Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Units, Fish, and Feed
2.2. Sample Collection
3. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; Volume 2. [Google Scholar]
- The World Bank. FISH TO 2030: Prospects for Fisheries and Aquaculture; WORLD BANK REPORT NUMBER 83177-GLB; Agriculture and Environmental Services (AES): Washington, DC, USA, 2013. [Google Scholar]
- Leung, T.L.F.; Bates, A.E. More rapid and severe disease outbreaks for aquaculture at the tropics: Implications for food security. J. Appl. Ecol. 2013, 50, 215–222. [Google Scholar] [CrossRef]
- Adams, A.; Thompson, K.D. Development of diagnostics for aquaculture: Challenges and opportunities. Aquac. Res. 2011, 42, 93–102. [Google Scholar] [CrossRef]
- O’Neil, J. Tackling Drug-Resistant Infections Globally: Final report and recommendations. In Review on Antimicrobial Resistance; Wellcome Trust: London, UK, 2016. [Google Scholar]
- Urdaci, M.C.; Bressollier, P.; Pinchuk, I. Bacillus clausii Probiotic Strains: Antimicrobial and Immunomodulatory Activities. J. Clin. Gastroenterol. 2004, 38, S86–S90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, G.; Ray, A.K. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 2017, 115, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Corr, S.C.; Hill, C.; Gahan, C.G.M. Chapter 1 Understanding the Mechanisms by Which Probiotics Inhibit Gastrointestinal Pathogens. In Advances in Food and Nutrition Research; Elsevier BV: Amsterdam, The Netherlands, 2009; Volume 56, pp. 1–15. [Google Scholar]
- Ghanei-Motlagh, R.; Mohammadian, T.; Gharibi, D.; Khosravi, M.; Mahmoudi, E.; Zarea, M.; El-Matbouli, M.; Menanteau-Ledouble, S. Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture 2020, 531, 735874. [Google Scholar] [CrossRef]
- Ghanei-Motlagh, R.; Mohammadian, T.; Gharibi, D.; Menanteau-Ledouble, S.; Mahmoudi, E.; Khosravi, M.; Zarea, M.; El-Matbouli, M. Quorum Quenching Properties and Probiotic Potentials of Intestinal Associated Bacteria in Asian Sea Bass Lates calcarifer. Mar. Drugs 2019, 18, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, C.; Mason, T. Zebrafish housing systems: A review of basic operating principles and considerations for design and functionality. ILAR J. 2012, 53, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Schreier, H.J.; Mirzoyan, N.; Saito, K. Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotechnol. 2010, 21, 318–325. [Google Scholar] [CrossRef]
- Van Kessel, M.A.H.J.; Harhangi, H.R.; Flik, G.; Jetten, M.S.M.; Klaren, P.H.M.; den Camp, H.J.M.O. Anammox bacteria in different compartments of recirculating aquaculture systems. Biochem. Soc. Trans. 2011, 39, 1817–1821. [Google Scholar] [CrossRef] [Green Version]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Masser, M.P.; Rakocy, J.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems Management of Recirculating Systems. 1999, p. 453. Available online: https://cals.arizona.edu/azaqua/extension/Classroom/SRAC/453fs.pdf (accessed on 9 October 2020).
- Gonçalves, A.A.; Gagnon, G.A. Ozone Application in Recirculating Aquaculture System: An Overview. Ozone Sci. Eng. 2011, 33, 345–367. [Google Scholar] [CrossRef]
- Ramos, M.A.; Batista, S.; Pires, M.A.; Silva, A.P.; Pereira, L.F.; Saavedra, M.J.; Ozório, R.O.A.; Rema, P. Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia. Animal 2017, 11, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Kesselring, J.C.; Gruber, C.; Standen, B.; Wein, S. Continuous and pulse-feeding application of multispecies probiotic bacteria in whiteleg shrimp, Litopenaeus vannamei. J. World Aquac. Soc. 2019, 50, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Standen, B.T.; Peggs, D.L.; Rawling, M.D.; Foey, A.; Davies, S.J.; Santos, G.A.; Merrifield, D.L. Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish. Shellfish Immunol. 2016, 49, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Krummenauer, D.; Poersch, L.; Romano, L.A.; Lara, G.R.; Encarnação, P.; Wasielesky, W. The Effect of Probiotics in a Litopenaeus vannamei Biofloc Culture System Infected with Vibrio parahaemolyticus. J. Appl. Aquac. 2014, 26, 370–379. [Google Scholar] [CrossRef]
- Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosén, A. Denitrification by Rhizobium meliloti, Swedish University of Agricultural Sciences. 1996. Available online: https://www.osti.gov/etdeweb/servlets/purl/378189 (accessed on 9 October 2020).
- Delmont, T.O.; Quince, C.; Shaiber, A.; Esen, Ö.C.; Lee, S.T.; Rappé, M.S.; McLellan, S.L.; Lücker, S.; Eren, A.M. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 2018, 3, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, D.Y.; Lücker, S.; Vejmelkova, D.; Kostrikina, N.A.; Kleerebezem, R.; Rijpstra, W.I.C.; Damsté, J.S.S.; Le Paslier, D.; Muyzer, G.; Wagner, M.; et al. Nitrification expanded: Discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 2012, 6, 2245–2256. [Google Scholar] [CrossRef] [Green Version]
- Hüpeden, J.; Wemheuer, B.; Indenbirken, D.; Schulz, C.; Spieck, E. Taxonomic and functional profiling of nitrifying biofilms in freshwater, brackish and marine RAS biofilters. Aquac. Eng. 2020, 90, 102094. [Google Scholar] [CrossRef]
- Brailo, M.; Schreier, H.J.; McDonald, R.; Maršić-Lučić, J.; Gavrilović, A.; Pećarević, M.; Jug-Dujaković, J. Bacterial community analysis of marine recirculating aquaculture system bioreactors for complete nitrogen removal established from a commercial inoculum. Aquaculture 2019, 503, 198–206. [Google Scholar] [CrossRef]
- Bartelme, R.P.; McLellan, S.L.; Newton, R.J. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohapatra, S.; Chakraborty, T.; Prusty, A.K.; Das, P.; Paniprasad, K.; Mohanta, K.N. Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: Effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac. Nutr. 2012, 18, 1–11. [Google Scholar] [CrossRef]
Control A | Control B | Probiotics A | Probiotics B | ||||
---|---|---|---|---|---|---|---|
Most Common Bacteria | Read Counts | Most Common Bacteria | Read Counts | Most Common Bacteria | Read Counts | Most Common Bacteria | Read Counts |
Planctomycetes sp. | 12,906 | Chloroflexi sp. | 6142 | Chloroflexi sp. | 21,679 | Chloroflexi sp. | 16,001 |
Chitinophaga sp. | 9586 | Planctomycetes sp. | 5041 | Planctomycetes sp. | 11,622 | Planctomycetes sp. | 12,180 |
Ramlibacter sp. | 9030 | Bradyrhizobium sp. | 2845 | Microbacterium paraoxydans | 2810 | No match | 3596 |
Acidovorax sp. | 8561 | Chitinophaga sp. | 2710 | Chitinophaga sp. | 2645 | Microbacterium paraoxydans | 3572 |
No match | 5346 | Mesorhizobium sp. | 2447 | Mesorhizobium sp. | 2550 | Mesorhizobium sp. | 3517 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menanteau-Ledouble, S.; Gonçalves, R.A.; El-Matbouli, M. Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems. Pathogens 2020, 9, 830. https://doi.org/10.3390/pathogens9100830
Menanteau-Ledouble S, Gonçalves RA, El-Matbouli M. Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems. Pathogens. 2020; 9(10):830. https://doi.org/10.3390/pathogens9100830
Chicago/Turabian StyleMenanteau-Ledouble, Simon, Rui A. Gonçalves, and Mansour El-Matbouli. 2020. "Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems" Pathogens 9, no. 10: 830. https://doi.org/10.3390/pathogens9100830
APA StyleMenanteau-Ledouble, S., Gonçalves, R. A., & El-Matbouli, M. (2020). Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems. Pathogens, 9(10), 830. https://doi.org/10.3390/pathogens9100830