Use of Tick Cell Lines in Co-Infection Studies with a Preliminary Study of Co-Culture of Borrelia burgdorferi and Anaplasma phagocytophilum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tick Cell Line
2.2. Infection of Tick Cell Line with B. burgdorferi and A. phagocytophilum
2.3. RNA Isolation, Reverse Transcription, and Real-Time PCR
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kahl, O.; Gray, J.S. The Biology of Ixodes ricinus with Emphasis on Its Ecology. Ticks Tick-Borne Dis. 2023, 14, 102114. [Google Scholar] [CrossRef] [PubMed]
- Černý, J.; Lynn, G.; Hrnková, J.; Golovchenko, M.; Rudenko, N.; Grubhoffer, L. Management Options for Ixodes ricinus-Associated Pathogens: A Review of Prevention Strategies. Int. J. Environ. Res. Public Health 2020, 17, 1830. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, C.; Lynn, G.E.; Pedra, J.H.F.; Pal, U.; Narasimhan, S.; Fikrig, E. Interactions between Borrelia burgdorferi and Ticks. Nat. Rev. Microbiol. 2020, 18, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yan, M.; Liu, A.; Chen, T.; Luo, L.; Li, L.; Teng, Z.; Li, B.; Ji, Z.; Jian, M.; et al. The Seroprevalence of Anaplasma phagocytophilum in Global Human Populations: A Systematic Review and Meta-analysis. Transbound. Emerg. Dis. 2020, 67, 2050–2064. [Google Scholar] [CrossRef]
- Gray, J.; Kahl, O.; Zintl, A. Pathogens Transmitted by Ixodes ricinus. Ticks Tick-Borne Dis. 2024, 15, 102402. [Google Scholar] [CrossRef]
- Sprong, H.; Azagi, T.; Hoornstra, D.; Nijhof, A.M.; Knorr, S.; Baarsma, M.E.; Hovius, J.W. Control of Lyme Borreliosis and Other Ixodes ricinus-Borne Diseases. Parasites Vectors 2018, 11, 145. [Google Scholar] [CrossRef]
- Hodosi, R.; Kazimirova, M.; Soltys, K. What Do We Know about the Microbiome of I. ricinus? Front. Cell. Infect. Microbiol. 2022, 12, 990889. [Google Scholar] [CrossRef]
- de La Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Pena, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef]
- Parveen, N.; Bhanot, P. Babesia microti—Borrelia burgdorferi Coinfection. Pathogens 2019, 8, 117. [Google Scholar] [CrossRef]
- Diuk-Wasser, M.A.; Vannier, E.; Krause, P.J. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitol. 2016, 32, 30–42. [Google Scholar] [CrossRef]
- Cao, W.-C.; Zhao, Q.-M.; Zhang, P.-H.; Yang, H.; Wu, X.-M.; Wen, B.-H.; Zhang, X.-T.; Habbema, J.D.F. Prevalence of Anaplasma phagocytophila and Borrelia burgdorferi in Ixodes persulcatus ticks from northeastern China. Am. J. Trop. Med. Hyg. 2003, 68, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.C.; Velásquez, C.V.; Aquib, A.; Al-Nazal, A.; Parveen, N. Transmission Cycle of Tick-Borne Infections and Co-Infections, Animal Models and Diseases. Pathogens 2022, 11, 1309. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhou, G.; Cao, W.; Xu, X.; Zhang, Y.; Ji, Z.; Yang, J.; Chen, J.; Liu, M.; Fan, Y.; et al. Global Seroprevalence and Sociodemographic Characteristics of Borrelia burgdorferi sensu lato in Human Populations: A Systematic Review and Meta-Analysis. BMJ Glob. Health 2022, 7, e007744. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.J.; Dumler, J.S. Simultaneous Infection with Borrelia burgdorferi and Human Granulocytic Ehrlichiosis. Pediatr. Infect. Dis. J. 2003, 22, 91–92. [Google Scholar] [CrossRef]
- Loebermann, M.; Fingerle, V.; Lademann, M.; Fritzsche, C.; Reisinger, E.C. Borrelia burgdorferi and Anaplasma phagocytophilum Coinfection. Emerg. Infect. Dis. 2006, 12, 353–355. [Google Scholar] [CrossRef]
- Bell-Sakyi, L.; Zweygarth, E.; Blouin, E.F.; Gould, E.A.; Jongejan, F. Tick Cell Lines: Tools for Tick and Tick-Borne Disease Research. Trends Parasitol. 2007, 23, 450–457. [Google Scholar] [CrossRef]
- Bell-Sakyi, L.; Darby, A.; Baylis, M.; Makepeace, B.L. The Tick Cell Biobank: A Global Resource for in Vitro Research on Ticks, Other Arthropods and the Pathogens They Transmit. Ticks Tick-Borne Dis. 2018, 9, 1364–1371. [Google Scholar] [CrossRef]
- De La Fuente, J.; Garcia-Garcia, J.C.; Blouin, E.F.; Saliki, J.T.; Kocan, K.M. Infection of Tick Cells and Bovine Erythrocytes with One Genotype of the Intracellular Ehrlichia Anaplasma marginale Excludes Infection with Other Genotypes. Clin. Vaccine Immunol. 2002, 9, 658–668. [Google Scholar] [CrossRef]
- Mattila, J.T.; Munderloh, U.G.; Kurtti, T.J. Phagocytosis of the Lyme Disease Spirochete, Borrelia burgdorferi, by Cells from the Ticks, Ixodes scapularis and Dermacentor andersoni, Infected with An Endosymbiont, Rickettsia peacockii. J. Insect Sci. 2007, 7, 58. [Google Scholar] [CrossRef]
- Moniuszko, A.; Rückert, C.; Alberdi, M.P.; Barry, G.; Stevenson, B.; Fazakerley, J.K.; Kohl, A.; Bell-Sakyi, L. Coinfection of Tick Cell Lines Has Variable Effects on Replication of Intracellular Bacterial and Viral Pathogens. Ticks Tick-Borne Dis. 2014, 5, 415–422. [Google Scholar] [CrossRef]
- Cull, B.; Burkhardt, N.Y.; Wang, X.-R.; Thorpe, C.J.; Oliver, J.D.; Kurtti, T.J.; Munderloh, U.G. The Ixodes scapularis Symbiont Rickettsia buchneri Inhibits Growth of Pathogenic Rickettsiaceae in Tick Cells: Implications for Vector Competence. Front. Vet. Sci. 2022, 8, 748427. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-S.; Cui, X.-M.; Du, L.-F.; Xia, L.-Y.; Du, C.-H.; Bell-Sakyi, L.; Zhang, M.-Z.; Zhu, D.-Y.; Dong, Y.; Wei, W.; et al. Coinfection of Two Rickettsia Species in a Single Tick Species Provides New Insight into Rickettsia—Rickettsia and Rickettsia -Vector Interactions. Microbiol. Spectr. 2022, 10, e02323-22. [Google Scholar] [CrossRef] [PubMed]
- Skinner, K.M.; Underwood, J.; Ghosh, A.; Oliva Chavez, A.S.; Brelsfoard, C.L. Wolbachia Impacts Anaplasma Infection in Ixodes scapularis Tick Cells. Int. J. Environ. Res. Public Health 2022, 19, 1051. [Google Scholar] [CrossRef] [PubMed]
- Mazuecos, L.; Alberdi, P.; Hernández-Jarguín, A.; Contreras, M.; Villar, M.; Cabezas-Cruz, A.; Simo, L.; González-García, A.; Díaz-Sánchez, S.; Neelakanta, G.; et al. Frankenbacteriosis Targeting Interactions between Pathogen and Symbiont to Control Infection in the Tick Vector. iScience 2023, 26, 106697. [Google Scholar] [CrossRef]
- Kotsarenko, K.; Vechtova, P.; Lieskovska, J.; Füssy, Z.; Cabral-de-Mello, D.C.; Rego, R.O.M.; Alberdi, P.; Collins, M.; Bell-Sakyi, L.; Sterba, J.; et al. Karyotype changes in long-term cultured tick cell lines. Sci. Rep. 2020, 10, 13443. [Google Scholar] [CrossRef]
- Scott, G.R.; Horsburgh, D. New Rickettsial Isolates. Centre for Tropical Veterinary Medicine Annual Report 1982–1983; University of Edinburgh: Edinburgh, UK, 1983. [Google Scholar]
- Bown, K.J.; Lambin, X.; Ogden, N.H.; Petrovec, M.; Shaw, S.E.; Woldehiwet, Z.; Birtles, R.J. High-Resolution Genetic Fingerprinting of European Strains of Anaplasma phagocytophilum by Use of Multilocus Variable-Number Tandem-Repeat Analysis. J. Clin. Microbiol. 2007, 45, 1771–1776. [Google Scholar] [CrossRef]
- Woldehiwet, Z. The Natural History of Anaplasma phagocytophilum. Vet. Parasitol. 2010, 167, 108–122. [Google Scholar] [CrossRef]
- Iyer, R.; Mukherjee, P.; Wang, K.; Simons, J.; Wormser, G.P.; Schwartz, I. Detection of Borrelia burgdorferi Nucleic Acids after Antibiotic Treatment Does Not Confirm Viability. J. Clin. Microbiol. 2013, 51, 857–862. [Google Scholar] [CrossRef]
- Liveris, D.; Schwartz, I.; McKenna, D.; Nowakowski, J.; Nadelman, R.B.; DeMarco, J.; Iyer, R.; Cox, M.E.; Holmgren, D.; Wormser, G.P. Quantitation of Cell-Associated Borrelial DNA in the Blood of Lyme Disease Patients with Erythema Migrans. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 791–795. [Google Scholar] [CrossRef]
- Silaghi, C.; Kauffmann, M.; Passos, L.M.F.; Pfister, K.; Zweygarth, E. Isolation, Propagation and Preliminary Characterisation of Anaplasma phagocytophilum from Roe Deer (Capreolus capreolus) in the Tick Cell Line IDE8. Ticks Tick-Borne Dis. 2011, 2, 204–208. [Google Scholar] [CrossRef]
- Courtney, J.W.; Kostelnik, L.M.; Zeidner, N.S.; Massung, R.F. Multiplex Real-Time PCR for Detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004, 42, 3164–3168. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Bao, F.; Wu, H.; Ma, W.; Zhu, L.; Huang, X.; Yang, R.; Peng, L.; Gao, L.; Wu, X.; et al. Global Prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum Coinfection in Ixodes Tick Populations: Protocol for a Systematic Review and Meta-Analysis. BMJ Open 2024, 14, e083052. [Google Scholar] [CrossRef] [PubMed]
- Obonyo, M.; Munderloh, U.G.; Fingerle, V.; Wilske, B.; Kurtti, T.J. Borrelia burgdorferi in Tick Cell Culture Modulates Expression of Outer Surface Proteins A and C in Response to Temperature. J. Clin. Microbiol. 1999, 37, 2137–2141. [Google Scholar] [CrossRef] [PubMed]
- Kurtti, T.J.; Munderloh, U.G.; Ahlstrand, G.G.; Johnson, R.C. Borrelia burgdorferi in Tick Cell Culture: Growth and Cellular Adherence. J. Med. Entomol. 1988, 25, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Rezende, J.; Rangel, C.; Cunha, N.; Fonseca, A. Primary Embryonic Cells of Rhipicephalus microplus and Amblyomma cajennense Ticks as a Substrate for the Development of Borrelia burgdorferi (Strain G39/40). Braz. J. Biol. 2012, 72, 577–582. [Google Scholar] [CrossRef]
- Woldehiwet, Z. Anaplasma phagocytophilum in ruminants in Europe. Ann. N. Y. Acad. Sci. 2006, 1078, 446–460. [Google Scholar] [CrossRef]
- Cabezas-Cruz, A.; Alberdi, P.; Ayllón, N.; Valdés, J.J.; Pierce, R.; Villar, M.; de la Fuente, J. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics 2016, 11, 303–319. [Google Scholar] [CrossRef]
- Abraham, N.M.; Liu, L.; Jutras, B.L.; Yadav, A.K.; Narasimhan, S.; Gopalakrishnan, V.; Ansari, J.M.; Jefferson, K.K.; Cava, F.; Jacobs-Wagner, C.; et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. USA 2017, 114, E781–E790. [Google Scholar] [CrossRef]
- Holden, K.; Hodzic, E.; Feng, S.; Freet, K.J.; Lefebvre, R.B.; Barthold, S.W. Coinfection with Anaplasma phagocytophilum Alters Borrelia burgdorferi Population Distribution in C3H/HeN Mice. Infect. Immun. 2005, 73, 3440–3444. [Google Scholar] [CrossRef]
- Thomas, V.; Anguita, J.; Barthold, S.W.; Fikrig, E. Coinfection with Borrelia burgdorferi and the Agent of Human Granulocytic Ehrlichiosis Alters Murine Immune Responses, Pathogen Burden, and Severity of Lyme Arthritis. Infect. Immun. 2001, 69, 3359–3371. [Google Scholar] [CrossRef]
- Munderloh, U.G.; Jauron, S.D.; Fingerle, V.; Leitritz, L.; Hayes, S.F.; Hautman, J.M.; Nelson, C.M.; Huberty, B.W.; Kurtti, T.J.; Ahlstrand, G.G.; et al. Invasion and Intracellular Development of the Human Granulocytic Ehrlichiosis Agent in Tick Cell Culture. J. Clin. Microbiol. 1999, 37, 2518–2524. [Google Scholar] [CrossRef] [PubMed]
- Dyachenko, V.; Geiger, C.; Pantchev, N.; Majzoub, M.; Bell-Sakyi, L.; Krupka, I.; Straubinger, R.K. Isolation of Canine Anaplasma phagocytophilum Strains from Clinical Blood Samples Using the Ixodes ricinus Cell Line IRE/CTVM20. Vet. Microbiol. 2013, 162, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Alberdi, P.; Ayllón, N.; Cabezas-Cruz, A.; Bell-Sakyi, L.; Zweygarth, E.; Stuen, S.; De La Fuente, J. Infection of Ixodes spp. Tick Cells with Different Anaplasma phagocytophilum Isolates Induces the Inhibition of Apoptotic Cell Death. Ticks Tick-Borne Dis. 2015, 6, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.L.; Nelson, C.; Vitale, B.; Madigan, J.E.; Dumler, J.S.; Kurtti, T.J.; Munderloh, U.G. Direct Cultivation of the Causative Agent of Human Granulocytic Ehrlichiosis. N. Engl. J. Med. 1996, 334, 209–215. [Google Scholar] [CrossRef]
- Munderloh, U.G.; Madigan, J.E.; Dumler, J.S.; Goodman, J.L.; Hayes, S.F.; Barlough, J.E.; Nelson, C.M.; Kurtti, T.J. Isolation of the Equine Granulocytic Ehrlichiosis Agent, Ehrlichia equi, in Tick Cell Culture. J. Clin. Microbiol. 1996, 34, 664–670. [Google Scholar] [CrossRef]
- Sultana, H.; Neelakanta, G.; Kantor, F.S.; Malawista, S.E.; Fish, D.; Montgomery, R.R.; Fikrig, E. Anaplasma phagocytophilum Induces Actin Phosphorylation to Selectively Regulate Gene Transcription in Ixodes Scapularis Ticks. J. Exp. Med. 2010, 207, 1727–1743. [Google Scholar] [CrossRef]
- Gomez-Chamorro, A.; Hodžić, A.; King, K.C.; Cabezas-Cruz, A. Ecological and Evolutionary Perspectives on Tick-Borne Pathogen Co-Infections. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100049. [Google Scholar] [CrossRef]
- Xiang, X.; Yang, Y.; Du, J.; Lin, T.; Chen, T.; Yang, X.F.; Lou, Y. Investigation of ospC Expression Variation among Borrelia burgdorferi Strains. Front. Cell. Infect. Microbiol. 2017, 7, 131. [Google Scholar] [CrossRef]
- Munderloh, U.G.; Park, Y.J.; Dioh, J.M.; Fallon, A.M.; Kurtti, T.J. Plasmid modifications in a tick-borne pathogen, Borrelia burgdorferi, cocultured with tick cells. Insect Mol. Biol. 1993, 1, 195–203. [Google Scholar] [CrossRef]
- Pothineni, V.R.; Wagh, D.; Babar, M.M.; Inayathullah, M.; Solow-Cordero, D.; Kim, K.M.; Samineni, A.V.; Parekh, M.B.; Tayebi, L.; Rajadas, J. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening. Drug Des. Dev. Ther. 2016, 10, 1307–1322. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zając, V.; Bell-Sakyi, L.; Wójcik-Fatla, A. Use of Tick Cell Lines in Co-Infection Studies with a Preliminary Study of Co-Culture of Borrelia burgdorferi and Anaplasma phagocytophilum. Pathogens 2025, 14, 78. https://doi.org/10.3390/pathogens14010078
Zając V, Bell-Sakyi L, Wójcik-Fatla A. Use of Tick Cell Lines in Co-Infection Studies with a Preliminary Study of Co-Culture of Borrelia burgdorferi and Anaplasma phagocytophilum. Pathogens. 2025; 14(1):78. https://doi.org/10.3390/pathogens14010078
Chicago/Turabian StyleZając, Violetta, Lesley Bell-Sakyi, and Angelina Wójcik-Fatla. 2025. "Use of Tick Cell Lines in Co-Infection Studies with a Preliminary Study of Co-Culture of Borrelia burgdorferi and Anaplasma phagocytophilum" Pathogens 14, no. 1: 78. https://doi.org/10.3390/pathogens14010078
APA StyleZając, V., Bell-Sakyi, L., & Wójcik-Fatla, A. (2025). Use of Tick Cell Lines in Co-Infection Studies with a Preliminary Study of Co-Culture of Borrelia burgdorferi and Anaplasma phagocytophilum. Pathogens, 14(1), 78. https://doi.org/10.3390/pathogens14010078