nd |
Fraxinus excelsior | Root rot, canopy decline | nd | nd |
Juniperus communis | Shoot blight, sudden death | nd | nd |
Larix decidua | Root rot, chlorosis, canopy decline, sudden death | 50 | 10 |
Pistacia lentiscus | Root rot, chlorosis, canopy decline, sudden death | 76 | 31 |
Pinus halepensis | Root rot, sudden death | nd | nd |
Pinus pinea | Root rot, sudden death | nd | nd |
Pinus sylvestris | Root rot, canopy decline | nd | nd |
Populus sp. | Root rot, chlorosis, canopy decline, sudden death | 70 | 12 |
Quercus coccifera | Root rot, canopy decline | 60 | 17 |
Quercus pyrenaica | Root rot, canopy decline | nd | nd |
Quercus robur | Root rot, bleeding cankers, chlorosis, canopy decline, sudden death | 67 | 11 |
Quercus suber | Root rot, bleeding cankers, chlorosis, canopy decline, sudden death | nd | nd |
Rhododendron ponticum | Leaf necrosis, wilting, shoot blight, root rot, sudden death | 100 | 16 |
Salix sp. | Root rot, chlorosis, canopy decline, sudden death | 75 | 22 |
Sorbus aucuparia | Root rot, canopy decline | nd | nd |
Vinca major | Leaf necrosis, wilting | nd | nd |
Viburnum tinus | Leaf necrosis, wilting | nd | nd |
Species | ITS Clade | Plant Species * | Total Number of Isolates | Sites |
---|---|---|---|---|
Halophytophthora avicenniae | - | Eg(2) | 2 | 8 |
Nothophytophthora caduca | - | Vm(2) | 2 | 11 |
Phytophthora amnicola | 6 | Rp(5), Qr(1) | 6 | 11, 12 |
P. asparagi | 6 | Pl(3) | 3 | 1 |
P. bilorbang | 6 | Rp(4) | 4 | 11 |
P. cactorum | 1 | Qr(5), Qs(1) Cs(1), Jc(1) | 8 | 10, 12, 19 |
P. chlamydospora | 6 | Qs(1), Ap(1) | 2 | 10,11 |
P. cinnamomi | 7 | Eg(7), Qr(6), Qc(5), Bc(4), Qs(2), Al(2), Cs(3), Ce(3), Rp(1), Ces(1), Pl (1), Pp(1) | 36 | 1–4, 6, 10–13, 16, 20, 21 |
P. citricola | 2 | Ap(3) | 3 | 11 |
P. gonapodyides | 6 | Bc(2), Al(1), Qr(1) | 4 | 4, 10, 18 |
P. hedraiandra | 1 | Rp(3), Vm(2), Bc(1) | 6 | 11, 18 |
P. inundata | 6 | Eg(2), Qr(2) | 4 | 6, 8 |
P. lacustris | 6 | Ssp(2), Psp(4), Qr(2) | 8 | 5, 6, 10 |
P. multivora | 2 | Rp(13), Cs(3), Fm(2), Fa(1), Al(1) | 20 | 4, 7, 11, 12 |
P. pachypleura | 2 | Cs(2) | 2 | 12 |
P. plurivora | 2 | Qr(3), Cs(2), Fe(1), Bc(1), Qp(1), Eg(1) | 9 | 10, 12, 14–16 |
P. pseudocryptogea | 8 | Al(2), Pl(3), Ph(1), Cs(2) | 7 | 1, 2, 4, 11, 12 |
P. pseudosyringae | 3 | Jc(2), Bc(1), Sa(1), Ld(1) | 5 | 13, 17, 19 |
P. rosacearum | 6 | Al(3) | 3 | 4, 7 |
P. syringae | 8 | Qr(1) | 1 | 6 |
P. thermophila | 6 | Pp(2), Rp(1), Qr(1), Qs(1) | 5 | 1, 10, 11 |
Species | Host | References |
---|---|---|
P. alticola | Eucalyptus globulus | [29] |
P. amnicola | Alnus glutinosa, Castanea sativa, Fagus sylvatica, Rhododendron ponticum, Quercus robur | [27,38]; this study |
P. asparagi | A. glutinosa, Pistacia lentiscus | [27]; this study |
P. bilorbang | R. ponticum, water | [27,38]; this study |
P. cactorum | A. glutinosa, Castanea sativa, Quercus robur, Q. suber, Juniperus communis | [27]; this study |
P. cambivora | Acer pseudoplatanus, Betula celtiberica, C. sativa, F. sylvatica, Salix caprea, Quercus ilex, Quercus pyrenaica, water | [38,47,48,49] |
P. castanetorum | C. sativa | [28,38] |
P. chlamydospora | A. pseudoplatanus, A. glutinosa, C. sativa, F. sylvatica, Q. suber | [27,38]; this study |
P. cinnamomi | Abies alba, Acacia longifolia, A. glutinosa, Arbutus unedo, B. celtiberica, Calluna vulgaris, Carpobrotus edulis, C. sativa, Ceratonia siliqua, Cistus crispus, C. ladanifer, C. populifolius, C. salvifolius, E. globulus, F. sylvatica, Genista triacanthos, Phyllirea latifolia, Pinus pinaster, P. pinea, P. lentiscus, Quercus coccifera, Q. ilex, Q. pyrenaica, Q. robur, Quercus rubra, Q. suber, R. ponticum, Ulex spp. | [27,29,30,31,32,34,38,50,51]; this study |
P. citricola | A. pseudoplatanus | This study |
P. citrophthora | water | [38,52] |
P. condilina | water | [26] |
P. gonapodyides | A. longifolia, A. glutinosa, B. celtiberica, Q. robur, water | [26,27,38]; this study |
P. hedraiandra | B. celtiberica, R. ponticum, Vinca major | This study |
P. hibernalis | E. globulus | [30] |
P. honggalleglyana | water | [38] |
P. inundata | E. globulus, Q. robur, water | [26,38]; this study |
P. kelmanii | water | [38] |
P. lacustris | A. glutinosa, Populus sp., Q. robur, Salix sp., water | [27,37,38]; this study |
P. multivora | Acacia dealbata, A. longifolia, A. glutinosa, A. pseudoplatanus, C. sativa, E. globulus, Fraxinus angustifolia, Q. rubra, R. ponticum | [27,30,38]; this study |
P. niederhauserii | E. globulus | [30] |
P. pachypleura | C. sativa | This study |
P. plurivora | A. glutinosa, A. pseudoplatanus, B. celtiberica, C. sativa, F. sylvatica, Fraxinus excelsior, Prunus lusitanica, Q. pyrenaica, Q. robur | [27,38]; this study |
P. polonica | A. glutinosa | [27] |
P. pseudocitrophthora | water | [38,52] |
P. pseudocryptogea | A. dealbata, A. longifolia, A. glutinosa, C. sativa, P. lentiscus, Pinus halepensis, P. pinea, Q. suber, water | [26,27,52]; this study |
P. pseudosyringae | A. pseudoplatanus, B. celtiberica, J. communis, Larix decidua, Q. pyrenaica, Prunus avium, Sorbus aucuparia | [38,49]; this study |
P. psychrophila | Q. ilex | [38,49] |
P. quercina | A. unedo, C. sativa, Q. ilex, Q. pyrenaica, Q. robur | [28,38] |
P. ramorum | Viburnum sp.; water | [38,53] |
P. rosacearum | A. longifolia, A. glutinosa | [27]; this study |
P. syringae | A. unedo; Q. robur | [38]; this study |
P. thermophila | P. pinea, Q. robur, Q. suber, R. ponticum; water | [38]; this study |
P. uliginosa | Q. suber | [38] |
P. × alni | A. glutinosa | [37,38] |
P. × lusitanica | water | [38,52] |
P. × stagnum | water | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bregant, C.; Batista, E.; Hilário, S.; Linaldeddu, B.T.; Alves, A. Diversity and Distribution of Phytophthora Species Along an Elevation Gradient in Natural and Semi-Natural Forest Ecosystems in Portugal. Pathogens 2025, 14, 103. https://doi.org/10.3390/pathogens14010103
Bregant C, Batista E, Hilário S, Linaldeddu BT, Alves A. Diversity and Distribution of Phytophthora Species Along an Elevation Gradient in Natural and Semi-Natural Forest Ecosystems in Portugal. Pathogens. 2025; 14(1):103. https://doi.org/10.3390/pathogens14010103
Chicago/Turabian StyleBregant, Carlo, Eduardo Batista, Sandra Hilário, Benedetto Teodoro Linaldeddu, and Artur Alves. 2025. "Diversity and Distribution of Phytophthora Species Along an Elevation Gradient in Natural and Semi-Natural Forest Ecosystems in Portugal" Pathogens 14, no. 1: 103. https://doi.org/10.3390/pathogens14010103
APA StyleBregant, C., Batista, E., Hilário, S., Linaldeddu, B. T., & Alves, A. (2025). Diversity and Distribution of Phytophthora Species Along an Elevation Gradient in Natural and Semi-Natural Forest Ecosystems in Portugal. Pathogens, 14(1), 103. https://doi.org/10.3390/pathogens14010103