Advances and Challenges in Antiviral Development for Respiratory Viruses
Abstract
:1. Introduction
2. Antivirals: A Brief Overview
3. Overview of Human Respiratory Viruses
4. Antivirals for Influenza Viruses
4.1. Viral Release Inhibitor
4.1.1. Zanamivir
4.1.2. Oseltamivir
4.1.3. Peramivir
4.2. Replication Inhibitor
Baloxavir Marboxil
5. Antivirals for Respiratory Syncytial Virus (RSV)
6. Antivirals for SARS-CoV-2
6.1. Replication Inhibitors
6.1.1. Remdesivir
6.1.2. Molnupiravir
6.1.3. Favipiravir
6.1.4. Ribavirin
6.2. Protease Inhibitors
6.2.1. Paxlovid
6.2.2. Ensitrelvir
6.2.3. Nelfinavir
6.2.4. Ritonavir and Lopinavir
6.2.5. Atazanavir and Darunavir
6.3. Inhibitors of Virus Entry
6.3.1. Hydroxychloroquine
6.3.2. Arbidol
6.3.3. APN01
7. Clinical Resistance to Antivirals: Mechanisms and Solutions
8. Novel Approaches to the Discovery of Antivirals
8.1. Drug Repositioning
8.1.1. Advantages of Drug Repositioning
8.1.2. Bioinformatics in Drug Repositioning
8.1.3. The Role of Molecular Docking in Drug Repositioning
9. Innovations and Technological Advances in the Development of Antivirals
10. The Future of Antiviral Treatments
10.1. Nucleoside Analogues
10.2. Natural Compounds
10.3. Peptides
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Zhou, Y.; Ye, F.; Yang, Z. Antivirals for Respiratory Viral Infections: Problems and Prospects. Semin. Respir. Crit. Care Med. 2016, 37, 640. [Google Scholar] [CrossRef] [PubMed]
- Pircalabioru, G.G.; Iliescu, F.S.; Mihaescu, G.; Cucu, A.I.; Ionescu, O.N.; Popescu, M.; Simion, M.; Burlibasa, L.; Tica, M.; Chifiriuc, M.C.; et al. Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Front. Cell. Infect. Microbiol. 2022, 12, 807253. [Google Scholar] [CrossRef]
- Muthukutty, P.; MacDonald, J.; Yoo, S.Y. Combating Emerging Respiratory Viruses: Lessons and Future Antiviral Strategies. Vaccines 2024, 12, 1220. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ruiz, J.M.; García-Hernández, O.; Martínez-Mier, G.; Osuna-Ramos, J.F.; De Jesús-González, L.A.; Farfan-Morales, C.N.; Palacios-Rápalo, S.N.; Cordero-Rivera, C.D.; Ordoñez-Rodríguez, T.; del Ángel, R.M. The Role of Aspartate Aminotransferase-to-Lymphocyte Ratio Index (ALRI) in Predicting Mortality in SARS-CoV-2 Infection. Microorganisms 2023, 11, 2894. [Google Scholar] [CrossRef]
- Alfano, F.; Bigoni, T.; Caggiano, F.P.; Papi, A. Respiratory Syncytial Virus Infection in Older Adults: An Update. Drugs Aging 2024, 41, 487–505. [Google Scholar] [CrossRef]
- Hutchinson, E.C. Influenza Virus. Trends Microbiol. 2018, 26, 809–810. [Google Scholar] [CrossRef]
- Redondo, E.; Rivero-Calle, I.; Mascarós, E.; Ocaña, D.; Jimeno, I.; Gil, Á.; Linares, M.; Onieva-García, M.Á.; González-Romo, F.; Yuste, J.; et al. Respiratory Syncytial Virus Vaccination Recommendations for Adults Aged 60 Years and Older: The NeumoExperts Prevention Group Position Paper. Arch. Bronconeumol. 2024, 60, 161–170. [Google Scholar] [CrossRef]
- De Jesús-González, L.A.; del Ángel, R.M.; Palacios-Rápalo, S.N.; Cordero-Rivera, C.D.; Rodríguez-Carlos, A.; Trujillo-Paez, J.V.; Farfan-Morales, C.N.; Osuna-Ramos, J.F.; Reyes-Ruiz, J.M.; Rivas-Santiago, B.; et al. A Dual Pharmacological Strategy against COVID-19: The Therapeutic Potential of Metformin and Atorvastatin. Microorganisms 2024, 12, 383. [Google Scholar] [CrossRef]
- Rivera-Serrano, B.V.; Cabanillas-Salcido, S.L.; Cordero-Rivera, C.D.; Jiménez-Camacho, R.; Norzagaray-Valenzuela, C.D.; Calderón-Zamora, L.; De Jesús-González, L.A.; Reyes-Ruiz, J.M.; Farfan-Morales, C.N.; Romero-Utrilla, A.; et al. Antiviral Effect of Microalgae Phaeodactylum Tricornutum Protein Hydrolysates against Dengue Virus Serotype 2. Mar. Drugs 2024, 22, 369. [Google Scholar] [CrossRef]
- Sun, B.-W.; Zhang, P.-P.; Wang, Z.-H.; Yao, X.; He, M.-L.; Bai, R.-T.; Che, H.; Lin, J.; Xie, T.; Hui, Z.; et al. Prevention and Potential Treatment Strategies for Respiratory Syncytial Virus. Molecules 2024, 29, 598. [Google Scholar] [CrossRef]
- Badia, R.; Garcia-Vidal, E.; Ballana, E. Viral-Host Dependency Factors as Therapeutic Targets to Overcome Antiviral Drug-Resistance: A Focus on Innate Immune Modulation. Front. Virol. 2022, 2, 935933. [Google Scholar] [CrossRef]
- Novak, J.; Potemkin, V.A. A New Glimpse on the Active Site of SARS-CoV-2 3CLpro, Coupled with Drug Repurposing Study. Mol. Divers. 2022, 26, 2631–2645. [Google Scholar] [CrossRef] [PubMed]
- Arabyan, E.; Kotsynyan, A.; Hakobyan, A.; Zakaryan, H. Antiviral Agents against African Swine Fever Virus. Virus Res. 2019, 270, 197669. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Moon, A.; Huang, J.; Sun, Y.; Qiu, H.-J. Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Front. Cell. Infect. Microbiol. 2022, 12, 928050. [Google Scholar] [CrossRef]
- Agut, H. Antivirales (a Excepción Del Virus de La Inmunodeficiencia Humana y La Hepatitis). EMC-Tratado Med. 2022, 26, 1–10. [Google Scholar] [CrossRef]
- Lee, M.F.; Wu, Y.S.; Poh, C.L. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses 2023, 15, 705. [Google Scholar] [CrossRef]
- Saiz, J.-C.; de Oya, N.J.; Blázquez, A.-B.; Escribano-Romero, E.; Martín-Acebes, M.A. Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses 2018, 10, 453. [Google Scholar] [CrossRef]
- Geraghty, R.J.; Aliota, M.T.; Bonnac, L.F. Broad-Spectrum Antiviral Strategies and Nucleoside Analogues. Viruses 2021, 13, 667. [Google Scholar] [CrossRef]
- Xia, Y.; Liang, T.J. Development of Direct-Acting Antiviral and Host-Targeting Agents for Treatment of Hepatitis B Virus Infection. Gastroenterology 2019, 156, 311–324. [Google Scholar] [CrossRef]
- Ing Lorenzini, K.; Girardin, F. Direct-Acting Antiviral Interactions with Opioids, Alcohol or Illicit Drugs of Abuse in HCV-Infected Patients. Liver Int. 2020, 40, 32–44. [Google Scholar] [CrossRef]
- Netzler, N.E.; Enosi Tuipulotu, D.; White, P.A. Norovirus Antivirals: Where Are We Now? Med. Res. Rev. 2019, 39, 860–886. [Google Scholar] [CrossRef] [PubMed]
- De Jesús-González, L.A.; Cervantes-Salazar, M.; Reyes-Ruiz, J.M.; Osuna-Ramos, J.F.; Farfán-Morales, C.N.; Palacios-Rápalo, S.N.; Pérez-Olais, J.H.; Cordero-Rivera, C.D.; Hurtado-Monzón, A.M.; Ruíz-Jiménez, F.; et al. The Nuclear Pore Complex: A Target for NS3 Protease of Dengue and Zika Viruses. Viruses 2020, 12, 583. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Rápalo, S.N.; Farfan-Morales, C.N.; Cordero-Rivera, C.D.; De Jesús-González, L.A.; Reyes-Ruiz, J.M.; Meraz-Ríos, M.A.; Del Ángel, R.M. An Ivermectin–Atorvastatin Combination Impairs Nuclear Transport Inhibiting Dengue Infection in Vitro and in Vivo. iScience 2023, 26, 108294. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Choudhary, S.; Kumar, P.; Tomar, S. Antiviral Strategies Targeting Host Factors and Mechanisms Obliging +ssRNA Viral Pathogens. Bioorg. Med. Chem. 2021, 46, 116356. [Google Scholar] [CrossRef]
- Peng, S.; Wang, H.; Wang, Z.; Wang, Q. Progression of Antiviral Agents Targeting Viral Polymerases. Molecules 2022, 27, 7370. [Google Scholar] [CrossRef]
- Lynch, J.P.; Kajon, A.E. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin. Respir. Crit. Care Med. 2016, 37, 586–602. [Google Scholar] [CrossRef]
- Abdelqader, R.; Hasan, H.; Alanagreh, L. Epidemiology of Human Bocavirus in the Middle East and North Africa: Systematic Review. Pathogens 2021, 10, 1456. [Google Scholar] [CrossRef]
- Bizot, E.; Bousquet, A.; Charpié, M.; Coquelin, F.; Lefevre, S.; Le Lorier, J.; Patin, M.; Sée, P.; Sarfati, E.; Walle, S.; et al. Rhinovirus: A Narrative Review on Its Genetic Characteristics, Pediatric Clinical Presentations, and Pathogenesis. Front. Pediatr. 2021, 9, 643219. [Google Scholar] [CrossRef]
- Sooksawasdi Na Ayudhya, S.; Laksono, B.M.; van Riel, D. The Pathogenesis and Virulence of Enterovirus-D68 Infection. Virulence 2021, 12, 2060–2072. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Al-Ahmed, S.H.; Haque, S.; Sah, R.; Tiwari, R.; Malik, Y.S.; Dhama, K.; Yatoo, M.I.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A Comparative Overview. Infez. Med. 2020, 28, 174–184. [Google Scholar]
- Ma, L.; Song, K.; Huang, Y. Coronavirus Disease-2019 (COVID-19) and Cardiovascular Complications. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1860–1865. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Zamora, E.; Mendoza-Cano, O.; Huerta, M.; Ríos-Silva, M.; Lugo-Radillo, A.; Benites-Godínez, V.; Bricio-Barrios, J.A.; Ríos-Bracamontes, E.F.; Trujillo, X. Respiratory Syncytial Virus Infection: Survival Experience in a Cohort of Children Inpatients. Public Health 2023, 221, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Wrotek, A.; Czajkowska, M.; Jackowska, T. Nosocomial Infections in Patients Hospitalized with Respiratory Syncytial Virus: A Practice Review. Adv. Exp. Med. Biol. 2020, 1271, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.E.; Williams, J.V. Human Metapneumovirus. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef]
- Branche, A.R.; Falsey, A.R. Parainfluenza Virus Infection. Semin. Respir. Crit. Care Med. 2016, 37, 538–554. [Google Scholar] [CrossRef]
- Nypaver, C.; Dehlinger, C.; Carter, C. Influenza and Influenza Vaccine: A Review. J. Midwifery Womens Health 2021, 66, 45–53. [Google Scholar] [CrossRef]
- Carter, T.; Iqbal, M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024, 16, 316. [Google Scholar] [CrossRef]
- Li, Y.; Huo, S.; Yin, Z.; Tian, Z.; Huang, F.; Liu, P.; Liu, Y.; Yu, F. The Current State of Research on Influenza Antiviral Drug Development: Drugs in Clinical Trial and Licensed Drugs. mBio 2023, 14, e01273-23. [Google Scholar] [CrossRef]
- Han, J.; Perez, J.; Schafer, A.; Cheng, H.; Peet, N.; Rong, L.; Manicassamy, B. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr. Med. Chem. 2018, 25, 5115. [Google Scholar] [CrossRef]
- Li, T.C.M.; Chan, M.C.W.; Lee, N. Clinical Implications of Antiviral Resistance in Influenza. Viruses 2015, 7, 4929–4944. [Google Scholar] [CrossRef]
- Meseko, C.; Sanicas, M.; Asha, K.; Sulaiman, L.; Kumar, B. Antiviral Options and Therapeutics against Influenza: History, Latest Developments and Future Prospects. Front. Cell. Infect. Microbiol. 2023, 13, 1269344. [Google Scholar] [CrossRef] [PubMed]
- von Itzstein, M.; Wu, W.Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W. Rational Design of Potent Sialidase-Based Inhibitors of Influenza Virus Replication. Nature 1993, 363, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Soto, C.S.; Ohigashi, Y.; Taylor, A.; Bournas, V.; Glawe, B.; Udo, M.K.; Degrado, W.F.; Lamb, R.A.; Pinto, L.H. Identification of the Pore-Lining Residues of the BM2 Ion Channel Protein of Influenza B Virus. J. Biol. Chem. 2008, 283, 15921–15931. [Google Scholar] [CrossRef] [PubMed]
- Świerczyńska, M.; Mirowska-Guzel, D.M.; Pindelska, E. Antiviral Drugs in Influenza. Int. J. Environ. Res. Public Health 2022, 19, 3018. [Google Scholar] [CrossRef]
- Monto, A.S.; Robinson, D.P.; Herlocher, M.L.; Hinson, J.M.; Elliott, M.J.; Crisp, A. Zanamivir in the Prevention of Influenza among Healthy Adults: A Randomized Controlled Trial. JAMA 1999, 282, 31–35. [Google Scholar] [CrossRef]
- CDC Treating Flu with Antiviral Drugs. Available online: https://www.cdc.gov/flu/treatment/antiviral-drugs.html (accessed on 8 November 2024).
- Kim, C.U.; Lew, W.; Williams, M.A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M.S.; Mendel, D.B.; Tai, C.Y.; et al. Influenza Neuraminidase Inhibitors Possessing a Novel Hydrophobic Interaction in the Enzyme Active Site: Design, Synthesis, and Structural Analysis of Carbocyclic Sialic Acid Analogues with Potent Anti-Influenza Activity. J. Am. Chem. Soc. 1997, 119, 681–690. [Google Scholar] [CrossRef]
- McLaughlin, M.M.; Skoglund, E.W.; Ison, M.G. Peramivir: An Intravenous Neuraminidase Inhibitor. Expert Opin. Pharmacother. 2015, 16, 1889–1900. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Rapivab (Peramivir) Information; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Hata, A.; Akashi-Ueda, R.; Takamatsu, K.; Matsumura, T. Safety and Efficacy of Peramivir for Influenza Treatment. Drug Des. Dev. Ther. 2014, 8, 2017–2038. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S.; Enache, A.; Chopra, A. Peramivir for Influenza A and B Viral Infections: A Pharmacokinetic Case Series. Pharmacotherapy 2019, 39, 1060–1065. [Google Scholar] [CrossRef]
- O’Hanlon, R.; Shaw, M.L. Baloxavir Marboxil: The New Influenza Drug on the Market. Curr. Opin. Virol. 2019, 35, 14–18. [Google Scholar] [CrossRef]
- Ison, M.G.; Portsmouth, S.; Yoshida, Y.; Shishido, T.; Mitchener, M.; Tsuchiya, K.; Uehara, T.; Hayden, F.G. Early Treatment with Baloxavir Marboxil in High-Risk Adolescent and Adult Outpatients with Uncomplicated Influenza (CAPSTONE-2): A Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Infect. Dis. 2020, 20, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- McKimm-Breschkin, J.L.; Jiang, S.; Hui, D.S.; Beigel, J.H.; Govorkova, E.A.; Lee, N. Prevention and Treatment of Respiratory Viral Infections: Presentations on Antivirals, Traditional Therapies and Host-Directed Interventions at the 5th ISIRV Antiviral Group Conference. Antivir. Res. 2018, 149, 118–142. [Google Scholar] [CrossRef] [PubMed]
- Reina, J.; Iglesias, C. [EDP-938, a new antiviral with inhibitory activity against the nucleoprotein of the respiratory syncytial virus]. Rev. Esp. Quimioter. 2023, 36, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Bonneux, B.; Jacoby, E.; Ceconi, M.; Stobbelaar, K.; Delputte, P.; Herschke, F. Direct-Acting Antivirals for RSV Treatment, a Review. Antivir. Res. 2024, 229, 105948. [Google Scholar] [CrossRef] [PubMed]
- Aljabr, W.; Touzelet, O.; Pollakis, G.; Wu, W.; Munday, D.C.; Hughes, M.; Hertz-Fowler, C.; Kenny, J.; Fearns, R.; Barr, J.N.; et al. Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. J. Virol. 2016, 90, 4876–4888. [Google Scholar] [CrossRef]
- Avery, L.; Hoffmann, C.; Whalen, K.M. The Use of Aerosolized Ribavirin in Respiratory Syncytial Virus Lower Respiratory Tract Infections in Adult Immunocompromised Patients: A Systematic Review. Hosp. Pharm. 2020, 55, 224–235. [Google Scholar] [CrossRef]
- Koval, C.E.; Gonzalez, B.E. RSV in Transplant and Immunocompromised Patients. Clevel. Clin. J. Med. 2024, 91, S34–S41. [Google Scholar] [CrossRef]
- Simões, E.A.F.; Madhi, S.A.; Muller, W.J.; Atanasova, V.; Bosheva, M.; Cabañas, F.; Baca Cots, M.; Domachowske, J.B.; Garcia-Garcia, M.L.; Grantina, I.; et al. Efficacy of Nirsevimab against Respiratory Syncytial Virus Lower Respiratory Tract Infections in Preterm and Term Infants, and Pharmacokinetic Extrapolation to Infants with Congenital Heart Disease and Chronic Lung Disease: A Pooled Analysis of Randomised Controlled Trials. Lancet Child Adolesc. Health 2023, 7, 180–189. [Google Scholar] [CrossRef]
- CDC Respiratory Syncytial Virus (RSV) Vaccine Safety. Available online: https://www.cdc.gov/vaccine-safety/vaccines/rsv.html (accessed on 8 November 2024).
- Yoo, J.-H. Antivirals for Coexistence with COVID-19: Brief Review for General Physicians. J. Korean Med. Sci. 2021, 36, e298. [Google Scholar] [CrossRef]
- Rehman, S.U.; Rehman, S.U.; Yoo, H.H. COVID-19 Challenges and Its Therapeutics. Biomed. Pharmacother. 2021, 142, 112015. [Google Scholar] [CrossRef]
- Forchette, L.; Sebastian, W.; Liu, T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Curr. Med. Sci. 2021, 41, 1037–1051. [Google Scholar] [CrossRef] [PubMed]
- Grundeis, F.; Ansems, K.; Dahms, K.; Thieme, V.; Metzendorf, M.-I.; Skoetz, N.; Benstoem, C.; Mikolajewska, A.; Griesel, M.; Fichtner, F.; et al. Remdesivir for the Treatment of COVID-19. Cochrane Database Syst. Rev. 2023, 1, CD014962. [Google Scholar] [CrossRef] [PubMed]
- Chera, A.; Tanca, A. Remdesivir: The First FDA-Approved Anti-COVID-19 Treatment for Young Children. Discoveries 2022, 10, e151. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.A. Remdesivir: A Review in COVID-19. Drugs 2023, 83, 1215–1237. [Google Scholar] [CrossRef]
- Ng, T.I.; Correia, I.; Seagal, J.; DeGoey, D.A.; Schrimpf, M.R.; Hardee, D.J.; Noey, E.L.; Kati, W.M. Antiviral Drug Discovery for the Treatment of COVID-19 Infections. Viruses 2022, 14, 961. [Google Scholar] [CrossRef]
- Chilamakuri, R.; Agarwal, S. COVID-19: Characteristics and Therapeutics. Cells 2021, 10, 206. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiao, B.; Qu, L.; Yang, D.; Liu, R. The Development of COVID-19 Treatment. Front. Immunol. 2023, 14, 1125246. [Google Scholar] [CrossRef]
- Mia, M.E.; Howlader, M.; Akter, F.; Hossain, M.M. Preclinical and Clinical Investigations of Potential Drugs and Vaccines for COVID-19 Therapy: A Comprehensive Review With Recent Update. Clin. Pathol. 2024, 17, 2632010X241263054. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Schinas, G.; Gogos, C. Oral Antiviral Treatment for COVID-19: A Comprehensive Review on Nirmatrelvir/Ritonavir. Viruses 2022, 14, 2540. [Google Scholar] [CrossRef]
- Kumari, M.; Lu, R.-M.; Li, M.-C.; Huang, J.-L.; Hsu, F.-F.; Ko, S.-H.; Ke, F.-Y.; Su, S.-C.; Liang, K.-H.; Yuan, J.P.-Y.; et al. A Critical Overview of Current Progress for COVID-19: Development of Vaccines, Antiviral Drugs, and Therapeutic Antibodies. J. Biomed. Sci. 2022, 29, 68. [Google Scholar] [CrossRef]
- Okoli, G.N.; Askin, N.; Rabbani, R. Nirmatrelvir/Ritonavir Regimen for Mild/Moderately Severe COVID-19: A Rapid Review With Meta-Analysis and Trial Sequential Analysis. Ann. Fam. Med. 2024, 22, 336–346. [Google Scholar] [CrossRef]
- Xocova® (Ensitrelvir Fumaric Acid) Tablets 125 mg Approved in Japan for the Treatment of SARS-CoV-2 Infection, Under the Emergency Regulatory Approval System. Available online: https://www.shionogi.com/global/en/news/2022/11/e20221122.html (accessed on 11 December 2024).
- Notice Regarding the Signing of a Basic Agreement with the Ministry of Health, Labor and Welfare for Domestic Supply of S-217622, a Therapeutic Drug for COVID-19. Available online: https://www.shionogi.com/global/en/news/2022/03/e-20220325.html (accessed on 11 December 2024).
- Shionogi Receives U.S. FDA Fast Track Designation for Ensitrelvir Fumaric Acid, an Investigational Oral Antiviral for COVID-19. Available online: https://www.shionogi.com/global/en/news/2023/04/20230404.html (accessed on 11 December 2024).
- Yotsuyanagi, H.; Ohmagari, N.; Doi, Y.; Yamato, M.; Bac, N.H.; Cha, B.K.; Imamura, T.; Sonoyama, T.; Ichihashi, G.; Sanaki, T.; et al. Efficacy and Safety of 5-Day Oral Ensitrelvir for Patients With Mild to Moderate COVID-19. JAMA Netw. Open 2024, 7, e2354991. [Google Scholar] [CrossRef] [PubMed]
- Yotsuyanagi, H.; Ohmagari, N.; Doi, Y.; Imamura, T.; Sonoyama, T.; Ichihashi, G.; Sanaki, T.; Tsuge, Y.; Uehara, T.; Mukae, H. A Phase 2/3 Study of S-217622 in Participants with SARS-CoV-2 Infection (Phase 3 Part). Medicine 2023, 102, e33024. [Google Scholar] [CrossRef] [PubMed]
- Unoh, Y.; Uehara, S.; Nakahara, K.; Nobori, H.; Yamatsu, Y.; Yamamoto, S.; Maruyama, Y.; Taoda, Y.; Kasamatsu, K.; Suto, T.; et al. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. J. Med. Chem. 2022, 65, 6499–6512. [Google Scholar] [CrossRef] [PubMed]
- NIH Trial to Evaluate Shionogi Antiviral in Adults Hospitalized with COVID-19. Available online: https://www.nih.gov/news-events/news-releases/nih-trial-evaluate-shionogi-antiviral-adults-hospitalized-covid-19 (accessed on 11 December 2024).
- Takazono, T.; Fujita, S.; Komeda, T.; Miyazawa, S.; Yoshida, Y.; Kitanishi, Y.; Kinoshita, M.; Kojima, S.; Shen, H.; Uehara, T.; et al. Real-World Effectiveness of Ensitrelvir in Reducing Severe Outcomes in Outpatients at High Risk for COVID-19. Infect. Dis. Ther. 2024, 13, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Wannigama, D.L.; Suzuki, Y.; Akaneya, D.; Igarashi, J.; Suto, M.; Moriya, K.; Ishizawa, D.; Okuma, Y.; Hongsing, P.; et al. Real World Effectiveness of Early Ensitrelvir Treatment in Patients with SARS-CoV-2, a Retrospective Case Series. New Microbes New Infect. 2024, 62, 101522. [Google Scholar] [CrossRef]
- Musarrat, F.; Chouljenko, V.; Dahal, A.; Nabi, R.; Chouljenko, T.; Jois, S.D.; Kousoulas, K.G. The Anti-HIV Drug Nelfinavir Mesylate (Viracept) Is a Potent Inhibitor of Cell Fusion Caused by the SARSCoV-2 Spike (S) Glycoprotein Warranting Further Evaluation as an Antiviral against COVID-19 Infections. J. Med. Virol. 2020, 92, 2087–2095. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, D.; Han, J.-B.; Ling, Y.; Jiang, X.; Lu, X.; Li, C.; Gong, L.; Ge, G.; Zhang, Y.; et al. Preventive and Therapeutic Benefits of Nelfinavir in Rhesus Macaques and Human Beings Infected with SARS-CoV-2. Sig. Transduct. Target. Ther. 2023, 8, 169. [Google Scholar] [CrossRef]
- Handa, Y.; Okuwaki, K.; Kawashima, Y.; Hatada, R.; Mochizuki, Y.; Komeiji, Y.; Tanaka, S.; Furuishi, T.; Yonemochi, E.; Honma, T.; et al. Prediction of Binding Pose and Affinity of Nelfinavir, a SARS-CoV-2 Main Protease Repositioned Drug, by Combining Docking, Molecular Dynamics, and Fragment Molecular Orbital Calculations. J. Phys. Chem. B 2024, 128, 2249–2265. [Google Scholar] [CrossRef]
- Kang, C.K.; Seong, M.-W.; Choi, S.-J.; Kim, T.S.; Choe, P.G.; Song, S.H.; Kim, N.-J.; Park, W.B.; Oh, M. In Vitro Activity of Lopinavir/Ritonavir and Hydroxychloroquine against Severe Acute Respiratory Syndrome Coronavirus 2 at Concentrations Achievable by Usual Doses. Korean J. Intern. Med. 2020, 35, 728–787. [Google Scholar] [CrossRef]
- Kim, C.-M.; Chung, J.K.; Tamanna, S.; Bang, M.-S.; Tariq, M.; Lee, Y.M.; Seo, J.-W.; Kim, D.Y.; Yun, N.R.; Seo, J.; et al. Comparable Efficacy of Lopinavir/Ritonavir and Remdesivir in Reducing Viral Load and Shedding Duration in Patients with COVID-19. Microorganisms 2024, 12, 1696. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, M.; Le Turnier, P.; Gaborit, B.J.; Veyrac, G.; Lecomte, R.; Boutoille, D.; Canet, E.; Imbert, B.-M.; Bellouard, R.; Raffi, F. Lopinavir Pharmacokinetics in COVID-19 Patients. J. Antimicrob. Chemother. 2020, 75, 2702–2704. [Google Scholar] [CrossRef] [PubMed]
- Marzolini, C.; Stader, F.; Stoeckle, M.; Franzeck, F.; Egli, A.; Bassetti, S.; Hollinger, A.; Osthoff, M.; Weisser, M.; Gebhard, C.E.; et al. Effect of Systemic Inflammatory Response to SARS-CoV-2 on Lopinavir and Hydroxychloroquine Plasma Concentrations. Antimicrob. Agents Chemother. 2020, 64, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Osborne, V.; Davies, M.; Lane, S.; Evans, A.; Denyer, J.; Dhanda, S.; Roy, D.; Shakir, S. Lopinavir-Ritonavir in the Treatment of COVID-19: A Dynamic Systematic Benefit-Risk Assessment. Drug Saf. 2020, 43, 809–821. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. FDA Revises Letter of Authorization for the Emergency Use Authorization for Paxlovid; FDA: Silver Spring, MD, USA, 2024. [Google Scholar]
- Drug Approval Package. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/20-945_Ritonovir.cfm (accessed on 17 July 2024).
- Nekoukar, Z.; Ala, S.; Moradi, S.; Hill, A.; Davoudi Badabi, A.R.; Alikhani, A.; Alian, S.; Moghimi, M.; Shabani, A.M.; Abbaspour Kasgari, H. Comparison of the Efficacy and Safety of Atazanavir/Ritonavir Plus Hydroxychloroquine with Lopinavir/Ritonavir Plus Hydroxychloroquine in Patients with Moderate COVID-19, A Randomized, Double-Blind Clinical Trial. Iran. J. Pharm. Res. IJPR 2021, 20, 278–288. [Google Scholar] [CrossRef]
- Fowotade, A.; Bamidele, F.; Egbetola, B.; Fagbamigbe, A.F.; Adeagbo, B.A.; Adefuye, B.O.; Olagunoye, A.; Ojo, T.O.; Adebiyi, A.O.; Olagunju, O.I.; et al. A Randomized, Open-Label Trial of Combined Nitazoxanide and Atazanavir/Ritonavir for Mild to Moderate COVID-19. Front. Med. 2022, 9, 956123. [Google Scholar] [CrossRef]
- De Meyer, S.; Bojkova, D.; Cinatl, J.; Van Damme, E.; Buyck, C.; Van Loock, M.; Woodfall, B.; Ciesek, S. Lack of Antiviral Activity of Darunavir against SARS-CoV-2. Int. J. Infect. Dis. 2020, 97, 7–10. [Google Scholar] [CrossRef]
- Fintelman-Rodrigues, N.; Sacramento, C.Q.; Ribeiro Lima, C.; Souza da Silva, F.; Ferreira, A.C.; Mattos, M.; de Freitas, C.S.; Cardoso Soares, V.; da Silva Gomes Dias, S.; Temerozo, J.R.; et al. Atazanavir, Alone or in Combination with Ritonavir, Inhibits SARS-CoV-2 Replication and Proinflammatory Cytokine Production. Antimicrob. Agents Chemother. 2020, 64, e00825-20. [Google Scholar] [CrossRef]
- Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine Is a Potent Inhibitor of SARS Coronavirus Infection and Spread. Virol. J. 2005, 2, 69. [Google Scholar] [CrossRef]
- Organización Panamericana de Salud (PAHO). COVID-19: Chloroquine and Hydroxychloroquine Research; Rapid Review-28 March 2020; PAHO: Washington, DC, USA, 2020; pp. 1–28. [Google Scholar]
- Strasfeld, L.; Chou, S. Antiviral Drug Resistance: Mechanisms and Clinical Implications. Infect. Dis. Clin. N. Am. 2010, 24, 413–437. [Google Scholar] [CrossRef]
- Smyk, J.M.; Szydłowska, N.; Szulc, W.; Majewska, A. Evolution of Influenza Viruses—Drug Resistance, Treatment Options, and Prospects. Int. J. Mol. Sci. 2022, 23, 12244. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Sharma, S.D.; Kumar, A.; Ende, Z.; Mishina, M.; Wang, Y.; Falls, Z.; Samudrala, R.; Pohl, J.; Knight, P.R.; et al. Antiviral Approaches against Influenza Virus. Clin. Microbiol. Rev. 2023, 36, e00040-22. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.J.; Pruijssers, A.J.; Lee, H.W.; Gordon, C.J.; Tchesnokov, E.P.; Gribble, J.; George, A.S.; Hughes, T.M.; Lu, X.; Li, J.; et al. Mutations in the SARS-CoV-2 RNA-Dependent RNA Polymerase Confer Resistance to Remdesivir by Distinct Mechanisms. Sci. Transl. Med. 2022, 14, eabo0718. [Google Scholar] [CrossRef] [PubMed]
- Gratteri, C.; Ambrosio, F.A.; Lupia, A.; Moraca, F.; Catalanotti, B.; Costa, G.; Bellocchi, M.; Carioti, L.; Salpini, R.; Ceccherini-Silberstein, F.; et al. Molecular and Structural Aspects of Clinically Relevant Mutations of SARS-CoV-2 RNA-Dependent RNA Polymerase in Remdesivir-Treated Patients. Pharmaceuticals 2023, 16, 1143. [Google Scholar] [CrossRef]
- Lampejo, T. Influenza and Antiviral Resistance: An Overview. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1201–1208. [Google Scholar] [CrossRef]
- Cox, M.; Peacock, T.P.; Harvey, W.T.; Hughes, J.; Wright, D.W.; Willett, B.J.; Thomson, E.; Gupta, R.K.; Peacock, S.J.; Robertson, D.L.; et al. SARS-CoV-2 Variant Evasion of Monoclonal Antibodies Based on in Vitro Studies. Nat. Rev. Microbiol. 2023, 21, 112–124. [Google Scholar] [CrossRef]
- Ramesh, S.; Govindarajulu, M.; Parise, R.S.; Neel, L.; Shankar, T.; Patel, S.; Lowery, P.; Smith, F.; Dhanasekaran, M.; Moore, T. Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines 2021, 9, 1195. [Google Scholar] [CrossRef]
- Shyr, Z.A.; Cheng, Y.-S.; Lo, D.C.; Zheng, W. Drug Combination Therapy for Emerging Viral Diseases. Drug Discov. Today 2021, 26, 2367–2376. [Google Scholar] [CrossRef]
- von Delft, A.; Hall, M.D.; Kwong, A.D.; Purcell, L.A.; Saikatendu, K.S.; Schmitz, U.; Tallarico, J.A.; Lee, A.A. Accelerating Antiviral Drug Discovery: Lessons from COVID-19. Nat. Rev. Drug Discov. 2023, 22, 585–603. [Google Scholar] [CrossRef]
- Ramos-Martín, F.; D’Amelio, N. Drug Resistance: An Incessant Fight against Evolutionary Strategies of Survival. Microbiol. Res. 2023, 14, 507–542. [Google Scholar] [CrossRef]
- Heaton, S.M. Harnessing Host–Virus Evolution in Antiviral Therapy and Immunotherapy. Clin. Transl. Immunol. 2019, 8, e1067. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Romero, J.A.; Chingaté-López, S.M.; Camacho, B.A.; Alméciga-Díaz, C.J.; Ramirez-Segura, C.A. Next-Generation Treatments: Immunotherapy and Advanced Therapies for COVID-19. Heliyon 2024, 10, e26423. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed]
- Low, Z.Y.; Farouk, I.A.; Lal, S.K. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular Docking and Structure-Based Drug Design Strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef]
- Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Key Topics in Molecular Docking for Drug Design. Int. J. Mol. Sci. 2019, 20, 4574. [Google Scholar] [CrossRef]
- Ianevski, A.; Yao, R.; Biza, S.; Zusinaite, E.; Mannik, A.; Kivi, G.; Planken, A.; Kurg, K.; Tombak, E.-M.; Ustav, M.; et al. Identification and Tracking of Antiviral Drug Combinations. Viruses 2020, 12, 1178. [Google Scholar] [CrossRef]
- Ivanova, L.; Karelson, M. The Impact of Software Used and the Type of Target Protein on Molecular Docking Accuracy. Molecules 2022, 27, 9041. [Google Scholar] [CrossRef]
- Che, X.; Liu, Q.; Zhang, L. An Accurate and Universal Protein-Small Molecule Batch Docking Solution Using Autodock Vina. Results Eng. 2023, 19, 101335. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Wei, J.; Zhuo, L.; Fu, X.; Zeng, X.; Wang, L.; Zou, Q.; Cao, D. DrugReAlign: A Multisource Prompt Framework for Drug Repurposing Based on Large Language Models. BMC Biol. 2024, 22, 226. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.K.; Mariam, Z. Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals 2024, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Chachulski, L. Development and Application of Compound Class-Specific Benchmark Data Sets for Differentiated Assessment of Docking and Scoring Algorithm Performance. Ph.D. Dissertation, Jacobs University Bremen, Bremen, Germany, 2024. [Google Scholar]
- Huang, N.; Shoichet, B.K.; Irwin, J.J. Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49, 6789–6801. [Google Scholar] [CrossRef] [PubMed]
- Shamsian, S.; Sokouti, B.; Dastmalchi, S. Benchmarking Different Docking Protocols for Predicting the Binding Poses of Ligands Complexed with Cyclooxygenase Enzymes and Screening Chemical Libraries. Bioimpacts 2024, 14, 29955. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; et al. RCSB Protein Data Bank: Enabling Biomedical Research and Drug Discovery. Protein Sci. 2020, 29, 52–65. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P.A.; Crichlow, G.V.; Dalenberg, K.; Duarte, J.M.; et al. RCSB Protein Data Bank (RCSB.Org): Delivery of Experimentally-Determined PDB Structures alongside One Million Computed Structure Models of Proteins from Artificial Intelligence/Machine Learning. Nucleic Acids Res. 2023, 51, D488–D508. [Google Scholar] [CrossRef]
- Palacios-Rápalo, S.N.; Cordero-Rivera, C.D.; De Jesús-González, L.A.; Farfan-Morales, C.N.; Benitez-Vega, M.; Reyes-Ruiz, J.M.; Del Angel, R.M. Drug Repositioning as an Antiviral Strategy Against Emerging Viruses. In Emerging Viruses in Latin America: Contemporary Virology; Pujol, F.H., Paniz-Mondolfi, A.E., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 273–317. ISBN 978-3-031-68419-7. [Google Scholar]
- Terefe, E.M.; Ghosh, A. Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Phytochemicals Isolated From Croton Dichogamus Against the HIV-1 Reverse Transcriptase. Bioinform. Biol. Insights 2022, 16, 11779322221125605. [Google Scholar] [CrossRef]
- Qayed, W.S.; Ferreira, R.S.; Silva, J.R.A. In Silico Study towards Repositioning of FDA-Approved Drug Candidates for Anticoronaviral Therapy: Molecular Docking, Molecular Dynamics and Binding Free Energy Calculations. Molecules 2022, 27, 5988. [Google Scholar] [CrossRef]
- Pantsar, T.; Poso, A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018, 23, 1899. [Google Scholar] [CrossRef] [PubMed]
- Federico, L.B.; Silva, G.M.; da Silva Hage-Melim, L.I.; Gomes, S.Q.; Barcelos, M.P.; Galindo Francischini, I.A.; Tomich de Paula da Silva, C.H. Identification of Known Drugs As Potential SARS-CoV-2 Mpro Inhibitors Using Ligand- and Structure-Based Virtual Screening. Future Med. Chem. 2021, 13, 1353–1366. [Google Scholar] [CrossRef] [PubMed]
- Loo, C.-Y.; Lee, W.-H.; Zhou, Q.T. Recent Advances in Inhaled Nanoformulations of Vaccines and Therapeutics Targeting Respiratory Viral Infections. Pharm. Res. 2023, 40, 1015–1036. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Baldassi, D.; Ambike, S.; Feuerherd, M.; Cheng, C.-C.; Peeler, D.J.; Feldmann, D.P.; Porras-Gonzalez, D.L.; Wei, X.; Keller, L.-A.; Kneidinger, N.; et al. Inhibition of SARS-CoV-2 Replication in the Lung with siRNA/VIPER Polyplexes. J. Control. Release 2022, 345, 661–674. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Loo, C.-Y.; Lee, W.-H. Nanotechnology-Based Therapeutics for Targeting Inflammatory Lung Diseases. Nanomedicine 2022, 17, 865–879. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Zhang, Z.; Wu, J.; Zhang, J.; Hu, H.; Zhu, T.; Zhang, J.; Luo, L.; Fan, P.; et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: Preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis. 2021, 21, 1654–1664. [Google Scholar] [CrossRef]
- Schoof, M.; Faust, B.; Saunders, R.A.; Sangwan, S.; Rezelj, V.; Hoppe, N.; Boone, M.; Billesbølle, C.B.; Puchades, C.; Azumaya, C.M.; et al. An Ultrapotent Synthetic Nanobody Neutralizes SARS-CoV-2 by Stabilizing Inactive Spike. Science 2020, 370, 1473–1479. [Google Scholar] [CrossRef]
- Suberi, A.; Grun, M.K.; Mao, T.; Israelow, B.; Reschke, M.; Grundler, J.; Akhtar, L.; Lee, T.; Shin, K.; Piotrowski-Daspit, A.S.; et al. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci Transl Med. 2023, 15, eabq0603. [Google Scholar] [CrossRef]
- van der Oost, J.; Westra, E.R.; Jackson, R.N.; Wiedenheft, B. Unravelling the Structural and Mechanistic Basis of CRISPR–Cas Systems. Nat. Rev. Microbiol. 2014, 12, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Ryu, G.; Shin, H.W. SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Netw. 2020, 2, e3. [Google Scholar] [CrossRef] [PubMed]
- Abbott, T.R.; Dhamdhere, G.; Liu, Y.; Lin, X.; Goudy, L.; Zeng, L.; Chemparathy, A.; Chmura, S.; Heaton, N.S.; Debs, R.; et al. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza. Cell 2020, 181, 865–876.e12. [Google Scholar] [CrossRef] [PubMed]
- Challagulla, A.; Schat, K.A.; Doran, T.J. In Vitro Inhibition of Influenza Virus Using CRISPR/Cas13a in Chicken Cells. Methods Protoc. 2021, 4, 40. [Google Scholar] [CrossRef]
- Jones, J.M. Use of Nirsevimab for the Prevention of Respiratory Syncytial Virus Disease Among Infants and Young Children: Recommendations of the Advisory Committee on Immunization Practices—United States, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 920–925. [Google Scholar] [CrossRef]
- Suberi, A.; Grun, M.K.; Mao, T.; Israelow, B.; Reschke, M.; Grundler, J.; Akhtar, L.; Lee, T.; Shin, K.; Piotrowski-Daspit, A.S.; et al. Inhalable Polymer Nanoparticles for Versatile mRNA Delivery and Mucosal Vaccination. bioRxiv 2022. [Google Scholar] [CrossRef]
- Jordan, P.C.; Stevens, S.K.; Tam, Y.; Pemberton, R.P.; Chaudhuri, S.; Stoycheva, A.D.; Dyatkina, N.; Wang, G.; Symons, J.A.; Deval, J.; et al. Activation Pathway of a Nucleoside Analog Inhibiting Respiratory Syncytial Virus Polymerase. ACS Chem. Biol. 2017, 12, 83–91. [Google Scholar] [CrossRef]
- Mello, C.; Aguayo, E.; Rodriguez, M.; Lee, G.; Jordan, R.; Cihlar, T.; Birkus, G. Multiple Classes of Antiviral Agents Exhibit in Vitro Activity against Human Rhinovirus Type C. Antimicrob. Agents Chemother. 2014, 58, 1546–1555. [Google Scholar] [CrossRef]
- Jakeman, K.J.; Tisdale, M.; Russell, S.; Leone, A.; Sweet, C. Efficacy of 2’-Deoxy-2’-Fluororibosides against Influenza A and B Viruses in Ferrets. Antimicrob. Agents Chemother. 1994, 38, 1864–1867. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; et al. Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Sci. Transl. Med. 2017, 9, eaal3653. [Google Scholar] [CrossRef]
- Mackman, R.L. Phosphoramidate Prodrugs Continue to Deliver, The Journey of Remdesivir (GS-5734) from RSV to SARS-CoV-2. ACS Med. Chem. Lett. 2022, 13, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Kamzeeva, P.N.; Aralov, A.V.; Alferova, V.A.; Korshun, V.A. Recent Advances in Molecular Mechanisms of Nucleoside Antivirals. Curr. Issues Mol. Biol. 2023, 45, 6851–6879. [Google Scholar] [CrossRef] [PubMed]
- Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the Development of Nucleoside and Nucleotide Analogues for Cancer and Viral Diseases. Nat. Rev. Drug Discov. 2013, 12, 447–464. [Google Scholar] [CrossRef]
- Falcó, I.; Randazzo, W.; Sánchez, G. Antiviral Activity of Natural Compounds for Food Safety. Food Environ. Virol. 2024, 16, 280–296. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.-Y.; Kim, D.; Nguyen, T.T.H.; Park, S.-J.; Chang, J.S.; Park, K.H.; et al. Biflavonoids from Torreya Nucifera Displaying SARS-CoV 3CL(pro) Inhibition. Bioorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef]
- Gasmi, A.; Mujawdiya, P.K.; Lysiuk, R.; Shanaida, M.; Peana, M.; Gasmi Benahmed, A.; Beley, N.; Kovalska, N.; Bjørklund, G. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals 2022, 15, 1049. [Google Scholar] [CrossRef]
- Jadimurthy, R.; Jagadish, S.; Nayak, S.C.; Kumar, S.; Mohan, C.D.; Rangappa, K.S. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life 2023, 13, 948. [Google Scholar] [CrossRef]
- Cuevas-Cianca, S.I.; Romero-Castillo, C.; Gálvez-Romero, J.L.; Sánchez-Arreola, E.; Juárez, Z.N.; Hernández, L.R. Latin American Plants against Microorganisms. Plants 2023, 12, 3997. [Google Scholar] [CrossRef]
- Al-Beltagi, S.; Preda, C.A.; Goulding, L.V.; James, J.; Pu, J.; Skinner, P.; Jiang, Z.; Wang, B.L.; Yang, J.; Banyard, A.C.; et al. Thapsigargin Is a Broad-Spectrum Inhibitor of Major Human Respiratory Viruses: Coronavirus, Respiratory Syncytial Virus and Influenza A Virus. Viruses 2021, 13, 234. [Google Scholar] [CrossRef]
- Jackman, J.A. Antiviral Peptide Engineering for Targeting Membrane-Enveloped Viruses: Recent Progress and Future Directions. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183821. [Google Scholar] [CrossRef]
- Lalezari, J.P.; Henry, K.; O’Hearn, M.; Montaner, J.S.G.; Piliero, P.J.; Trottier, B.; Walmsley, S.; Cohen, C.; Kuritzkes, D.R.; Eron, J.J.; et al. Enfuvirtide, an HIV-1 Fusion Inhibitor, for Drug-Resistant HIV Infection in North and South America. N. Engl. J. Med. 2003, 348, 2175–2185. [Google Scholar] [CrossRef] [PubMed]
- Outlaw, V.K.; Bovier, F.T.; Mears, M.C.; Cajimat, M.N.; Zhu, Y.; Lin, M.J.; Addetia, A.; Lieberman, N.A.P.; Peddu, V.; Xie, X.; et al. Inhibition of Coronavirus Entry In Vitro and Ex Vivo by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain. mBio 2020, 11, e01935-20. [Google Scholar] [CrossRef] [PubMed]
- Bobardt, M.D.; Cheng, G.; de Witte, L.; Selvarajah, S.; Chatterji, U.; Sanders-Beer, B.E.; Geijtenbeek, T.B.H.; Chisari, F.V.; Gallay, P.A. Hepatitis C Virus NS5A Anchor Peptide Disrupts Human Immunodeficiency Virus. Proc. Natl. Acad. Sci. USA 2008, 105, 5525–5530. [Google Scholar] [CrossRef] [PubMed]
- Jackman, J.A.; Costa, V.V.; Park, S.; Real, A.L.C.V.; Park, J.H.; Cardozo, P.L.; Ferhan, A.R.; Olmo, I.G.; Moreira, T.P.; Bambirra, J.L.; et al. Therapeutic Treatment of Zika Virus Infection Using a Brain-Penetrating Antiviral Peptide. Nat. Mater. 2018, 17, 971–977. [Google Scholar] [CrossRef]
- Cheng, G.; Montero, A.; Gastaminza, P.; Whitten-Bauer, C.; Wieland, S.F.; Isogawa, M.; Fredericksen, B.; Selvarajah, S.; Gallay, P.A.; Ghadiri, M.R.; et al. A Virocidal Amphipathic α-Helical Peptide That Inhibits Hepatitis C Virus Infection in Vitro. Proc. Natl. Acad. Sci. USA 2008, 105, 3088–3093. [Google Scholar] [CrossRef]
Baltimore Group | Family | Virus | Types | Symptomatology | Most Affected Age Group | Complications | Incidence Peaks |
---|---|---|---|---|---|---|---|
I (dsDNA) | Adenoviridae | Adenovirus (HAdV) | A–G | Symptoms of a cold—runny nose, watery diarrhea that comes on suddenly, sore throat, fever, severe cough, vomiting, swollen lymph nodes, headache, and conjunctivitis. | Children < 4 years of age and immunocompromised patients | Pneumonia, bronchitis, encephalitis, meningitis, myocarditis and cardiomyopathies, pulmonary dysplasia, intestinal intussusception, pancreatitis, hemorrhagic cystitis, hepatitis, and nephritis | Winter or early spring [26] |
II (ssDNA) | Parvoviridae | Human bocavirus | 1–4 | Fever, cough, dyspnea, rhinorrhea, diarrhea, wheezing, and pulmonary rales | Children < 5 years | Pneumonia, bronchiolitis, pulmonary atelectasis, and gastrointestinal disorders | Winter or early spring [27] |
IV (ssRNA +) | Picornaviridae | Human rhinovirus (HRV) | A–C | Rhinorrhea, nasal congestion, sore throat, cough, headache, subjective fever, and general malaise | Children < 4 years | Acute otitis media, rhinosinusitis, bronchiolitis, pneumonia, cystic or pulmonary fibrosis, and chronic obstructive disease | Spring, summer, and autumn [28] |
Enterovirus D68 | - | Fever and cough, wheezing, hypoxia, dysphagia, and dyspnea | Children < 5 years of age and immunocompromised patients | Interstitial pneumonia with diffuse alveolar infiltration and patches in the lungs, asthma exacerbation, and acute flaccid myelitis | Year-round, with a summer resurgence [29] | ||
Coronaviridae | 229E, OC43, NL63, HKU1, SARS-CoV, MERS-CoV, SARS-CoV-2 | - | Fever, cough, shortness of breath, anosmia, muscle pain, confusion, headache, sore throat, rhinorrhea, chest pain, diarrhea, nausea, and vomiting | All ages | Viral pneumonia, pulmonary thromboembolism, disseminated intravascular coagulation, encephalitis, vasculitis, ischemic stroke, polyneuropathy, heart failure, arrhythmias, cardiomyopathies, and cardiomegaly | Year-round, higher incidence in winter [8,30,31] | |
V (ssRNA −) | Pneumovirus | Respiratory syncytial virus (RSV) | A–B | Febrile or afebrile, cough, obstructive dyspnea with polypnea, indrawing, chest overdistention (clinical and/or radiological), and wheezing and/or subcrepitant rales of predominantly expiratory nature | All ages are highly prevalent in children < 5 years and adults > 65 years. | Rhinitis, otitis, laryngitis, bronchitis, bronchiolitis, and pneumonia | Winter in tropical locations, and year-round in warm regions [32,33] |
Human metapneumovirus (hMPV) | A and B, each with subclasses I–II | Common symptoms of upper respiratory tract infection include cough, rhinorrhea, congestion, and sore throat; symptoms of lower respiratory tract infection include wheezing, fever, cough, dyspnea, and hypoxia | Highly prevalent in children < 10 years and adults > 65 years. | Bronchiolitis and pneumonia, asthma exacerbation, or acute respiratory distress syndrome | In the northern hemisphere, it occurs in late winter and early spring [34] | ||
Paramyxoviridae | Human parainfluenza (PIV) | 1–4 | Fever, discharge of mucus, cough, and sore throat | Highly prevalent in children < 5 years and adults > 65 years. | Croup, bronchiolitis, bronchitis, and pneumonia | Winter in tropical locations, and year-round in warm regions [35] | |
Orthomyxoviridae | Influenzavirus (IAV) | IAV A HA (H1–H18) and 11 NA (N1–N11) and two recent lineages, ‘Victoria’ and ‘Yamagata’, from IAV B | Fever, myalgia, headache, and fatigue | All ages are highly prevalent in children < 5 years and adults > 65 years | Bronchiolitis in children can aggravate asthma, COPD, and congestive heart failure in adults | Peaks of higher incidence during the winter months, depending on the geographic region [6,36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Jesús-González, L.A.; León-Juárez, M.; Lira-Hernández, F.I.; Rivas-Santiago, B.; Velázquez-Cervantes, M.A.; Méndez-Delgado, I.M.; Macías-Guerrero, D.I.; Hernández-Castillo, J.; Hernández-Rodríguez, X.; Calderón-Sandate, D.N.; et al. Advances and Challenges in Antiviral Development for Respiratory Viruses. Pathogens 2025, 14, 20. https://doi.org/10.3390/pathogens14010020
De Jesús-González LA, León-Juárez M, Lira-Hernández FI, Rivas-Santiago B, Velázquez-Cervantes MA, Méndez-Delgado IM, Macías-Guerrero DI, Hernández-Castillo J, Hernández-Rodríguez X, Calderón-Sandate DN, et al. Advances and Challenges in Antiviral Development for Respiratory Viruses. Pathogens. 2025; 14(1):20. https://doi.org/10.3390/pathogens14010020
Chicago/Turabian StyleDe Jesús-González, Luis Adrián, Moisés León-Juárez, Flor Itzel Lira-Hernández, Bruno Rivas-Santiago, Manuel Adrián Velázquez-Cervantes, Iridiana Monserrat Méndez-Delgado, Daniela Itzel Macías-Guerrero, Jonathan Hernández-Castillo, Ximena Hernández-Rodríguez, Daniela Nahomi Calderón-Sandate, and et al. 2025. "Advances and Challenges in Antiviral Development for Respiratory Viruses" Pathogens 14, no. 1: 20. https://doi.org/10.3390/pathogens14010020
APA StyleDe Jesús-González, L. A., León-Juárez, M., Lira-Hernández, F. I., Rivas-Santiago, B., Velázquez-Cervantes, M. A., Méndez-Delgado, I. M., Macías-Guerrero, D. I., Hernández-Castillo, J., Hernández-Rodríguez, X., Calderón-Sandate, D. N., Mata-Martínez, W. S., Reyes-Ruíz, J. M., Osuna-Ramos, J. F., & García-Herrera, A. C. (2025). Advances and Challenges in Antiviral Development for Respiratory Viruses. Pathogens, 14(1), 20. https://doi.org/10.3390/pathogens14010020