Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacillus anthracis Ames Spores and Aerosol Challenges
2.2. Telemetry Analysis
2.3. Necropsy and Histopathology
2.4. Hematology and C-Reactive Protein
2.5. Bacteremia Analysis
2.6. Toxemia Analysis
2.7. Serology Analysis
2.8. Statistical Analysis
3. Results
3.1. Mortality
3.2. Necropsy and Histopathology
3.3. Physiological Responses
3.3.1. Telemetry
3.3.2. Hematology and C-Reactive Protein
3.3.3. Bacteremia
3.3.4. Toxemia
3.3.5. Serology
4. Discussion
5. Acknowledgements
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Barnewall, R.E.; Comer, J.E.; Miller, B.D.; Gutting, B.W.; Wolfe, D.N.; Director-Myska, A.E.; Nichols, T.L.; Taft, S.C. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model. Front. Cell. Infect. Microbiol. 2012, 2, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inglesby, T.V.; O’Toole, T.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Friedlander, A.M.; Gerberding, J.; Hauer, J.; Hughes, J.; et al. Anthrax as a Biological Weapon, 2002. Updated recommendations for management. JAMA 2002, 287, 2236–2252. [Google Scholar] [CrossRef] [PubMed]
- Taft, S.C.; Nichols, T.L.; Hines, S.A.; Barnewall, R.E.; Stark, G.V.; Comer, J.E. Physiological Responses to a Single Low-Dose of Bacillus anthracis Spores in the Rabbit Model of Inhalational Anthrax. Pathogens 2020, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Taft, S.C.; Hines, S.A. Benchmark Dose Analysis for Bacillus anthracis Inhalation Exposures in the Nonhuman Primate. Risk Anal. 2012, 32, 1750–1768. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Review of Bacillus anthracis Dose-Response Data for Human Health Risk Assessment; National Homeland Security Center Threat and Consequence Assessment Division: Cincinnati, OH, USA, 2016.
- Albrink, W.S.; Goodlow, R.J. Experimental Inhalation Anthrax in the Chimpanzee. Am. J. Pathol. 1959, 35, 1055–1065. [Google Scholar]
- Brachman, P.S.; Kaufman, A.F.; Dalldorf, F.G. Industrial inhalation Anthrax. Bacteriol. Rev. 1966, 30, 646–659. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Technical Brief: Review of Bacillus anthracis (Anthrax) Studies for Dose-Response Modeling to Estimate Risk; Office of Research and Development National Homeland Security Research Center, Ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- U.S. Environmental Protection Agency. Multiple Daily Low-Dose Bacillus anthracis Ames Inhalation Exposures in the Rabbit; Office of Research and Development National Homeland Security Research Center, Ed.; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2012.
- Gutting, B.W.; Rukhin, A.; Marchette, D.; Mackie, R.S.; Thran, B. Dose-Response Modeling for Inhalational Anthrax in Rabbits Following Single or Multiple Exposures. Risk Anal. 2016, 36, 2031–2038. [Google Scholar] [CrossRef]
- Coleman, M.E.; Marks, H.M.; Bartrand, T.A.; Donahue, D.W.; Hines, S.A.; Comer, J.E.; Taft, S.C. Modeling Rabbit Responses to Single and Multiple Aerosol Exposures of Bacillus anthracis Spores. Risk Anal. 2017, 37, 943–957. [Google Scholar] [CrossRef]
- National Research Council. Guide to the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Dauphin, L.A.; Newton, B.R.; Rasmussen, M.V.; Meyer, R.F.; Bowen, M.D. Gamma Irradiation Can Be Used to Inactivate Bacillus anthracis Spores without Compromising the Sensitivity of Diagnostic Assays. Appl. Environ. Microbiol. 2008, 74, 4427–4433. [Google Scholar] [CrossRef] [Green Version]
- Comer, J.E.; Ray, B.D.; Henning, L.N.; Stark, G.V.; Barnewall, R.E.; Mott, J.M.; Meister, G.T. Characterization of a Therapeutic Model of Inhalational Anthrax Using an Increase in Body Temperature in New Zealand White Rabbits as a Trigger for Treatment. Clin. Vaccine Immunol. 2012, 19, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Ionin, B.; Hopkins, R.J.; Pleune, B.; Sivko, G.S.; Reid, F.M.; Clement, K.H.; Rudge, T.L.; Stark, G.V.; Innes, A.; Sari, S.; et al. Evaluation of Immunogenicity and Efficacy of Anthrax Vaccine Adsorbed for Postexposure Prophylaxis. Clin. Vaccine Immunol. 2013, 20, 1016–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaucha, G.M.; Pitt, L.M.; Estep, J.; Ivins, B.; Friedlander, A.M. The pathology of experimental anthrax in rabbits exposed by inhalation and subcutaneous inoculation. Arch. Pathol. Lab. Med. 1998, 122, 982–992. [Google Scholar] [PubMed]
- Murty, D.; Rajesh, E.; Raghava, D.; Raghavan, T.V.; Surulivel, M.K.M. Hypolipidemic effect of arborium plus in experimentally induced hypercholestermic rabbits. Yakugaku Zasshi 2010, 130, 841–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setorki, M.; Asgary, S.; Eidi, A.; Rohani, A.H.; Esmaeil, N. Effects of apple juice on risk factors of lipid profile, inflammation and coagulation, endothelial markers and atherosclerotic lesions in high cholesterolemic rabbits. Lipids Health Dis. 2009, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Arora, G.; Misra, R.; Sajid, A. Model Systems for Pulmonary Infectious Diseases: Paradigms of Anthrax and Tuberculosis. Curr. Top. Med. Chem. 2017, 17, 2077–2099. [Google Scholar] [CrossRef]
- Henning, L.N.; Carpenter, S.; Stark, G.V.; Serbina, N.V. Development of Protective Immunity in New Zealand White Rabbits Challenged with Bacillus anthracis Spores and Treated with Antibiotics and Obiltoxaximab, a Monoclonal Antibody against Protective Antigen. Antimicrob. Agents Chemother. 2018, 62, e01590-17. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, W.S.; Peel, J.E.; Sivasubramani, S.K.; Baze, W.B.; Whorton, E.B.; Beasley, D.W.; Comer, J.E.; Hughes, D.E.; Ling, L.L.; Peterson, J.W. Teixobactin Provides Protection against Inhalation Anthrax in the Rabbit Model. Pathogens 2020, 9, 773. [Google Scholar] [CrossRef]
- Mabry, R.; Brasky, K.; Geiger, R.; Carrion, R., Jr.; Hubbard, G.B.; Leppla, S.; Patterson, J.L.; Georgiou, G.; Iverson, B.L. Detection of Anthrax Toxin in the Serum of Animals Infected with Bacillus anthracis by Using Engineered Immunoassays. Clin. Vaccine Immunol. 2006, 13, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Kobiler, D.; Weiss, S.; Levy, H.; Fisher, M.; Mechaly, A.; Pass, A.; Altboum, Z. Protective Antigen as a Correlative Marker for Anthrax in Animal Models. Infect. Immun. 2006, 74, 5871–5876. [Google Scholar] [CrossRef] [Green Version]
- Yee, S.B.; Hatkin, J.M.; Dyer, D.N.; Orr, S.; Pitt, M.L.M. Aerosolized Bacillus anthracis Infection in New Zealand White Rabbits: Natural History and Intravenous Levofloxacin Treatment. Comp. Med. 2010, 60, 461–468. [Google Scholar]
- Boyer, A.E.; Quinn, C.P.; Hoffmaster, A.R.; Kozel, T.R.; Saile, E.; Marston, C.K.; Percival, A.; Plikaytis, B.D.; Woolfitt, A.R.; Gallegos, M.; et al. Kinetics of Lethal Factor and Poly-d-Glutamic Acid Antigenemia during Inhalation Anthrax in Rhesus Macaques. Infect. Immun. 2009, 77, 3432–3441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brachman, P.S. Inhalation anthrax. Ann. N. Y. Acad. Sci. 1980, 353, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Solano, M.I.; Woolfitt, A.R.; Boyer, A.E.; Lins, R.C.; Isbell, K.; Gallegos-Candela, M.; Moura, H.; Pierce, C.L.; Barr, J.R. Accurate and selective quantification of anthrax protective antigen in plasma by immunocapture and isotope dilution mass spectrometry. Analyst 2019, 144, 2264–2274. [Google Scholar] [CrossRef]
- Henning, L.N.; Comer, J.E.; Stark, G.V.; Ray, B.D.; Tordoff, K.P.; Knostman, K.A.B.; Meister, G.T. Development of an Inhalational Bacillus anthracis Exposure Therapeutic Model in Cynomolgus Macaques. Clin. Vaccine Immunol. 2012, 19, 1765–1775. [Google Scholar] [CrossRef] [Green Version]
- Saile, E.; Boons, G.-J.; Buskas, T.; Carlson, R.W.; Kannenberg, E.L.; Barr, J.R.; Boyer, A.E.; Gallegos-Candela, M.; Quinn, C.P. Antibody Responses to a Spore Carbohydrate Antigen as a Marker of Nonfatal Inhalation Anthrax in Rhesus Macaques. Clin. Vaccine Immunol. 2011, 18, 743–748. [Google Scholar] [CrossRef]
Group Mean Daily Inhaled Dose, in 1.0 × 103 CFU (Standard Deviation) a and Particle Size (GSD) b | Rabbit ID Number | Individual Mean Daily Inhaled Dose | Number of Doses | Accumulated Dose (CFU) c | Outcome, Survived or Died (Days from First Challenge Day to Death) | |
---|---|---|---|---|---|---|
Mean | Standard Deviation | |||||
Irradiated Spores 0.81 µm (1.53) | 40 | 0 | 0 | 15 | 0 | Survived |
7 | 0 | 0 | 15 | 0 | Survived | |
5 | 0 | 0 | 15 | 0 | Survived | |
9 | 0 | 0 | 15 | 0 | Survived | |
37 | 0 | 0 | 15 | 0 | Survived | |
0.291 (0.388) 0.79 µm (1.52) | 13 | 3.85 × 102 | 7.57 × 102 | 15 | 5.78 × 103 | Survived |
34 | 3.17 × 102 | 4.48 × 102 | 15 | 4.76 × 103 | Survived | |
25 | 2.79 × 102 | 3.54 × 102 | 15 | 4.19 × 103 | Survived | |
15 | 3.17 × 102 | 3.27 × 102 | 15 | 4.76 × 103 | Survived | |
30 | 2.72 × 102 | 2.33 × 102 | 15 | 4.07 × 103 | Survived | |
28 | 2.34 × 102 | 1.49 × 102 | 15 | 3.51 × 103 | Survived | |
19 | 2.32 × 102 | 1.28 × 102 | 15 | 3.48 × 103 | Survived | |
1.22 (0.559) 0.82 µm (1.53) | 14 | 7.38 × 102 | 2.99 × 102 | 15 | 1.11 × 104 | Survived |
11 | 1.12 × 103 | 5.01 × 102 | 15 | 1.68 × 104 | Survived | |
2 | 1.33 × 103 | 5.95 × 102 | 14 | 1.86 × 104 | Died (17.9) | |
8 | 1.41 × 103 | 6.06 × 102 | 15 | 2.12 × 104 | Survived | |
12 | 1.30 × 103 | 4.90 × 102 | 15 | 1.96 × 104 | Survived | |
18 | 1.21 × 103 | 5.47 × 102 | 15 | 1.82 × 104 | Survived | |
32 | 1.44 × 103 | 5.92 × 102 | 15 | 2.16 × 104 | Survived | |
11.7 (4.64) 0.86 µm (1.49) | 6 | 6.41 × 103 | 2.57 × 103 | 9 | 5.77 × 104 | Died (10.9) |
33 | 9.75 × 103 | 2.58 × 103 | 10 | 9.75 × 104 | Died (12.7) | |
27 | 1.06 × 104 | 3.51 × 103 | 14 | 1.59 × 105 | Died (20.8) | |
31 | 1.25 × 104 | 3.27 × 103 | 11 | 1.37 × 105 | Died (14.8) | |
39 | 1.44 × 104 | 5.99 × 103 | 15 | 2.16 × 105 | Survived | |
21 | 1.32 × 104 | 4.97 × 103 | 15 | 1.98 × 105 | Survived | |
38 | 1.27 × 104 | 3.77 × 103 | 15 | 1.91 × 105 | Survived |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taft, S.C.; Nichols, T.L.; Hines, S.A.; Barnewall, R.E.; Stark, G.V.; Comer, J.E. Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax. Pathogens 2020, 9, 877. https://doi.org/10.3390/pathogens9110877
Taft SC, Nichols TL, Hines SA, Barnewall RE, Stark GV, Comer JE. Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax. Pathogens. 2020; 9(11):877. https://doi.org/10.3390/pathogens9110877
Chicago/Turabian StyleTaft, Sarah C., Tonya L. Nichols, Stephanie A. Hines, Roy E. Barnewall, Gregory V. Stark, and Jason E. Comer. 2020. "Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax" Pathogens 9, no. 11: 877. https://doi.org/10.3390/pathogens9110877
APA StyleTaft, S. C., Nichols, T. L., Hines, S. A., Barnewall, R. E., Stark, G. V., & Comer, J. E. (2020). Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax. Pathogens, 9(11), 877. https://doi.org/10.3390/pathogens9110877