QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bait Selection for High-Density SNP-Based Genotyping in Kiwifruit
2.2. Variant Calling and Dosage Estimation
2.3. Linkage Map Construction
2.4. Comparison of the Physical and Genetic Maps of Tetraploid A. chinensis and Quantification of Preferential Pairing
2.5. Disease Phenotyping
2.5.1. Field
2.5.2. Stab Assay
2.6. QTL Mapping
2.6.1. Sex Locus
2.6.2. Psa Resistance
2.7. Candidate Genes for Control of Field Psa Tolerance Underlying the QTLs
3. Materials and Methods
3.1. Plant Material
3.2. Phenotyping
3.3. Genotyping, Genetic Map Construction and QTL Mapping
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bretagnolle, F.; Thompson, J.D. Gametes with the Somatic Chromosome Number: Mechanisms of Their Formation and Role in the Evolution of Autopolyploid Plants. New Phytol. 1995, 129, 1–22. [Google Scholar] [CrossRef]
- Ramsey, J.; Schemske, D.W. Pathways, Mechanisms and Rates of Polyploid Formation in Flowering Plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef] [Green Version]
- Otto, S.P.; Whitton, J. Polyploid Incidence and Evolution. Annu. Rev. Genet. 2000, 34, 401–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masterson, J. Stomatal Size in Fossil Plants: Evidence for Polyploidy in Majority of Angiosperms. Science 1994, 264, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The Polyploidy and Its Key Role in Plant Breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef]
- Martin, C.; Viruel, M.A.; Lora, J.; Hormaza, J. Polyploidy in Fruit Tree Crops of the Genus Annona (Annonaceae). Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef]
- Osabe, K.; Kawanabe, T.; Sasaki, T.; Ishikawa, R.; Okazaki, K.; Dennis, L.; Kazama, T.; Fujimoto, R. Multiple Mechanisms and Challenges for the Application of Allopolyploidy in Plants. Int. J. Mol. Sci. 2012, 13, 8696–8721. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Gallo-Meagher, M.; Littell, R.C.; Zeng, Z.B. A General Polyploid Model for Analyzing Gene Segregation in Outcrossing Tetraploid Species. Genetics 2001, 159, 869–882. [Google Scholar]
- Cao, D.; Osborn, T.C.; Doerge, R.W. Correct Estimation of Preferential Chromosome Pairing in Autotetraploids. Genome Res. 2004, 14, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Bourke, P.M.; Arens, P.; Voorrips, R.E.; Esselink, G.D.; Koning-Boucoiran, C.F.S.; Westende, W.P.C.V.; Leonardo, T.S.; Wissink, P.; Zheng, C.; Van Geest, G.; et al. Partial Preferential Chromosome Pairing Is Genotype Dependent in Tetraploid Rose. Plant J. 2017, 90, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Bourke, P.M.; Voorrips, R.E.; Visser, R.G.F.; Maliepaard, C. Tools for Genetic Studies in Experimental Populations of Polyploids. Front. Plant Sci. 2018, 9, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comai, L. The Advantages and Disadvantages of Being Polyploid. Nat. Rev. Genet. 2005, 6, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Soltis, D.E.; Soltis, P.S.; Rieseberg, L.H. Molecular Data and the Dynamic Nature of Polyploidy. Crit. Rev. Plant Sci. 1993, 12, 243–273. [Google Scholar] [CrossRef]
- Ramsey, J.; Schemske, D.W. Neopolyploidy in Flowering Plants. Annu. Rev. Ecol. Syst. 2002, 33, 589–639. [Google Scholar] [CrossRef] [Green Version]
- Mertten, D.; Tsang, G.K.; Manako, K.I.; Mcneilage, M.; Datson, P. Meiotic Chromosome Pairing in Actinidia Chinensis Var. Deliciosa. Genetica 2012, 140, 455–462. [Google Scholar] [CrossRef]
- Wu, J.-H.; Datson, P.; Manako, K.I.; Murray, B.G. Meiotic Chromosome Pairing Behaviour of Natural Tetraploids and Induced Autotetraploids of Actinidia Chinensis. Theor. Appl. Genet. 2014, 127, 549–557. [Google Scholar] [CrossRef]
- Atkinson, R.G.; Cipriani, G.; Whittaker, D.J.; Gardner, R.C. The Allopolyploid Origin of Kiwifruit, Actinidia Deliciosa (Actinidiaceae). Plant Syst. Evol. 1997, 205, 111–124. [Google Scholar] [CrossRef]
- Stebbins, G.L. Types of Polyploids: Their Classification and Significance. In Advances in Genetics; Demerec, M., Ed.; Academic Press: Cambridge, MA, USA, 1947; pp. 403–429. [Google Scholar]
- Szadkowski, E.; Eber, F.; Huteau, V.; Lodé, M.; Coriton, O.; Jenczewski, E.; Chèvre, A.M. Polyploid Formation Pathways Have an Impact on Genetic Rearrangements in Resynthesized Brassica Napus. New Phytol. 2011, 191, 884–894. [Google Scholar] [CrossRef]
- Xu, C.; Bai, Y.; Lin, X.; Zhao, N.; Hu, L.; Gong, Z.; Wendel, J.F.; Liu, B. Genome-Wide Disruption of Gene Expression in Allopolyploids but Not Hybrids of Rice Subspecies. Mol. Biol. Evol. 2014, 31, 1066–1076. [Google Scholar] [CrossRef] [Green Version]
- Madlung, A.; Wendel, J. Genetic and Epigenetic Aspects of Polyploid Evolution in Plants. Cytogenet. Genome Res. 2013, 140, 270–285. [Google Scholar] [CrossRef]
- Mason, A.S.; Wendel, J.F. Homoeologous Exchanges, Segmental Allopolyploidy, and Polyploid Genome Evolution. Front. Genet. 2020, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Behling, A.H.; Shepherd, L.D.; Cox, M.P. The Importance and Prevalence of Allopolyploidy in Aotearoa New Zealand. J. R. Soc. N. Z. 2020, 50, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Huang, H. Kiwifruit: The Genus Actinidia; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Everett, K.R.; Taylor, R.K.; Romberg, M.K.; Rees-George, J.; Fullerton, R.A.; Vanneste, J.L.; Manning, M.A. First Report of Pseudomonas Syringae Pv. Actinidiae Causing Kiwifruit Bacterial Canker in New ZealandAustralas. Plant Dis. Notes 2011, 6, 67–71. [Google Scholar]
- McCann, H.C.; Rikkerink, E.H.; Bertels, F.; Fiers, M.; Lu, A.; Rees-George, J.; Andersen, M.T.; Gleave, A.P.; Haubold, B.; Wohlers, M.W.; et al. Genomic Analysis of the Kiwifruit Pathogen Pseudomonas Syringae Pv. Actinidiae Provides Insight into the Origins of an Emergent Plant Disease. PLoS Pathog. 2013, 9, e1003503. [Google Scholar] [CrossRef]
- Huang, S.; Ding, J.; Deng, D.; Tang, W.; Sun, H.; Liu, D.; Zhang, L.; Niu, X.; Zhang, X.; Meng, M.; et al. Draft Genome of the Kiwifruit Actinidia Chinensis. Nat. Commun. 2013, 4, 2640. [Google Scholar] [CrossRef]
- Pilkington, S.M.; Crowhurst, R.; Hilario, E.; Nardozza, S.; Fraser, L.; Peng, Y.; Gunaseelan, K.; Simpson, R.; Tahir, J.; Deroles, S.C.; et al. A Manually Annotated Actinidia Chinensis Var. Chinensis (Kiwifruit) Genome Highlights the Challenges Associated with Draft Genomes and Gene Prediction in Plants. BMC Genom. 2018, 19, 257. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ma, T.; Kang, M.; Ai, F.; Zhang, J.; Dong, G.; Liu, J. A High-Quality Actinidia Chinensis (Kiwifruit) Genome. Hortic. Res. 2019, 6, 117. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Sun, X.; Yue, J.; Tang, X.; Jiao, C.; Yang, Y.; Niu, X.; Miao, M.; Zhang, D.; Huang, S.; et al. Chromosome-Scale Genome Assembly of Kiwifruit Actinidia Eriantha with Single-Molecule Sequencing and Chromatin Interaction Mapping. GigaScience 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Negro, S.S.; Millet, E.J.; Madur, D.; Bauland, C.; Combes, V.; Welcker, C.; Tardieu, F.; Charcosset, A.; Nicolas, S.D. Genotyping-by-Sequencing and Snp-Arrays Are Complementary for Detecting Quantitative Trait Loci by Tagging Different Haplotypes in Association Studies. BMC Plant Biol. 2019, 19, 318. [Google Scholar] [CrossRef] [Green Version]
- Hackett, C.A.; Boskamp, B.; Vogogias, A.; Preedy, K.F.; Milne, I. Tetraploidsnpmap: Software for Linkage Analysis and Qtl Mapping in Autotetraploid Populations Using Snp Dosage Data. J. Hered. 2017, 108, 438–442. [Google Scholar] [CrossRef]
- Bourke, P.M.; Van Geest, G.; Voorrips, R.E.; Jansen, J.; Kranenburg, T.; Shahin, A.; Visser, R.G.F.; Arens, P.; Smulders, M.J.M.; Maliepaard, C. Polymapr—Linkage Analysis and Genetic Map Construction from F1 Populations of Outcrossing Polyploids. Bioinformatics 2018, 34, 3496–3502. [Google Scholar] [CrossRef] [PubMed]
- Behrouzi, P.; Wit, E.C. De Novo Construction of Polyploid Linkage Maps Using Discrete Graphical Models. Bioinformatics 2018, 35, 1083–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollinari, M.; Garcia, A.A.F. Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models. Genes Genomes Genet. 2019, 9, 3297–3314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, G.D.S.; Gemenet, D.C.; Mollinari, M.; Olukolu, B.A.; Wood, J.C.; Diaz, F.; Mosquera, V.; Gruneberg, W.J.; Khan, A.; Buell, C.R.; et al. Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population. Genetics 2020, 215, 579–595. [Google Scholar] [CrossRef]
- Grandke, F.; Ranganathan, S.; Van Bers, N.; De Haan, J.R.; Metzler, D. Pergola: Fast and Deterministic Linkage Mapping of Polyploids. BMC Bioinform. 2017, 18, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahir, J.; Hoyte, S.; Bassett, H.; Brendolise, C.; Chatterjee, A.; Templeton, K.; Deng, C.; Crowhurst, R.; Montefiori, M.; Morgan, E.; et al. Multiple Quantitative Trait Loci Contribute to Resistance to Bacterial Canker Incited by Pseudomonas Syringae Pv. Actinidiae in Kiwifruit (Actinidia Chinensis). Hortic. Res. 2019, 6, 101. [Google Scholar] [CrossRef] [Green Version]
- De Silva, N.H.; Gea, L.; Lowe, R. Genetic Analysis of Resistance to Pseudomonas Syringae Pv. Actinidiae (Psa) in a Kiwifruit Progeny Test: An Application of Generalised Linear Mixed Models (GLMMs). SpringerPlus 2014, 3, 547. [Google Scholar] [CrossRef] [Green Version]
- Bourke, P.M. Genetic Mapping in Polyploids. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2018. [Google Scholar]
- Voorrips, R.E.; Gort, G.; Vosman, B. Genotype Calling in Tetraploid Species from Bi-Allelic Marker Data Using Mixture Models. BMC Bioinform. 2011, 12, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufresne, F.; Stift, M.; Vergilino, R.; Mable, B.K. Recent Progress and Challenges in Population Genetics of Polyploid Organisms: An Overview of Current State-of-the-Art Molecular and Statistical Tools. Mol. Ecol. 2014, 23, 40–69. [Google Scholar] [CrossRef] [Green Version]
- Akagi, T.; Pilkington, S.M.; Varkonyi-Gasic, E.; Henry, I.M.; Sugano, S.S.; Sonoda, M.; Firl, A.; Mcneilage, M.; Douglas, M.J.; Wang, T.; et al. Two Y-Chromosome-Encoded Genes Determine Sex in Kiwifruit. Nat. Plants 2019, 5, 801–809. [Google Scholar] [CrossRef]
- Pilkington, S.M.; Tahir, J.; Hilario, E.; Gardiner, S.E.; Chagné, D.; Catanach, A.; McCallum, J.; Jesson, L.; Fraser, L.; Mcneilage, M.; et al. Genetic and Cytological Analyses Reveal the Recombination Landscape of a Partially Differentiated Plant Sex Chromosome in Kiwifruit. BMC Plant Biol. 2019, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Latta, R.G.; Bekele, W.A.; Wight, C.P.; Tinker, N.A. Comparative Linkage Mapping of Diploid, Tetraploid, and Hexaploid Avena Species Suggests Extensive Chromosome Rearrangement in Ancestral Diploids. Sci. Rep. 2019, 9, 12298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Xu, Y.; Gao, K.; Fan, G.; Zhang, F.; Deng, C.; Dai, S.; Huang, H.; Xin, H.; Li, Y. High-Density Genetic Map Construction and Identification of Loci Controlling Flower-Type Traits in Chrysanthemum (Chrysanthemum × Morifolium Ramat.). Horticult. Res. 2020, 7, 108. [Google Scholar] [CrossRef] [PubMed]
- Bourke, P.M.; Hackett, C.A.; Voorrips, R.E.; Visser, R.G.F.; Maliepaard, C. Quantifying the Power and Precision of QTL Analysis in Autopolyploids under Bivalent and Multivalent Genetic Models. Genes Genomes Genet. 2019, 9, 2107–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.; Voorrips, R.E.; Jansen, J.; Hackett, C.A.; Ho, J.; Bink, M.C.A.M. Probabilistic Multilocus Haplotype Reconstruction in Outcrossing Tetraploids. Genetics 2016, 203, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Huang, Q.; Zhao, Z.; Han, Q.; Ke, X.; Qin, H.; Huang, L. Studies on the Infection, Colonization, and Movement of Pseudomonas Syringae Pv. Actinidiae in Kiwifruit Tissues Using a GFPuv-Labeled Strain PLoS ONE 2016, 11, e0151169. [Google Scholar]
- Klaassen, M.T.; Bourke, P.M.; Maliepaard, C.; Trindade, L.M. Multi-Allelic QTL Analysis of Protein Content in a Bi-Parental Population of Cultivated Tetraploid Potato. Euphytica 2019, 215, 14. [Google Scholar] [CrossRef]
- Van Geest, G.; Bourke, P.M.; Voorrips, R.E.; Marasek-Ciolakowska, A.; Liao, Y.; Post, A.; Van Meeteren, U.; Visser, R.G.F.; Maliepaard, C.; Arens, P. An Ultra-Dense Integrated Linkage Map for Hexaploid Chrysanthemum Enables Multi-Allelic Qtl Analysis. Theor. Appl. Genet. 2017, 130, 2527–2541. [Google Scholar] [CrossRef] [Green Version]
- Quenouille, J.; Paulhiac, E.; Moury, B.; Palloix, A. Quantitative Trait Loci from the Host Genetic Background Modulate the Durability of a Resistance Gene: A Rational Basis for Sustainable Resistance Breeding in Plants. Heredity 2014, 112, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.F.; Parlevliet, J.E. Genetic Analysis of, and Selection for, Factors Affecting Quantitative Resistance to Xanthomonas Campestris Pv. Oryzae in Rice. Euphytica 1991, 53, 235–245. [Google Scholar] [CrossRef]
- Young, N.D. QTL Mapping and Quantitative Disease Resistance in Plants. Annu. Rev. Phytopathol. 1996, 34, 479–501. [Google Scholar] [CrossRef] [PubMed]
- Afzal, A.J.; Wood, A.J.; Lightfoot, D.A. Plant Receptor-Like Serine Threonine Kinases: Roles in Signaling and Plant Defense. Mol. Plant-Microbe Interactions 2008, 21, 507–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckardt, N.A. The Plant Cell Reviews Plant Immunity: Receptor-Like Kinases, Ros-Rlk Crosstalk, Quantitative Resistance, and the Growth/Defense Trade-Off. Plant Cell 2017, 29, 601–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greeff, C.C.; Roux, M.; Mundy, J.; Petersen, M. Receptor-Like Kinase Complexes in Plant Innate Immunity. Front. Plant Sci. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Zhao, Y.; Bi, G.; Liang, X.; Zhou, J.-M. Early Signalling Mechanisms Underlying Receptor Kinase-Mediated Immunity in Plants. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180310. [Google Scholar] [CrossRef] [Green Version]
- Zipfel, C.; Robatzek, S. Pathogen-Associated Molecular Pattern-Triggered Immunity: Veni, Vidi…? Plant Physiol. 2010, 154, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Hoyte, S.M.; Reglinski, T.; Elmer, P.; Mauchline, N.; Stannard, K.; Casonato, S.; Chee, A.A.; Parry, F.; Taylor, J.; Wurms, K.V.; et al. Developing and Using Bioassays to Screen for Psa Resistance in New Zealand Kiwifruit. Acta Hortic. 2015, 171–180. [Google Scholar] [CrossRef]
- Vanneste, J.L.; Moffat, B.J.; Oldham, J.M. Survival of Pseudomonas Syringae Pv. Actinidiae on Cryptomeria Japonica, a Non-Host Plant Used as Shelter Belts in Kiwifruit Orchards. N. Z. Plant Prot. 2012, 65, 1–7. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and Accurate Long-Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrison, E.; Gabor, M. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Knaus, B.J.; Grünwald, N.J. Vcfr: A Package to Manipulate and Visualize Variant Call Format Data in R. Mol. Ecol. Resour. 2017, 17, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Dodds, K.G.; McEwan, J.C.; Brauning, R.; Anderson, R.M.; van Stijn, T.C.; Kristjánsson, T.; Clarke, S.M. Construction of Relatedness Matrices Using Genotyping-by-Sequencing Data. BMC Genom. 2015, 16, 1047. [Google Scholar] [CrossRef] [Green Version]
- Gerard, D.; Ferrão, L.F.V.; Garcia, A.A.F.; Stephens, M. Genotyping Polyploids from Messy Sequencing Data. Genetics 2018, 210, 789–807. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.A. An Introduction to Genetic Statistics. Am. J. Human Genet. 1973, 25, 578–580. [Google Scholar]
- Hackett, C.A.; Bradshaw, J.E.; Bryan, G.J. QTL Mapping in Autotetraploids Using SNP Dosage Information. Theor. Appl. Genet. 2014, 127, 1885–1904. [Google Scholar] [CrossRef] [Green Version]
- Hackett, C.A.; McLean, K.; Bryan, G.J. Linkage Analysis and QTL Mapping Using SNP Dosage Data in a Tetraploid Potato Mapping Population. PLoS ONE 2013, 8, e63939. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, J.; Brendolise, C.; Hoyte, S.; Lucas, M.; Thomson, S.; Hoeata, K.; McKenzie, C.; Wotton, A.; Funnell, K.; Morgan, E.; et al. QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population. Pathogens 2020, 9, 967. https://doi.org/10.3390/pathogens9110967
Tahir J, Brendolise C, Hoyte S, Lucas M, Thomson S, Hoeata K, McKenzie C, Wotton A, Funnell K, Morgan E, et al. QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population. Pathogens. 2020; 9(11):967. https://doi.org/10.3390/pathogens9110967
Chicago/Turabian StyleTahir, Jibran, Cyril Brendolise, Stephen Hoyte, Marielle Lucas, Susan Thomson, Kirsten Hoeata, Catherine McKenzie, Andrew Wotton, Keith Funnell, Ed Morgan, and et al. 2020. "QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population" Pathogens 9, no. 11: 967. https://doi.org/10.3390/pathogens9110967
APA StyleTahir, J., Brendolise, C., Hoyte, S., Lucas, M., Thomson, S., Hoeata, K., McKenzie, C., Wotton, A., Funnell, K., Morgan, E., Hedderley, D., Chagné, D., Bourke, P. M., McCallum, J., Gardiner, S. E., & Gea, L. (2020). QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population. Pathogens, 9(11), 967. https://doi.org/10.3390/pathogens9110967