In Vitro Anthelminthic Efficacy of Aqueous Pomegranate (Punica granatum L.) Extracts against Gastrointestinal Nematodes of Sheep
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization
2.2. Parasitological Studies
2.2.1. Coprocultures
2.2.2. Egg Hatch Test
3. Discussion
4. Materials and Methods
4.1. Aqueous Macerate Preparation
4.2. Chemical Characterization
4.3. Parasitological Study
4.3.1. Recovery of GIN Eggs
4.3.2. Coprocultures
4.3.3. Anthelmintic Efficacy
4.3.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgan, E.R.; Charlier, J.; Hendrickx, G.; Biggeri, A.; Catalan, D.; Von Samson-Himmelstjerna, G.; Demeler, J.; Müller, E.; Van Dijk, J.; Kenyon, F.; et al. Global Change and Helminth Infections in Grazing Ruminants in Europe: Impacts, Trends and Sustainable Solutions. Agriculture 2013, 3, 484–502. [Google Scholar] [CrossRef] [Green Version]
- Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasites Vectors 2015, 8, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musella, V.; Catelan, D.; Rinaldi, L.; Lagazio, C.; Cringoli, G.; Biggeri, A. Covariate selection in multivariate spatial analysis of ovine parasitic infection. Prev. Vet. Med. 2011, 99, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, R.K.; Von Samson-Himmelstjerna, G.; Silvestre, A.; Taylor, M.A.; Vercruysse, J. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Hoste, H.; Torres-Acosta, J. Non chemical control of helminths in ruminants: Adapting solutions for changing worms in a changing world. Vet. Parasitol. 2011, 180, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.J.; Knauer, C.S. Discovery of veterinary antiparasitic agents in the 21st Century: A view from industry. Int. J. Parasitol. 2010, 40, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Van Der Voort, M.; Charlier, J.; Lauwers, L.; Vercruysse, J.; Van Huylenbroeck, G.; Van Meensel, J. Conceptual framework for analysing farm-specific economic effects of helminth infections in ruminants and control strategies. Prev. Vet. Med. 2013, 109, 228–235. [Google Scholar] [CrossRef]
- Lifschitz, A.; Ballent, M.; Virkel, G.; Sallovitz, J.; Viviani, P.; Lanusse, C. Accumulation of monepantel and its sulphone derivative in tissues of nematode location in sheep: Pharmacokinetic support to its excellent nematodicidal activity. Vet. Parasitol. 2014, 203, 120–126. [Google Scholar] [CrossRef]
- Rose, H.; Rinaldi, L.; Bosco, A.; Mavrot, F.; De Waal, T.; Skuce, P.; Charlier, J.; Torgerson, P.R.; Hertzberg, H.; Hendrickx, G.; et al. Widespread anthelmintic resistance in European farmed ruminants: A systematic review. Vet. Rec. 2015, 176, 546. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, L.; Morgan, E.R.; Bosco, A.; Coles, G.C.; Cringoli, G. The maintenance of anthelmintic efficacy in sheep in a Mediterranean climate. Vet. Parasitol. 2014, 203, 139–143. [Google Scholar] [CrossRef]
- Waller, P.J.; Thamsborg, S.M. Nematode control in “green” ruminant production systems. Trends Parasitol. 2004, 20, 493–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauri, R.K.; Tigga, M.N.; Kullu, S.S. A review on use of medicinal plants to control parasites. Indian J. Nat. Prod. Resour. 2015, 6, 268–277. [Google Scholar]
- Oyserman, D.; Brickman, D.; Bybee, D.; Celious, A. Fitting in Matters. Psychol. Sci. 2006, 17, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Githiori, J.B.; Athanasiadou, S.; Thamsborg, S.M. Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet. Parasitol. 2006, 139, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.; Vogl, C.R.; Amorena, M.; Hamburger, M.; Walkenhorst, M. Treatment of Organic Livestock with Medicinal Plants: A Systematic Review of European Ethnoveterinary Research. Complementary Med. Res. 2014, 21, 375–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegi, L.; Pieroni, A.; Guarrera, P.M.; Vangelisti, R. A review of plants used in folk veterinary medicine in Italy as basis for a databank. J. Ethnopharmacol. 2003, 89, 221–244. [Google Scholar] [CrossRef]
- Calzetta, L.; Pistocchini, E.; Leo, A.; Roncada, P.; Ritondo, B.L.; Palma, E.; Di Cave, D.; Britti, D. Anthelminthic medicinal plants in veterinary ethnopharmacology: A network meta-analysis following the PRISMA-P and PROSPERO recommendations. Heliyon 2020, 6, e03256. [Google Scholar] [CrossRef] [PubMed]
- Passalacqua, N.G.; De Fine, G.; Guarrera, P.M. Contribution to the knowledge of the veterinary science and of the ethnobotany in Calabria region (Southern Italy). J. Ethnobiol. Ethnomedicine 2006, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Guarrera, P.M.; Lucia, L.M. Ethnobotanical remarks on Central and Southern Italy. J. Ethnobiol. Ethnomedicine 2007, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Bassiri-Jahromi, S. Punica granaturn (Pomegranate) activity in health promotion and cancer prevention. Oncol. Rev. 2018, 12, 345. [Google Scholar]
- Arun, N.; Road, R.; Pradesh, U. Punica granatum: A Review on Pharmacological and Therapeutic Properties. Int. J. Pharm. Sci. Res. 2012, 3, 1240. [Google Scholar]
- Baranitharan, M.; Tamizhazhagan, V.; Kovendan, K.; Senthilmurugan, S. Punica Granatum-Based Green Ethanolic Extract as Highly Effective and Eco-Friendly Larvicide, Repellent against Medically Important Mosquito Vectors. Entomol. Appl. Sci. Lett. 2019, 6, 33–41. [Google Scholar]
- Abdel-Ghaffar, F.; Semmler, M.; Al-Rasheid, K.A.S.; Strassen, B.; Fischer, K.; Aksu, G.; Klimpel, S.; Mehlhorn, H. The effects of different plant extracts on intestinal cestodes and on trematodes. Parasitol. Res. 2010, 108, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hafeez, E.H.; Ahmed, A.K. The Efficacy of Pomegranate (Punica granatum) Peel Extract on Experimentally Infected Rats with Blastocystis spp. J. Anc. Dis. Prev. Remedies 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, D.C.; Satyapal, U.S.; Tatke, P.A.; Naharwar, V. Antimicrobial and anthelmentic activity of Punica granatum fruit peel extracts. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 482–487. [Google Scholar]
- Jabeen, N.; Anwar, S.; Mahmood, Q.; Zia, M.A.; Murtaza, G. In vitro anthelmintic efficacy of native plants against Haemonchus contortus. Acta Pol. Pharm. Drug Res. 2015, 72, 1051–1055. [Google Scholar]
- Ahmed, A.H.; Ejo, M.; Feyera, T.; Regassa, D.; Mummed, B.; Assefa, S. In Vitro Anthelmintic Activity of Crude Extracts of Artemisia herba-alba and Punica granatum against Haemonchus contortus. J. Parasitol. Res. 2020, 2020, 4950196. [Google Scholar] [CrossRef] [Green Version]
- Anthelmintic Potency and Curative Effect of Pomegranate Peels Ethanolic Extract against Haemonchus contortus Infection in Goats. Int. J. Vet. Sci. 2020. [CrossRef]
- Aggarwal, R.; Kaur, K.; Suri, M.; Bagai, U. Anthelmintic potential of Calotropis procera, Azadirachta indica and Punica granatum against Gastrothylax indicus. J. Parasit. Dis. 2015, 40, 1230–1238. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakash, A. Punica granatum: A Review on Phytochemicals, Antioxidant and Antimicrobial. J. Acad. Ind. Res. 2017, 5, 132–138. [Google Scholar]
- Kaplan, R.M. Biology, Epidemiology, Diagnosis, and Management of Anthelmintic Resistance in Gastrointestinal Nematodes of Livestock. Vet. Clin. N. Am. Food Anim. Pr. 2020, 36, 17–30. [Google Scholar] [CrossRef] [PubMed]
- D’Ambola, M.; Bosco, A.; Ariano, A.; Rinaldi, L.; Bader, A.; Amadesi, A.; Cringoli, G.; Severino, L. In Vitro Anthelminthic Efficacy of Hypoestes forskaolii (Vahl) R.Br (Acanthaceae) Extracts on Gastrointestinal Nematodes of Sheep. Vet. Sci. 2018, 5, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, G.C.; Makatouni, A. Consumer perception of organic food production and farm animal welfare. Br. Food J. 2002, 104, 287–299. [Google Scholar] [CrossRef]
- Martelli, G. Consumers’ perception of farm animal welfare: An Italian and European perspective. Ital. J. Anim. Sci. 2009, 8, 31–41. [Google Scholar] [CrossRef]
- Castagna, F.; Palma, E.; Cringoli, G.; Bosco, A.; Nisticò, N.; Caligiuri, G.; Britti, D.; Musella, V. Use of Complementary Natural Feed for Gastrointestinal Nematodes Control in Sheep: Effectiveness and Benefits for Animals. Animals 2019, 9, 1037. [Google Scholar] [CrossRef] [Green Version]
- Bosco, A.; Kießler, J.; Amadesi, A.; Várady, M.; Hinney, B.; Ianniello, D.; Maurelli, M.P.; Cringoli, G.; Rinaldi, L. The threat of reduced efficacy of anthelmintics against gastrointestinal nematodes in sheep from an area considered anthelmintic resistance-free. Parasites Vectors 2020, 13, 457. [Google Scholar] [CrossRef]
- Min, B.; Hart, S. Tannins for suppression of internal parasites. J. Anim. Sci. 2003. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.; Sandoval-Castro, C.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.; Terrill, T. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef]
- Joshi, B.; Kommuru, D.; Terrill, T.; Mosjidis, J.; Burke, J.; Shakya, K.; Miller, J. Effect of feeding sericea lespedeza leaf meal in goats experimentally infected with Haemonchus contortus. Vet. Parasitol. 2011, 178, 192–197. [Google Scholar] [CrossRef]
- Martin, R. Modes of action of anthelmintic drugs. Vet. J. 1997, 154, 11–34. [Google Scholar] [CrossRef]
- Wang, R.; Ding, Y.; Liu, R.; Xiang, L.; Du, L. Pomegranate: Constituents, bioactivities and pharmacokinetics. Fruit Veg. Cereal Sci. Biotechnol. 2010, 4, 77–87. [Google Scholar]
- Dell’Agli, M.; Galli, G.V.; Corbett, Y.; Taramelli, D.; Lucantoni, L.; Habluetzel, A.; Maschi, O.; Caruso, D.; Giavarini, F.; Romeo, S.; et al. Antiplasmodial activity of Punica granatum L. fruit rind. J. Ethnopharmacol. 2009, 125, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Al-Mathal, E.M.; AlSalem, A.M. Pomegranate (Punica granatum) peel is effective in a murine model of experimental Cryptosporidium parvum. Exp. Parasitol. 2012, 131, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Tariq, K.A.; Tantry, M.A. Preliminary Studies on Plants with Anthelmintic Properties in Kashmir—The North-West Temperate Himalayan Region of India. Chin. Med. 2012, 3, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Yones, D.A.; Badary, D.M.; Sayed, H.M.B.; Bayoumi, S.A.H.; Khalifa, A.A.; El-Moghazy, A.M. Comparative Evaluation of Anthelmintic Activity of Edible and Ornamental Pomegranate Ethanolic Extracts against Schistosoma mansoni. BioMed Res. Int. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Negi, P.; Jayaprakasha, G. Antioxidant and Antibacterial Activities of Punica granatum Peel Extracts. J. Food Sci. 2003, 68, 1473–1477. [Google Scholar] [CrossRef]
- Aviram, M.; Volkova, N.; Coleman, R.; Dreher, M.; Reddy, M.K.; Ferreira, D.; Rosenblat, M. Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic: Studies in vivo in atherosclerotic apolipoprotein E-deficient (E0) mice and in vitro in cultured macrophages and lipoproteins. J. Agric. Food Chem. 2008, 56, 1148–1157. [Google Scholar] [CrossRef]
- Dos Anjos, C.; Silva, B.T.; Fertonani, L.H.S.; Matsumoto, L.S.; De Mello-Peixoto, E.C.T.; Silva, C.S.; Da Silva, R.M.G. Pomegranate extracts on larval inhibition of Haemonchus spp and Cooperia spp obtained from cattle. Biosci. J. 2016, 32, 1277–1285. [Google Scholar] [CrossRef]
- Coles, G.; Bauer, C.; Borgsteede, F.; Geerts, S.; Klei, T.; Taylor, M.; Waller, P. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Godber, O.F.; Phythian, C.J.; Bosco, A.; Ianniello, D.; Coles, G.; Rinaldi, L.; Cringoli, G. A comparison of the FECPAK and Mini-FLOTAC faecal egg counting techniques. Vet. Parasitol. 2015, 207, 342–345. [Google Scholar] [CrossRef]
- Friedhoff, K. Manual of veterinary parasitological laboratory techniques. Vet. Parasitol. 1978, 4, 200–201. [Google Scholar] [CrossRef]
- Van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 14. [Google Scholar] [CrossRef] [PubMed]
- Von Samson-Himmelstjerna, G.; Coles, G.C.; Jackson, F.; Bauer, C.; Borgsteede, F.; Cirak, V.Y.; Demeler, J.; Donnan, A.; Dorny, P.; Epe, C.; et al. Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes. Parasitol. Res. 2009, 105, 825–834. [Google Scholar] [CrossRef] [PubMed]
Peak LC-MS | m/z Theoretical | m/z Measured | Molecular Formula | Analyte |
---|---|---|---|---|
(1) | 149.0092 | 149.0081 | C4H5O6 | Tartaric acid |
181.0718 | 181.0711 | C6H1306 | Mannitol | |
193.0354 | 193.0347 | C9H9O7 | Glucuronic acid | |
481.0697 | 481.0626 | C20H17O14 | 2,3-(S)-hexahydroxyphenyl-D-glucose | |
(2) | 169.0142 | 169.0134 | C7H5O5 | Gallic acid |
(3) | 288.9990 | 288.9992 | C13H5O8 | Phelligridin J |
469.0049 | 469.0050 | C21H9O13 | Valoneic acid dilattone | |
(4) | 197.0455 | 197.0449 | C9H9O5 | Syringic acid |
(5) | - | 186.1129 | C13H14O | unknown |
(6) | 300.9990 | 300.9991 | C14H5O8 | Ellagic acid |
447.0642 | 447.0573 | C20H15O12 | Ducheside A |
Concentration (mg/mL) | Methanol A | Insoluble Residue B | Gallic Acid C | TBZ (Positive Control) | Deionized Water/DMSO 0.5% (Negative Control) |
---|---|---|---|---|---|
0.005 mg/mL | 89.3 ± 2.5 a* | 85.3 ± 1.5 b | 82.7 ± 2.1 b | 6.7 c ± 0.6 | |
0.05 mg/mL | 94.0 ± 2.6 a | 89.7 ± 1.5 b | 86.3 ± 1.1 b | ||
0.125 mg/mL | 96.0 ± 3.0 a | 90.7 ± 2.1 b | 90.7 ± 0.6 b | ||
0.25 mg/mL | 97.7 ± 1.5 a | 93.3 ± 4.2 b | 91.3 ± 1.5 b | 96.7 a ± 1.2 | |
0.5 mg/mL | 98.0 ± 1.0 a | 94.3 ± 3.5 b | 93.0 ± 1.0 b | 99.3 a ± 0.6 | |
1 mg/mL | 99.3 ± 0.6 a | 94.7 ± 3.8 b | 94.0 ± 2.0 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castagna, F.; Britti, D.; Oliverio, M.; Bosco, A.; Bonacci, S.; Iriti, G.; Ragusa, M.; Musolino, V.; Rinaldi, L.; Palma, E.; et al. In Vitro Anthelminthic Efficacy of Aqueous Pomegranate (Punica granatum L.) Extracts against Gastrointestinal Nematodes of Sheep. Pathogens 2020, 9, 1063. https://doi.org/10.3390/pathogens9121063
Castagna F, Britti D, Oliverio M, Bosco A, Bonacci S, Iriti G, Ragusa M, Musolino V, Rinaldi L, Palma E, et al. In Vitro Anthelminthic Efficacy of Aqueous Pomegranate (Punica granatum L.) Extracts against Gastrointestinal Nematodes of Sheep. Pathogens. 2020; 9(12):1063. https://doi.org/10.3390/pathogens9121063
Chicago/Turabian StyleCastagna, Fabio, Domenico Britti, Manuela Oliverio, Antonio Bosco, Sonia Bonacci, Giuseppe Iriti, Monica Ragusa, Vincenzo Musolino, Laura Rinaldi, Ernesto Palma, and et al. 2020. "In Vitro Anthelminthic Efficacy of Aqueous Pomegranate (Punica granatum L.) Extracts against Gastrointestinal Nematodes of Sheep" Pathogens 9, no. 12: 1063. https://doi.org/10.3390/pathogens9121063
APA StyleCastagna, F., Britti, D., Oliverio, M., Bosco, A., Bonacci, S., Iriti, G., Ragusa, M., Musolino, V., Rinaldi, L., Palma, E., & Musella, V. (2020). In Vitro Anthelminthic Efficacy of Aqueous Pomegranate (Punica granatum L.) Extracts against Gastrointestinal Nematodes of Sheep. Pathogens, 9(12), 1063. https://doi.org/10.3390/pathogens9121063